
Gossip training for deep learning

Michael Blot(1) ∗ David Picard(2) Matthieu Cord(1) Nicolas Thome(1)

(1) Sorbonne Universités, UPMC Univ Paris 06, LIP6, 4 place Jussieu 75005 Paris, France
(2) ETIS/ENSEA - Université Cergy-Pontoise, CNRS, Paris, France

Abstract

We address the issue of speeding up the training of convolutional networks. Here
we study a distributed method adapted to stochastic gradient descent (SGD). The
parrallel optimization setup uses several threads, each applying individual gradient
descents on a local variable. We propose a new way to share information between
different threads inspired by gossip algorithms and showing good consensus con-
vergence properties. Our method called GoSGD has the advantage to be fully
asynchronous and decentralized. We compared our method to the recent EASGD
in [ZCL15]. Our experiments on CIFAR-10 show encouraging results.

1 Introduction

With deep convolutional neural networks (CNN) introduced by [Fuk80] and [LeC+98], computer
vision tasks and more specifically image classification have made huge improvements last few
years following [KSH12]. CNN performances benefit a lot from big databases of annotated images
like [Rus+15] or [Lin+15]. They are trained by optimizing a loss function with gradient descents
computed on random mini-batch. This method called stochastic gradient descent [SGD] has proved
to be very efficient to train neural networks in general.

However current CNN structures are very deep like the 200 layers network ResNet of [He+16]
and contains a lot of parameters (around 60M for alexnet[KSH12]) making the training on big
datasets very slow. Computation on GPU accelerates the training but it is still difficult to test many
architectures.

Nevertheless the mini-batch optimization seems suitable for distributing the training. Many methods
have been proposed like [ZCL15] or [Dea+12]. They process SGD in parallel on different threads
to optimize a local neural network. The different threads are called workers. Additionally the
workers periodically exchange information with a central network. The role of this central variable is
essential to mutualize the information as well as ensuring that all workers network converge toward
a same local minimum. Indeed because of the symmetry property of neural networks well studied
in [Cho+15] the different workers could give very different optimizations. Having a consensus
is important to fully benefit from the parallelism and the information sharing. Unfortunately the
proposed methods are not decentralized resulting in loss of time for synchronizing the updates of the
central network. It could result of a suboptimal use of distributed computation.

A well known example of decentralized distributed algorithm is gossip averaging. As studied in
[Boy+06] this method is very fast to make different agents converge toward a consensus by exchanging
information in a peer to peer way. Gossip averaging has already been adapted to other machine
learning algorithms such as kernel methods [Col+16] or PCA [FPG15]. This family of algorithm
presents many advantages like being fully asynchronous and totally decentralized as they do not

∗Thank to DGA for funding.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

require a central variable. We propose here to associate this method with SGD in order to apply it to
deep learning and more specifically CNN. We call the resulting optimization method GoSGD for
Gossip Stochastic Gradient Descent.

The first section introduces the GoSGD algorithm. Then some experiments illustrate the good
convergence properties of decentralized GoSGD.

2 Gossip Stochastic Gradient Descent

The objective is to minimize l(x) = Ey∼I [g(x, y)] where in out setup y is a couple variable (image,
label) following the natural image distribution law, and x is the CNN parameters with g the error
function. As used in [ZCL15] and discussed in [Boy+11] the problem can be derived in a distributed
fashion as minimizing:

M∑
i=1

l(xi) +
ρ

2
||xi − x||22 (1)

with the xi being worker’s local variables and x = 1
M

∑M
i=1 xi the global consensus.

We can rewrite this loss in order to anticipate the gossip exchanges:
M∑
i=1

l(xi) +
ρ

4M

M∑
i

M∑
j

||xi − xj ||22 (2)

Finally we consider the following equivalent function in our optimization problem introducing
A = (aij)i,j a random matrix:

M∑
i=1

E

[
g(xi, y) +

M∑
j

aij ||xi − xj ||22
]

(3)

In our gossip method the terms in the sum of (3) are sampled concurrently by different workers.
aij is a random variable controlling exchanges between workers i and j with p = P(aij 6= 0) and
E(aij) =

ρ
4M .

2.1 GoSGD algorithm

The GoSGD algorithm considers M independent agents called workers. Each of them hosts a CNN
of the same architecture with a sets of weights noted Xi for worker i. They are all initalized with
the same value. During training all workers iterativelly proceed two steps of computations described
below. One consisting on local optimisation with gradient descent and the other aiming at exchanging
information in order to ensure a consensus between workers:

Step 1 (Gradient update): At all iterations t a worker updates its hosted network’s weights with a
stochastic gradient descent on a random mini-batch. For the i-th worker the update is:

Xt+

i = Xt
i − ηtvti

Where ηt is the learning rate at iteration t and vti =
1

|b(i,t)|
∑
y∈b(i,t) OXg(X

t
i , y) is an approximation

computed on the sampled mini-batch b(i, t) of the gradient of the expected error function at point Xt
i .

Step 2 (Mixing update): After the gradient descent each worker draws a random Bernoulli variable
noted S with expectancy p. This variable decides if the worker is sharing its information with another
worker which will be chosen uniformly among the others. To share the information between the
update processes, we use a sum-weight gossip protocol [KDG03]. Sum-weight protocols use a
sharing variable associated with each worker (noted αi for agent i and initialized to 1

M) that is
updated whenever information is exchanged and defines the rate at which information is mixed. Due
to their push only nature, no synchronization is required. The exchange between a worker i drawing
a successful S and worker j are described in table 2.

At each iteration a worker send at most once its weights but can receive weights from several others.
In this case the worker updates its weights sequentially in the reception order before performing any

2

Table 1: GoSGD Pseudocode of a worker
Table 2: Update sheme of a worker j receiv-
ing information from a worker i

Input:
x initialization of the weights
p probability of exchange
M the number of threads
nBatch the number of training batch per workers
ν the learning rate
Init: αi = 1

M , xi = x
for batch = 1 to nBatch do

xi = xi − νg(xi, batch)
if S ∼ B(p) then

alphai = alphai

2

Send(xi, αi) to U({1, ..,M})
end if
for j = 1 to M do

if getj(xj , αj) then
xi = αi

αi+αj x
i + αj

αi+αj x
j

αi = αi + αj
end if

end for
end for

Xt+1
i = Xt+

i

αt+1
i =

αt
i

2

Xt+1
j =

αt
j

αt+1
i +αt

j

Xt+

j +
αt+1

i

αt+1
i +αt

j

Xt+

i

αt+1
j = αtj + αt+1

i

gradient update. Since agent i can perform the update without waiting for an answer from j, and
j performs its update in a delayed fashion, no agent is ever idling and all computing resources are
always being used (either performing a gradient update or a mixing update).

Remark that these update rules are equivalent to common sum-weight gossip rules, with the main
difference being that we choose not to scale Xi which results in a more complex update rule for Xj .
Consequently, several key properties of sum-weight protocols are retained:

Property 1: αt = (αti)i=1..M stays a stochastic vector.

Property 2: Consensus (∀i,Xt
i → 1/M

∑
j X

t
j) is obtained at exponential speed with respect to

the number of mixing updates, when there is no gradient update.

Remark: p is the only adjustable parameter of the algorithm. Obviously the bigger is p the more
exchanges between threads there are and eventually the closer the workers’ weights will be. In our
experiment, a low p such as 0.01 already ensures a very good consensus.

2.2 Test model

The model that is evaluated on the test set is called test model. In the GoSGD method it is simply the
averaging of all workers models weights:

X
t
=

1

M

M∑
i=1

Xt
i

It is possible to show that the test model can be rewriten:

X
t
= X

0 −
t−1∑
τ=0

ντ
M∑
i=1

λτi v
τ
i

where λ = (λi)i=1..M is a stochastic vector.
If the workers’ weights are close enough to the average consensus the value vτi is very close to
the gradient at point X

τ
computed on batch b(i, τ). Thus the update term

∑M
i=1 λ

τ
i v
τ
i at iteration

3

Figure 1: Evolution of the loss during training

τ approximates the gradient at point X
τ

on a batch of size M
∑M
i=1 |b(i, τ)|. This distributed

optimization scheme is then equivalent at computing a normal (single-thread) gradient descent
optimization but with bigger batchs resulting on gradient with less noise.

3 Experiments

We compare the convergence speed of GoSGD (gossip) with EASGD (elastic). The version of EASGD
we used is the version with momentum (=0.99) namely MEASGD with parameters α = 0.887 as
suggested by the author. The parameter τ is equivalent to the inverse of our parameters p and controls
the frequency of exchange for one worker. The experiments have been done on CIFAR-10, see [Kri09]
for detailed presentation. The network used is the same as in [ZCL15] and describe in [Wan+13].
For the data sampling (loading and augmentation) we used the same protocol as in [ZCL15]. During
the training the learning rate is kept constant equal to 0.01 and the weight decay to 10−4 and all
batch are composed of 128 images. We used eight workers. The only parameters that can vary are
the probability p controlling the frequency of exchange. We implemented both methods in torch
framework [Col+] and we used 4 Titan X GPU.

We have represented on Figure 1 the evolution of the train losses during training for the different
methods. As baseline we displayed a "Naive" scheme correponding of a train without any exchange
between workers. The train loss depicted is an averaging of the train loss of the last 50 batches taken
regardless of the workers.

3.1 Interpretation

The first curve on the left of Figure 1 is in function of the number of images processed by worker.
For clarity we have zoomed at the end of the curve. It studies the benefits of exchanging information
regardless of the communication time, thus to maximize the exchanges we set p to 1. We can see that
GoSGD do a better use of the exchanges than EASGD. It can signify that the gossip strategy imply a
better consensus during training.

The second graph represents the evolution of the loss with time in hours. We used a small p (0.02) as
it seems to give a good compromise between communication costs and consensus both for GoSGD
and EASGD. We can see that GoSGD is a lot faster than EASGD. Our strategy is converging in about
4 hours when EASGD needs more than 7 hours to reach the same train loss score. This show that
distributing SGD can benefit a lot from decentralized strategies.

4 Discussion

In this paper, we have introduced a new learning scheme for deep architectures based on Gossip:
GoSGD. We have experimentally validated our approach. Anyway there are two theoretical aspects
interesting to discuss: For the first point it is important to exhibit a consensus despite the gradient
descent operations in addition to the gossip exchanges. We have discussed this requirement for our
model in property 2 in section 2. For the second point as many distributed method can be interpreted

4

as a way to compute gradients with less noise, it could be interesting to quantify this property and
compare the different methods with this insight.

References

[Fuk80] K. Fukushima. “Neocognitron: A self-organizing neural network for a mechanism
of pattern recognition unaffected by shift in position”. In: Biological Cybernetics,
36(4):193–202 (Dec. 1980).

[LeC+98] Y. LeCun et al. “Gradientbased learning applied to document recognition. Proceedings”.
In: IEEE, 86(11):2278–2324 (Nov. 1998).

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. “Gossip-based computation of ag-
gregate information”. In: Foundations of Computer Science, 2003. Proceedings. 44th
Annual IEEE Symposium on. IEEE. 2003, pp. 482–491.

[Boy+06] Stephen Boyd et al. “Randomized Gossip Algorithms”. In: IEEE transaction on infor-
mation theory (June 2006).

[Kri09] A. Krizhevsky. “Learning multiple layers of features from tiny images”. PhD thesis.
Computer Science Department University of Toronto, 2009.

[Boy+11] S Boyd et al. “Distributed optimization and statistical learning via the alternating direc-
tion method of multipliers”. In: Found. Trends Mach. Learn., 3(1):1–122 (June 2011).

[Dea+12] Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: NIPS (June 2012).
[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks”. In: NIPS (2012).
[Wan+13] L Wan et al. “Regularization of neural networks using dropconnect”. In: ICML (June

2013).
[Cho+15] Anna Choromanska et al. “The Loss Surfaces of Multilayer Networks”. In: AISTATS

(Dec. 2015).
[FPG15] Jerome Fellus, David Picard, and Philippe-Henri Gosselin. “Asynchronous gossip princi-

pal components analysis”. In: Neurocomputing, Elsevier, 2015 (2015).
[Lin+15] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: arxiv (May

2015).
[Rus+15] Olga Russakovsky* et al. “ImageNet Large Scale Visual Recognition Challeng”. In:

IJCV (2015).
[ZCL15] Sixin Zhang, Anna Choromanska, and Yann LeCun. “Deep learning with Elastic Averag-

ing SGD”. In: NIPS (Nov. 2015).
[Col+16] Igor Colin et al. “Gossip Dual Averaging for Decentralized Optimization of Pairwise

Functions”. In: ICML (2016).
[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CVPR (June

2016).
[Col+] Ronan Collobert et al. torch 7. http://torch.ch/.

5

http://torch.ch/

	Introduction
	Gossip Stochastic Gradient Descent
	GoSGD algorithm
	Test model

	Experiments
	Interpretation

	Discussion

