
Predictive Fault Tolerance in Multi-Agent Systems: a Plan-
Based Replication Approach

Alessandro de Luna Almeida, Samir Aknine, Jean-Pierre Briot, Jacques Malenfant
Université Pierre et Marie Curie-Paris6,UMR 7606

4 Place Jussieu
Paris, F-75005 France

+33 1 44 27 87 94
{Alessandro.Luna-Almeida, Samir.Aknine, Jean-Pierre.Briot, Jacques.Malenfant}@lip6.fr

ABSTRACT
The fact that multi-agent applications are prone to the same faults
that any distributed system is susceptible to and the need for a
higher quality of service in these systems justify the increasing
interest in fault-tolerant multi-agent systems. In this article, we
propose an original method for providing dependability in multi-
agent systems through replication. Our method is different from
other works because our research focuses on building an
automatic, adaptive and predictive replication policy where
critical agents are replicated to minimize the impact of failures.
This policy is determined by taking into account the criticality of
the plans of the agents, which contain the collective and
individual behaviors of the agents in the application. The set of
replication strategies applied at a given moment to an agent is
then fine-tuned gradually by the replication system so as to reflect
the dynamicity of the multi-agent system. Some preliminary
measurements were made to assess the efficiency of our approach
and future directions are presented.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Multiagent systems.

General Terms
Algorithms, Performance, Reliability, Experimentation.

Keywords
Agent, multi-agent system, fault tolerance, adaptation, replication,
criticality, plan.

1. INTRODUCTION
In order to prevent that a multi-agent system (MAS) stop working
properly due to the occurrence of faults, many fault tolerance
approaches have been proposed, notably based on the concept of
replication, i.e. creation of copies of a component in distant

machines.

In general, it is the responsibility of the designer of the
application to identify explicitly what critical components should
be made robust and how to parameterize replication. This can be
decided either statically before the application starts [4, 7] or in a
non-automatic way during the execution of the system [2, 3, 6].

However, those works are not suitable for MAS applications,
which can be very dynamic. In fact, it is very difficult, or even
impossible, to identify in advance the most critical agents of the
application. Moreover, for dynamic applications, a manual control
is not realistic, as the application designer cannot monitor the
evolution of a distributed application of a significant scale.

In this paper, we will introduce our approach to building reliable
multi-agent systems. It is based on the concept of criticality, a
value dynamically associated to each agent in order to reflect the
effects of its failure on the overall system. This value is
automatically calculated using the plans of the agents.

A plan-based fault-tolerant mechanism acts as a promising
preventive method since it estimates a more precise value of the
criticality and it takes into account the future behaviors of the
agents and their influence over the other agents of the society.

We have used the failure detection, naming and localisation
services of the DARX framework and we have extended it with
an adaptive replication control module which calculates and
updates in a distributed way the criticalities and uses the
replication service of DARX to provide a suitable replication
scheme for every agent.

2. PROBLEM DEFINITION
The fault tolerance problem described in this paper considers a set
of agents S = {Agent1, Agent2, ..., Agentna} that have to complete a
set of tasks. For example, consider a set of agents called
assistants, which elaborate plans for a patrolling task (see Figure
1). The patrol is generally defined as a task performed by a set of
autonomous agents, called patrollers. Each patrolling agent will
interact with its corresponding assistant agent in order to discover
the sequence of sites which must be visited. A predetermined
priority is associated to each site.

While trying to accomplish their tasks, agents can stop executing.
In this work, we consider the crash type of failures, that is when a
component stops producing output. However, in various cases our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS’07, May 14-18, 2007, Honolulu, Hawai'i, USA.
Copyright 2007 IFAAMAS.

solution allows to deal with other types of failures (omission,
timing, byzantine).

Figure 1. Example of the patrolling task.

To minimize the impact of failures, agents can be replicated.
Replicating every agent is not a feasible approach since not only
the available resources are often limited, but also the overhead
imposed by the replication could degrade performance
significantly. The problem consists in finding a replication
scheme which minimizes the probability of failure of the most
critical agents. This scheme must also be revised over time,
considering that the multi-agent execution context of tasks is
dynamic and, thus, the criticalities of the agents vary at runtime.

3. OUR PLAN-BASED CRITICALITY
ASSESSMENT METHOD
In our approach, we consider that each agent of the system knows
which sequence of actions (plan) must be executed in order to
accomplish its current tasks. Since unexpected events may occur
in dynamic environments, agents usually interleave planning and
execution. Consequently, their plans are established just for the
short term. We assume that at each given instant of time the agent
is executing at most one action.

Figure 2. Example of plans of two interacting agents (dashed
circles represent external actions).

Inspired by the approach established by [5], we represent the plan
of an agent as a directed acyclic AND/OR graph where each node
represents an action. The nodes are connected by AND or OR
edges. In the example of Figure 2, we show two patrolling plans
elaborated by the assistant agents (Plan1 for Patroller1 and Plan2
for Patroller2). For legibility purposes, let us denote the action
“visit the site X” simply as “X”. After performing the action A,
Patroller1 needs to have both B and C executed in order to

accomplish its plan. However, after C, only one of D or E needs
to be performed so that Patroller1 accomplishes its plan.

Definition 1: We call an external action an action belonging to
the plan of an agent which will be executed by others. For
example, consider the action C belonging to the plan of Patroller1
in Figure 2. Since this action is performed by Patroller2, it is an
external action in the current plan of Patroller1.

Definition 2: The set of children actions of an action a in a plan p
(denoted by Children (a, p)) is the set of actions which are
directly connected to the action a in the plan p. For example, in
Figure 2, Children (A, Plan1) = {B, C}.

Definition 3: A terminal action is an action with no child.

3.1 Agent Criticality
The criticality of an agent at any time can be calculated based on
the criticalities of the forthcoming actions which belong to its
plan. An agent which executes critical actions must be considered
critical. In a given time t, the criticality of the agent will be given
by the relative criticality of the current root of its plans’ graph.

Before defining the relative criticality of an action, let’s first
introduce the concept of absolute criticality and children relative
criticality. The absolute criticality (AC) of an action is defined
without taking into account the current plans of the agents. It is
given a priori by the system designer and can be determined in
function of a number of factors: number of agents capable of
performing the action, resources required for the execution of the
action, application dependant information.

In the case of the patrolling task, the absolute criticality of the
action “visit the site s” is given by the priority of the site s.

The children relative criticality (CRC) of an action in the context
of a plan estimates the aggregation of the criticalities of the
children of the action in the plan. Let a be one action belonging to
a plan p, and f be the aggregation function (SUM for the AND
edges or MEAN for the OR edges) of the children of a in p. Then,
the children relative criticality of a in p (CRC (a, p)) is formally
defined by:

CRC(a, p) = f (RC(c1), RC(c2),…), ∀ci ∈ Children(a, p) (1)

Finally, the relative criticality (RC) of an action executed by an
agent (possibly jointly with other agents) estimates the impact of
its failure to the multi-agent system as a whole. The RC reflects
the importance of the action with respect to the other actions of
the system. The RC depends on the absolute criticality of the
action and on the usefulness of its results to all the agents which
depend on it to perform their tasks. For an external action, it is
equal to the children relative criticality. For a non-external action
a, its relative criticality is equal to its absolute criticality plus the
sum of the children relative criticalities of a in each plan to which
it belongs. In other words:

RC(a) = AC(a) + Σ(CRC(a,pi)), ∀pi | a ∈ pi (2)

In dynamic and unreliable environments, actions with a late start
time will be executed less probably than actions with an early
starting time, since the plans can change or failures can happen.
Consequently, we have also refined this strategy for calculating
criticalities by considering the expected starting time of actions.

We compute the estimated starting time of the actions using a
topological sorting in the graph (top-down) considering the
elapsed times of the antecedents and siblings’ actions.

To deal with the dynamicity of multi-agent systems, criticalities
need to be updated along time. We proposed two main types of
strategies to revise the criticality: time-driven strategies and
event-driven strategies (action completion, failure). More details
are presented in [1].

3.2 Agent Replication Mechanism
Once estimated the criticality of the agents, one may ask which
agents should be replicated and where to deploy the replicas.
When addressing the problem of where deploying efficiently the
replicas it is essential to take into consideration the failure
probability of the replicas. In fact, it is better to have only one
replica which will have in the future an almost zero probability of
failure than having many replicas which are not reliable.

Hence, we propose the definition of a replica allocation problem
which considers the probability of failures and a mechanism
which solves this problem in a satisfactory way.

The problem of replica allocation considers a set of agents S =
{Agent1, Agent2, ..., Agentna} and a set of replicas R = {r1, r2, …,
rnr}. Na and nr are respectively, the total number of agents and of
replicas. We define the value of the replica rk (denoted by vk), as
the probability that it will not crash. A value of one will be
attributed to a completely reliable resource, whereas an unreliable
one shall have a near zero value.

We define the problem of replica allocation as the optimization
problem of finding an allocation of replicas to the agents which
maximizes the expected value of the sum of the utility of the
MAS. For that, we define an expected global utility function u
which evaluates a given allocation. The higher the value obtained
by u, the more efficient and fault-tolerant the allocation.
Intuitively, an allocation strategy which makes reliable the most
critical agents should be well evaluated.
Let g be an allocation of replicas, ci the criticality of Agenti and pi
the probability that it will not fail, then:

u(g) = c1 × p1 + c2 × p2 + … + cna × pna (3)

Thus, the problem of replica allocation consists in finding a
replica allocation gmax which maximizes the expected global
utility function u.
Our agent replication mechanism tries to find a satisfactory
replica allocation function. In our mechanism, let V be the sum of
the values of all the replicas in the system. Then, an agent Agenti
is allowed to be replicated using a total value of replicas (ti)
proportional to the percentage of its criticality (ci) with respect to
the sum of agents’ criticalities (C), as given by the formula:

ti = ci × V / C (4)

The system of replication will then allocate to the agent the set of
replicas Ri = {ri1, ri2, … , rin}, such that vi1 + vi2 + … + vin ≤ ti and
its probability of failure is minimal among all the possible sets of
replicas.

One can apply the same possible strategies used as the agent
criticality update policy (time-driven or event-driven) to decide
when to re-calculate the values of ti.

4. CONCLUSION AND PERSPECTIVES
Large-scale multi-agent systems are often distributed and must
run without any interruption. To make these systems reliable, we
proposed an original predictive method to evaluate dynamically
the criticality of agents. Our approach takes profit of the
specificities of multi-agent applications and analyses the agents’
plans to determine their importance to the system. This approach
allows us to obtain a more precise value of the criticality and it
takes into account the future behaviors of the agents. The agent
criticality is then used to replicate agents in order to maximize
their reliability and availability based on available resources.

We are currently conducting experiments, and we believe that our
current results are promising. In fact, the algorithms have a
negligible overhead and provide a satisfactory reliability.

One of the perspectives of this work is to refine the problem of
fault tolerance in multi-agent systems and its evaluation measures,
in order to compare the different proposed strategies with an
optimal one and using large-scale experiments.

5. REFERENCES
[1] Almeida, A. L., Aknine S., Briot J.P., Malenfant J. A

predictive method for providing fault tolerance in multi-
agent systems. In Proceedings of the Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT 2006), Hong Kong, December 2006,
226-232.

[2] Cukier M. et al. AQuA: an adaptive architecture that
provides dependable distributed objects. In Proceedings of
the 17th IEEE Symposium on Reliable Distributed Systems
(SRDS'98), West Lafayette, Indiana, October 20-23, 1998,
245-253.

[3] Favarim, F., Siqueira, F., Fraga, J. S. Adaptive fault-tolerant
CORBA components, In Middleware Workshops 2003, 144-
148.

[4] Fedoruk, A., Deters, R. Improving fault-tolerance by
replicating agents. In Proceedings of the First International
Joint Conference on Autonomous Agents And Multi-Agent
Systems (AAMAS-02), Bologna, Italy, 2002, 737-744.

[5] Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A.,
Zhang, S., Decker, K., Garvey, A. The TAEMS White Paper.
Dept. of Computer Science, University of Massachusetts at
Amherst (UMASS), MA, USA, 1999.

[6] Kalbarczyk, Z., Bagchi, S., Whisnant, K., Iyer, R.K.
Chameleon: a software infrastructure for adaptive fault
tolerance. IEEE Transactions on Parallel and Distributed
Systems, 1999, 560-579.

[7] Kraus, S., Subrahmanian, V.S., Cihan, N. Probabilistically
survivable MASs. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence
(IJCAI-03), Acapulco, Mexico, 2003, 789-795.

