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Abstract—Generalised Modus Ponens (GMP) allows to per-
form logical inference in the case where an observation partially
matches the premise of an implication, enriching the rule exploita-
tion as compared to binary classical logic. This paper proposes
to further enhance the rule exploitation, integrating additional
constraints to guide the inference, both to reduce uncertainty in
case of partial match and to perform inference in the case of
an observation disjoint from the rule premise. These constraints
are expressed as logical predicates derived from properties that
characterise the observation, in an absolute way or relatively
to the rule premise. An extension of GMP is proposed, to take
into account the constraints, based on transformation operations
applied to the fuzzy sets involved in the rule and the observation.
An instantiation to a GMP preserving graduality and ambiguity
is established and its validity is proven.

I. INTRODUCTION

Given an implication A0 ⇒ B0 and an observation A,
classical logic only allows to infer new knowledge in the case
where the observation perfectly matches the rule premise, A =
A0. The Generalised Modus Ponens (GMP) [1] enriches the
rule exploitation, allowing to perform logical inference even
when A differs from A0, to a certain extent. In most cases,
the imperfect match between A and A0 induces a result with
uncertainty, expressing the fact that other values, not contained
in the rule, cannot be excluded.

This paper proposes to extend GMP, so as to exploit addi-
tional constraints to guide the inference in this case of partial
match: in particular it aims at getting more certain results,
that better capture the relation between the observation and the
premise. These additional constraints can for instance express
the preservation of some properties, e.g. the ambiguity level
of the observation, or specific behaviours, e.g. a monotonous
relationship between the observation and the premise.

The introduction of these constraints in GMP also allows
to perform inference when the observation does not match the
rule premise at all: although the rule is not to be triggered
in such a case, it can be considered as providing information
allowing to process the observation and to infer new knowledge
from it.

The proposed GMP extension, named Transformation-
based Constraint-guided Generalised Modus Ponens, T-CGMP,
consists in identifying transformations that capture the relation
between the observation and the rule premise, in particular
in terms of the properties that appear in the considered
constraints. It then transposes them to the conclusion universe.

The paper is organised as follows: Section II describes the
notations and recalls the related inference principles of GMP
and analogical reasoning. Section III proposes a typology of
the constraints that can be considered as additional inference
principles, expressed as logical predicates derived from proper-
ties that characterise the observation, in an absolute way or rel-
atively to the rule premise. Section IV describes the proposed
Transformation-based, Constraint-guided, Generalised Modus
Ponens that extends GMP to take into account such additional
constraints. Section V and VI focus on a specific case, where
constraints of graduality and ambiguity preservation are con-
sidered: they instantiate T-CGMP to an inference principle
that both satisfies monotonicity and ambiguity processing.
Section VII concludes the paper and describes future works.

II. RELATED WORKS

Given an implication A0 ⇒ B0 and an observation A, an
inference scheme F defines a new piece of knowledge B, and
can be generally written as

B = F (A0, B0, A) (1)

such that A = A0 =⇒ B = B0 (2)

The constraint in Eq. (2) can also be written as imposing that F
is such that F (A0, B0, A0) = B0: if the observation equals the
rule premise, the inferred result equals the rule conclusion.

This section briefly recalls the notations of the Generalised
Modus Ponens, some of its variants that take into account
additional constraints and the related inference principle of
analogical reasoning.

A. Generalised Modus Ponens

Denoting X and Y the premise and conclusion universes,
A0, A two fuzzy sets defined on X , B0 a fuzzy set defined
on Y and using the same symbol for a fuzzy set and its
membership function, the Generalised Modus Ponens [1] im-
plements the above general inference scheme as

B = GMP (A,A0 ⇒ B0) (3)
⇔ ∀y ∈ Y, B(y) = sup

x∈X
>(A(x), I(A0(x), B0(y)))

where > is a triangular norm and I a fuzzy implication
operator, jointly chosen so that the constraint defined in Eq. (2)
is satisfied.

As a result, and as opposed to the classic Modus Ponens,
GMP allows to perform informative inference even when the



observation does not exactly match the rule premise. In most
cases, the imperfect match between A and A0 induces a result
with uncertainty, expressing the fact that other values, not
contained in the rule, cannot be excluded. This behaviour is
illustrated on the two left graphs of Figure 1: the leftmost one
shows the premise A0 in red and a partially matching observa-
tion A in blue. The middle graph shows the rule conclusion B0

in red and, in blue, the inferred B = GMP (A,A0 ⇒ B0),
as defined in Eq. (3), considering the Łukasiewicz implica-
tion I(u, v) = max(1 − u, v) and the Łukasiewicz t-norm
>(u, v) = max(0, u+v−1). The GMP result is indeed similar
to the rule conclusion, but includes an uncertainty level for all
values of the universe.

In the case where A0 and A have disjoint supports, i.e.
when the observation does not match at all the rule premise, in
most combinations of implication and t-norm operators [2], the
obtained result B equals the whole universe. This behaviour
is illustrated on the two left graphs of Figure 2: for the obser-
vation in blue on the leftmost graph with empty intersection
with the rule premise in red, the GMP inferred B (in blue
on the middle graph) has membership degree 1 for all values
of the universe. This behaviour relies on an uncertainty-based
reading of fuzzy sets: all values of the universe are equally,
and totally, possible. This is a reasonable choice considering
that, in this case, the rule actually does not apply.

The Mamdani inference system [3], [4] replaces the impli-
cation operator I in Eq. (3) by the min operator. The obtained
result in the case of a disjoint observation is then the empty
set. This choice has long been proven to be highly relevant
in the domain of fuzzy control, as defining appropriate ways
to determine the action to be taken after defuzzification. It
has been shown that the Mamdani approach can be interpreted
as a modified Generalised Modus Ponens that explicitly takes
into account the rule applicability, integrating a measure of the
compatibility between observation and premise when trigger-
ing it [5].

B. Some GMP Variants

Both behaviours of GMP described above in the case of
an observation disjoint from the premise are relevant, when
considering that in this case, the rule actually does not apply.
However, one may wish to consider that, even in this case, the
rule expresses useful knowledge and that it may be exploited
to perform an inference, using additional constraints.

One of the most frequent ones expresses a graduality
constraint, requiring a monotonous behaviour of the inference
result with respect to the rule premise (see e.g. [6]): it takes into
account the relative position of the observation with respect
to the premise. Considering, e.g. fuzzy sets defined on the
universe X = R, it allows to get different results when the
observation is on the left or on the right of the premise. It
can be considered as adding, to the general form of inference
expressed by Eq. (1) and (2) an additional constraint, to guide
the inference.

This notion of monotononicity is understood as a global
constraint across the universes, and not in terms of truth values,
as is the case in gradual reasoning [7]. Several variants con-
sider the monotonicity of a complete fuzzy inference system
[8]–[11]; the case of single rules is for instance tackled by

the Gradual Generalised Modus Ponens [6]. It consists in
forbidding that all x ∈ X of the input universe influence on
the result, as is the case for GMP, due to the aggregation
supx∈X used in Eq. (3): it identifies relevant subparts of
the universe X to be taken into account when processing an
observation, integrating information about the relative position
of the observation with respect to the rule premise.

C. Analogical Reasoning

The inference performed in analogical reasoning (see e.g.
[12]) depends on three resemblance relations, RX , RY and β,
respectively defined on [0, 1]X × [0, 1]X , [0, 1]Y × [0, 1]Y and
[0, 1]X × [0, 1]Y . It can be generally written as

B = F (A0, B0, A)

such that A = A0 =⇒ B = B0

A0βB0 and A0RXA =⇒ AβB and B0RYB

Thus, it can be interpreted as an inference scheme of the
form recalled by Eq. (1) and (2), considering an additional
constraint, regarding the similarity relations between B and
the reference fuzzy sets A0, B0 and A.

As compared to GMP, it can be argued [13] that analogical
reasoning uses the similarities RX and RY to find B, the
relation between A and B being obtained as a consequence.
Reciprocally, for approximate reasoning interpreted as an
analogical scheme [12], [13], the link between A and B is
given by the GMP itself, the similarities are obtained as the
consequences.

The GMP extension proposed in this paper also considers
the introduction of additional constraints in the scheme recalled
by Eq. (1) and (2). However, it considers a more general
case than analogical reasoning, according to the typology of
constraints described in the next section. The general form of
the solution, used to build the inferred piece of knowledge B,
is then described in Section IV: it exploits transformation op-
erations, which can be interpreted as establishing resemblance
relations, along the same lines as analogical reasoning, but
depending on the considered constraints.

III. CONSTRAINT TYPOLOGY

This section discusses a typology of possible constraints
whose preservation can be used to guide the inference per-
formed when combining a rule of the form A0 ⇒ B0 with an
observation A: such constraints can be added in the scheme
recalled by Eq. (1) and (2).

The section first distinguishes between three types of char-
acterisations of fuzzy sets, then establishes logical properties
that are finally used to build the constraints.

A. Characterisations of Fuzzy Sets

Fuzzy sets defined on a universe X can first be char-
acterised using fuzzy set measures, generally written m :
[0, 1]X → R. They for instance include the size of their support
or of their kernels, their degree of fuzziness, or other measures
of fuzziness or non-specificity [14], [15].

A second type of numerical characterisations, in a relative
sense, applies to couples of fuzzy sets, and not individual ones:



they capture the specificity of a fuzzy set with respect to a
reference one. Such measures, globally defined as functions
m : [0, 1]X × [0, 1]X → R, for instance include similarity or
inclusion measures [16].

A third type of characterisation does not reduce fuzzy sets
to a numerical value, but to specific points of the universe on
which they are defined, as for instance their centre of gravity,
the centre of their kernel or support. These characterisations,
that can also be called location measures, can be globally
written as pt : [0, 1]X → X .

B. Logical Properties of Fuzzy Sets

The previous characterisations of fuzzy sets then lead to the
definition of 4 types of logical predicates expressing properties
they can satisfy.

A first type of predicates generally written P : [0, 1]X →
B, where B is the Boolean algebra, can be derived from
the fuzzy set measures: for any measure m and a numerical
threshold α ∈ R, a first property can be defined as

P (A) ≡ m(A) ./ α (4)

where ./∈ {>,<,≤,≥,=}. For instance, one can define a
property indicating whether the degree of fuzziness is greater
than 0.8.

The fuzzy set measures that apply to couples of fuzzy sets
can lead to predicates of this category, considering a reference
fuzzy set: considering for instance a similarity measure sim,
one can define PA0

(A) ≡ sim(A,A0) ≥ α; in the following,
the subscript A0 may be omitted.

A second type of predicates applies to couples of fuzzy
sets and is generally defined as

P (A,B) ≡ m(A) ./ m(B) (5)

where m is any fuzzy set measure. This type can be illustrated
by the property stating that B has a greater degree of fuzziness
than A, P (A,B) ≡ dF (B) ≥ dF (A). Of special interest is the
case where the comparator is =: the property is then interpreted
as a preservation property, stating that A and B have the same
value for the considered measure. It may be generalised, using
a function f : R → R, allowing for some transformation of
the value, defining P (A,B) ≡ m(A) = f(m(B)).

Again, predicates in this category may be built using fuzzy
set measures applying to couples of fuzzy sets, considering
a given reference fuzzy set. The ambiguity preservation con-
straint can be expressed using such a property, as detailed in
Section V-B.

A third type of predicates can be defined when fuzzy sets
are characterised by specific points, using predicates applying
to points, in particular their distance in X : in a relative sense,
again using ./∈ {>,<,≤,≥,=}, one can for instance define

P (A,B) ≡ ‖pt(A)− pt(B)‖ ./ α (6)

The classical constraint of graduality can be expressed using
such a property, as detailed in Section V-A.

Finally, a fourth type of predicates can be defined directly,
using some logical characterisations of fuzzy sets, for instance
by predicates establishing whether they are crisp or symmet-
rical.

C. Logical Constraints Imposed on Fuzzy Sets

Based on the above defined predicates, two main types
of constraints expressed on couples of fuzzy sets can be
distinguished.

The first one directly defines a constraint of the form

C(A,B) ≡ P (A,B) (7)

where P is any predicate applying to a couple of fuzzy sets.
It can be illustrated by the constraint stating that the degree
of fuzziness of the result B must be greater than or equal to
that of A. It may be the case that the predicate P actually
depends on reference sets, in which case C should indexed by
the latter, e.g. CA0,B0(A,B), we omit it to ease readability.

The second category establishes relations between proper-
ties, of the form

C(A,B) ≡ P (A) =⇒ P ′(B) (8)

where P and P ′ are two predicates. Again, potential subscripts
of reference sets cab be omitted. For instance, the analogical
reasoning scheme [12] can be interpreted as a constraint of this
form, CA0,B0(A,B) ≡ sim(A,A0) ≥ α =⇒ sim(B,B0) ≥
β, using two distinct similarity measures.

The general constraint of inference schemes defined in
Eq. (2) belongs to this category, considering both P and P ′

as =, with the reference sets A0 and B0.

IV. PROPOSED TRANSFORMATION-BASED
CONSTRAINT-GUIDED GMP

This section describes the proposed extension of the Gen-
eralised Modus Ponens, that uses constraints as defined and
represented in the previous section, so as to guide the infer-
ence: the inference issue can be written as

B = F (A0, B0, A)

such that ΓA0,B0(A,B) =
∧

i=1..I

CiA0,B0
(A,B) (9)

where CiA0,B0
(A,B), i = 1..I denote the set of considered

constraints. It reduces to GMP if the constraint Γ reduces to the
classic constraint given in Eq. (2), and to analogical reasoning
if a similarity-based constraint is considered.

A. General Form

The proposed T-CGMP modifies the Generalised Modus
Ponens, not applying it directly to the observation, A, the
premise A0 and the conclusion B0, but to transformations
thereof: it is defined as

B = T-CGMP(A,A0 ⇒ B0)

⇐⇒ B = GMP (A, tA0 ⇒ t′B0) (10)

where t and t′ are transformations, t : [0, 1]X → [0, 1]X

and t′ : [0, 1]Y → [0, 1]Y , determined so that the constraints
expressed in Eq. (9) are satisfied, as detailed in the following.

Thus, in a similar way to analogical reasoning, t aims at
identifying a relation between the rule premise A0 and the
observation A: in an ideal case, it should be defined such that
tA0 = A. However, it may be the case that such an exact



transformation does not exist, therefore an approximation is
considered: t is required to preserve the relevant characteristics
of A. Relevance is defined with respect to the considered
constraints, i.e. with respect to Γ as defined in Eq. (9).

The transformation t′ must then transpose this operation to
the conclusion universe Y , where the transposition principle
also aims at satisfying the constraints defined in Γ.

B. Implementation

Based on the definition stated in Eq. (10), the inference is-
sue is then expressed as the identification of the transformation
couple (t, t′), where t and t′ depend one on each other. They
cannot be determined generally and depend on the considered
set of constraints Γ. Section V and VI illustrate the case of
two constraints, graduality and ambiguity preservation.

The practical procedure to implement the proposed T-
CGMP consists in specifying a parametrised family of trans-
formations as well as a method to set their parameters for a
given observation. It then requires to prove that the resulting
transformations, when used in Eq. (10), lead to an an inference
that satisfies the considered constraints Γ.

V. CONSTRAINT INSTANCIATION: GRADUALITY AND
AMBIGUITY PRESERVATION

This section describes the application of the proposed T-
CGMP to two specific constraints, namely graduality and
ambiguity preservation, for fuzzy sets defined on a bounded
universe X ⊆ R. In this section and the following, the fuzzy
subsets are assumed to be normal, with convex and compact
kernels.

This section discusses the two constraints in turn and
establishes the considered global constraint.

A. Graduality Constraint

The classical graduality constraint (see, e.g. [6]) imposes
a monotone behaviour of the output with respect to the
input. It can be seen as interpreting the rule A0 ⇒ B0 in
terms of a linear approximation: a small variation around A0

implies a small variation around B0. It moreover takes into
account a directional information: two observations A and A′,
symmetrical with respect to the centre of A0 kernel, then do
not lead to the same conclusion, contrary to the result obtained
with the GMP. Note that requiring graduality is not always
relevant, but depends on the considered application.

1) Graduality Measure: We propose to capture the notion
of graduality through a relative numerical measure δ : [0, 1]X×
[0, 1]X → R such that (i) δ(A,A′) = −δ(A′, A) to capture a
notion of relative position, and (ii) δ(A,A′) = δ(A,A′′) +
δ(A′′, A′) to capture a notion of remoteness.

In the case where the fuzzy subsets are defined on X =
R, graduality can be measured by a signed distance between
characteristic points: δ(A,A′) = pt(A)−pt(A′). In particular,
we consider the kernel centre:

δ(A,A′) = Cker(A
′)− Cker(A)

2) Constraint Expression: We propose to express the grad-
uality constraint as setting an equality between δ(A,A0) and
δ(B,B0) up to a multiplicative factor γ ∈ R, i.e.

Cgrad ≡ δ(B,B0) = γδ(A,A0) (11)

where the dependence on A0 and B0 is not made explicit in
the subscript.

The γ coefficient is a hyperparameter integrating knowl-
edge about the universe scales, and more precisely whether
they are commensurable: it expresses a correspondence be-
tween the distances computed in X and Y respectively. In the
case of bounded numerical universes, the absolute value of γ
can for instance be defined as

|γ| = max(Y)−min(Y)

max(X )−min(X )

The sign of the parameter γ plays a major role: it indicates
whether an increasing or a decreasing graduality is imposed.

In the typology described in Section III, this graduality con-
straint belongs to the family C(A,B) ≡ m(A) = f(m(B)),
with a multiplicative function f(x) = x/γ and omitted
reference fuzzy sets A0 and B0.

B. Ambiguity Constraint

The ambiguity constraint aims at expressing a desired
behaviour of the following form: if the observation is more
ambiguous than the rule premise, then the conclusion should
also be more ambiguous than the rule conclusion. As grad-
uality, requiring the preservation of ambiguity is not always
relevant, but depends on the considered application.

1) Ambiguity Measure: There exist many measures of the
ambiguity of fuzzy sets [14], [15]. We consider a basic defini-
tion related to the size of kernel, satisfying (i) amb(X ) = 1,
(ii) amb(∅) = 0 and (iii) if |ker(A)| ≤ |ker(A′)|, then
amb(A) ≤ amb(A′), and use

amb(A) =
|ker(A)|
|X |

where, for any convex bounded subset E of X , the size of
E = [e−, e+] is measured as |E| = e+ − e−.

2) Constraint Expression: Two principles encoding expec-
tations about the behaviour of the inference rule regarding
ambiguity can be established. First, if the observation A is
more ambiguous than the rule premise A0, then the conclusion
should also be more ambiguous than B0: this behaviour can
be written

amb(A) > amb(A0) =⇒ amb(B) > amb(B0)

If, on the contrary, the observation is less ambiguous
than A0, the result cannot be made less ambiguous than the
conclusion. Indeed, there is no way to guide the definition of a
more specific fuzzy subset: there is no one-to-one correspon-
dence between A0 and B0 points. If, for instance, A ⊂ A0

(and in particular their kernels satisfy ker(A) ⊂ ker(A0)), it
can be expected that B ⊂ B0. However, one cannot identify
which points of B0 should be removed to define B, as there is
no correspondence between points in A\A0 and points in B0.
The expected behaviour when A is less ambiguous than A0 is



therefore only the preservation of B ambiguity. Formally, this
constraint can be written

amb(A) ≤ amb(A0) =⇒ amb(B) = amb(B0)

In order to define a constraint capturing simultaneously
these two behaviours, we propose to define

Camb ≡
1− amb(B)

1− amb(B0)
= min

(
1,

1− amb(A)

1− amb(A0)

)
(12)

First, the order preservation is translated to a quotient preserva-
tion. Second, the quotient applies to the quantities 1−amb(A)
instead of the ambiguity value itself to avoid 0-division, in
particular in the case of triangular fuzzy sets, with ambiguity 0.
The special cases where A0 = X or B0 = Y , which lead to
undefined fractions in this expression, are not considered: both
would correspond to uninformative rules and can be excluded
without limiting the expressiveness of the constraint. Third,
computing the minimum between the quotient and 1 allows to
capture the desired behaviour in the case where the observation
is less ambiguous than the rule premise.

C. Instanciated Inference Issue

Using these constraints, the constrained inference principle
with graduality and ambiguity preservation can thus be written

B = F (A0, B0, A)

such that A = A0 =⇒ B = B0

∧ Cgrad as defined in Eq. (11)
∧ Camb as defined in Eq. (12)

(13)

VI. T-CGMP INSTANTIATION FOR GRADUALITY AND
AMBIGUITY PRESERVATION

This section discusses the implementation of the general
principle defined in Eq. (10) to the case of the constraints
given in Eq. (13): it describes the relevant transformation
parametrised families and the definition of their parameters.
It proves its required properties and illustrates its use on two
examples.

A. Considered Transformations

In order to implement T-CGMP with graduality and ambi-
guity preservation, we propose to consider two transformation
families, translation and kernel extension, for fuzzy sets de-
fined on a bounded universe of R with compact kernels.

Given τ ∈ R, the τ -translation of a fuzzy set A, tτA, is
defined as

tτA(x) =

{
A(x− τ) if x− τ ∈ X
0 otherwise (14)

Given ∆ ∈ R+, the ∆-kernel extension of a fuzzy set A
with kernel [a−, a+] , T∆A, is defined as

T∆A(x) =

 A(x+ ∆) if x ≤ a−
1 if x ∈ [a−, a+]
A(x−∆) if x ≥ a+

(15)

These transformations satisfy the following properties

(P1) δ(A, tτA) = τ
(P2) amb(T∆A) = 2∆

|X | + amb(A)

(P3) δ(T∆A,A) = 0
(P4) amb(tτA) = amb(A)

Proof (P1) is a direct consequence of the translation
definition, likewise (P2) is established from the fact that
ker(T∆A) = [a− −∆, a+ + ∆].

Properties (P3) and (P4) establish cross-effects between
the transformations and the considered constraints. Informally,
(P3) holds because the kernel extension does not modify
the kernel centre. On the other hand, (P4) is proved by the
fact that the translation does not impact the kernel size, only
moving it globally. �

B. Transformation Instanciations

Given the fuzzy sets A0, A and B0, the parameters of the
transformations can be set as follows.

1) Transforming A0: The transformation applied to A0 is
defined as a combination of translation and kernel extension
with appropriate parameters defined as:

τ = δ(A0, A)

∆ =
1

2
(amb(A)− amb(A0))|X |

t =

{
tτ if ∆ ≤ 0
T∆tτ otherwise (16)

Three properties of interest can be established

(P5) δ(tA0, A) = 0
(P6) ker(A) ⊆ ker(tA0)
(P7) amb(tA0) = max(amb(A0), amb(A))

Proof of (P5) This property states that A and tA0 have
the same kernel centre. Indeed if ∆ ≤ 0, t = tτ , using δ
transitivity and property (P1), it holds that

δ(tA0, A) = δ(tτA0, A)

= δ(tτA0, A0) + δ(A0, A)

= −τ + τ = 0

Otherwise, if ∆ > 0, the same proof can be used after applying
property (P3): δ(tA0, A) = δ(T∆tτA0, A) = δ(tτA0, A). �

Proof of (P6) First if ∆ ≤ 0, tA0 = tτA0 and it therefore
has the same kernel centre as A. In addition, due to the
condition on ∆, A kernel is smaller than that of A0. Using
the assumption that the considered fuzzy sets have compact
kernels gives the desired result.

If, on the other hand, ∆ > 0, tA0 extends the kernel of
tτA0, which is defined so as to have the same centre as the
kernel of A. Therefore tA0 also has the same kernel centre
as A; it also has the same size, as shown below in the proof
of (P7), which gives the desired result.

Proof of (P7) If ∆ ≤ 0, i.e. if A0 has a higher ambiguity,
amb(tA0) = amb(tτA0) = amb(A0) using property (P4).
Otherwise, amb(tA0) = amb(T∆tτA0) = amb(T∆A0) =
2∆
|X | + amb(A0) = amb(A) due to the choice of the ∆ value.



2) Transforming B0: The transformation t′ is similar to t,
adapting the parameters to the Y universe, i.e.

τ ′ = γτ

∆′ = ∆
|Y|
|X |

1− amb(B0)

1− amb(A0)

t′ =

{
tτ ′ if ∆ ≤ 0
T∆′tτ ′ otherwise (17)

This transformation possesses properties identical with (P5),
(P6) and (P7), transposed to B and B0 instead of A and A0.

C. Validity Proof

This section proves that using the transformations t and t′
defined above, in Eq. (16) and (17), the proposed T-CGMP that
defines B = GMP (A, tA0 ⇒ t′B0) satisfies the constraints Γ
defined in Eq. (13).

Auxiliary Lemma It holds that, if U, V ∈ [0, 1]X and W ∈
[0, 1]Y are normal fuzzy subsets such that ker(U) ⊆ ker(V ),
then Z = GMP (U, V ⇒W ) satisfies ker(Z) = ker(W )

Proof First, ker(Z) ⊆ ker(W ). Indeed, for y ∈ Y
such that µZ(y) = 1, the definition of GMP (see Eq. (3))
implies that there exists x ∈ X such that µU (x) = 1 and
I(µV (x), µW (y)) = 1. As ker(U) ⊆ ker(V ), µV (x) = 1
and therefore, due to the properties of implication functions,
I(1, µW (y)) = 1 leads to µW (y) = 1.

Reciprocally, ker(W ) ⊆ ker(Z): for y ∈ Y such that
µW (y) = 1, consider x∗ ∈ ker(U) (U being normal has
a non-empty kernel). As ker(U) ⊆ ker(V ), µV (x∗) = 1,
thus I(µV (x∗), µW (y)) = I(1, 1) = 1. With µU (x∗) = 1,
applying Eq. (3) leads to µZ(x) = 1. �

Proof of perfect match The first constraint in Eq. (13)
can be established as follows: if A = A0, then τ = 0 and
∆ = 0, which in turn implies that τ ′ = 0 and ∆′ = 0. As a
consequence, t and t′ are the identity, B = T-CGMP(A,A0 ⇒
B0) = GMP (A, tA0 ⇒ t′B0) = GMP (A,A0 ⇒ B0) = B0.
�

Proof of Graduality Constraint Let us show that Cgrad, as
defined in Eq.(11), holds: exploiting (P6) and the above estab-
lished lemma, ker(B) = ker(t′B0), therefore δ(B, t′B0) =
0. Using (P3) and the definition of t′, it implies that
δ(tτ ′B0, B) = 0. Therefore,

δ(B0, B) = δ(B0, tτ ′B0) + δ(tτ ′B0, B)

= τ ′ + 0

= γτ = γδ(A,A0) �

Proof of Ambiguity Constraint Let us show that Camb, as
defined in Eq. (12), holds: again, exploiting (P6) and the above
established lemma, ker(B) = ker(t′B0), therefore amb(B) =
amb(t′B0).

If ∆ ≤ 0, the right-hand side of the equality in Eq. (12)
equals 1. Moreover, t′ = tτ ′ thus, using (P4), amb(t′B0) =
amb(tτ ′B0) = amb(B0), establishing that the left-hand side
is 1 as well, proving that Camb holds in this case.

If ∆ > 0, using (P2) and (P4) successively

amb(t′B0) =
2∆′

|Y|
+ amb(B0)

=
2∆

|X |
1− amb(B0)

1− amb(A0)
+ amb(B0)

= (amb(A)− amb(A0))
1− amb(B0)

1− amb(A0)
+ amb(B0)

due to the choice of ∆ and ∆′. This equation then gives the
desired result when computing the quotient involved in the
constraint defined in Eq. (12). �

These proofs show that the transformations defined in
Eq. (16) and (17), combined with the proposed T-CGMP
defined in Eq. (10), indeed satisfy the constraints of Eq. (13).
It thus provides a way to perform inference taking into account
constraints imposing graduality and ambiguity constraints.

D. Illustrative Example

Figures 1 and 2 compare the results obtained with T-CGMP
and GMP: in both cases, the left graph shows the premise
A0 in red and the observation A in blue. The middle graph
shows the conclusion B0 in red and, in blue, as discussed in
Section II-A, the GMP results obtained with the Łukasiewicz
implication and t-norm. The right graph shows the conclusion
B0 in red and the result B = GMP (A, tA0 ⇒ t′B0), obtained
using the T-CGMP instantiation described above.

Figure 1 considers a case where the observation partially
matches the premise of the rule, with a slight translation
to the right. Whereas GMP builds a result similar to the
rule conclusion with uncertainty, T-CGMP offers a result
that moves the conclusion partially to the right: the guiding
principle based on the additional graduality constraint allows
to dispense of the uncertainty and to obtain a conclusion that
is located on the right of B0, as A is on the right of A0.

Figure 2 illustrates the case where the observation does not
match the observation: the GMP then leads to total uncertainty,
as the rule cannot be triggered. The T-CGMP exploits the
additional constraints of graduality and ambiguity preservation,
building a transposition of the rule conclusion, both moved
to the right and more ambiguous than B0. Observe that the
obtained solution does not have a compact support and presents
a low uncertainty level. It is however much lower than the
one obtained with GMP: the exploitation of the information
expressed by the constraints indeed leads to a more informative
result.

VII. CONCLUSION AND FUTURE WORKS

This paper studied a variant of the fuzzy inference rule
that allows to perform logical inferences even in the case
where the observation does not perfectly match the implication
premise: it proposed to take into account additional constraints
to guide the inference and guarantee some desirable properties,
such as graduality or ambiguity preservation. It introduced a
general framework to express the constraint and the general
form of the solution, transferring the issue of the inference
definition to that of transformation definition. The proposed
principles have been instantiated to the case of graduality



Fig. 1. Comparison between the GMP and the T-CGMP results for an observation partially matching the observation. (Left) in red, A0, in blue, A, (Middle)
in red, B0, in blue, B from GMP using the Łukasiewicz implication and t-norm (Right) in red, B0, in blue, B from T-CGMP

Fig. 2. Comparison between the GMP and the T-CGMP results for an observation not matching the observation and with increased ambiguity. (Left) in red,
A0, in blue, A, (Middle) in red, B0, in blue, B from GMP using the Łukasiewicz implication and t-norm (Right) in red, B0, in blue, B from T-CGMP

and ambiguity preservation, illustrating the relevance of the
proposed approach.

Future works will aim at studying other instantiations of the
proposed T-CGMP, for instance considering constraints on the
symmetry or inclusion measures, to deal with the specific case
where the observation is included in the rule premise. Another
perspective will consist in exploring the case of systems with
multiple rules, examining the constraints they may lead to and
the required adaptations.
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