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ABSTRACT 
The fact that multi-agent applications are prone to the same faults 
that any distributed system is susceptible to and the need for a 
higher quality of service in these systems justify the increasing 
interest in fault-tolerant multi-agent systems. In this article, we 
propose an original method for providing dependability in multi-
agent systems through replication. Our method is different from 
other works because our research focuses on building an 
automatic, adaptive and predictive replication policy where 
critical agents are replicated to minimize the impact of failures. 
This policy is determined by taking into account the criticality of 
the plans of the agents, which contain the collective and 
individual behaviors of the agents in the application. The set of 
replication strategies applied at a given moment to an agent is 
then fine-tuned gradually by the replication system so as to reflect 
the dynamicity of the multi-agent system. Some preliminary 
measurements were made to assess the efficiency of our approach 
and future directions are presented. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Multiagent systems. 

General Terms 
Algorithms, Performance, Reliability, Experimentation. 

Keywords 
Agent, multi-agent system, fault tolerance, adaptation, replication, 
criticality, plan. 

1. INTRODUCTION 
In order to prevent that a multi-agent system (MAS) stop working 
properly due to the occurrence of faults, many fault tolerance 
approaches have been proposed, notably based on the concept of 
replication, i.e. creation of copies of a component in distant 

machines. 

In general, it is the responsibility of the designer of the 
application to identify explicitly what critical components should 
be made robust and how to parameterize replication. This can be 
decided either statically before the application starts [4, 7] or in a 
non-automatic way during the execution of the system [2, 3, 6]. 

However, those works are not suitable for MAS applications, 
which can be very dynamic. In fact, it is very difficult, or even 
impossible, to identify in advance the most critical agents of the 
application. Moreover, for dynamic applications, a manual control 
is not realistic, as the application designer cannot monitor the 
evolution of a distributed application of a significant scale. 

In this paper, we will introduce our approach to building reliable 
multi-agent systems. It is based on the concept of criticality, a 
value dynamically associated to each agent in order to reflect the 
effects of its failure on the overall system. This value is 
automatically calculated using the plans of the agents. 

A plan-based fault-tolerant mechanism acts as a promising 
preventive method since it estimates a more precise value of the 
criticality and it takes into account the future behaviors of the 
agents and their influence over the other agents of the society. 

We have used the failure detection, naming and localisation 
services of the DARX framework and we have extended it with 
an adaptive replication control module which calculates and 
updates in a distributed way the criticalities and uses the 
replication service of DARX to provide a suitable replication 
scheme for every agent. 

2. PROBLEM DEFINITION 
The fault tolerance problem described in this paper considers a set 
of agents S = {Agent1, Agent2, ..., Agentna} that have to complete a 
set of tasks. For example, consider a set of agents called 
assistants, which elaborate plans for a patrolling task (see Figure 
1). The patrol is generally defined as a task performed by a set of 
autonomous agents, called patrollers. Each patrolling agent will 
interact with its corresponding assistant agent in order to discover 
the sequence of sites which must be visited. A predetermined 
priority is associated to each site. 

While trying to accomplish their tasks, agents can stop executing. 
In this work, we consider the crash type of failures, that is when a 
component stops producing output. However, in various cases our 
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solution allows to deal with other types of failures (omission, 
timing, byzantine). 

 

Figure 1. Example of the patrolling task. 

To minimize the impact of failures, agents can be replicated. 
Replicating every agent is not a feasible approach since not only 
the available resources are often limited, but also the overhead 
imposed by the replication could degrade performance 
significantly. The problem consists in finding a replication 
scheme which minimizes the probability of failure of the most 
critical agents. This scheme must also be revised over time, 
considering that the multi-agent execution context of tasks is 
dynamic and, thus, the criticalities of the agents vary at runtime. 

3. OUR PLAN-BASED CRITICALITY 
ASSESSMENT METHOD 
In our approach, we consider that each agent of the system knows 
which sequence of actions (plan) must be executed in order to 
accomplish its current tasks. Since unexpected events may occur 
in dynamic environments, agents usually interleave planning and 
execution. Consequently, their plans are established just for the 
short term. We assume that at each given instant of time the agent 
is executing at most one action.  

 

Figure 2. Example of plans of two interacting agents (dashed 
circles represent external actions). 

Inspired by the approach established by [5], we represent the plan 
of an agent as a directed acyclic AND/OR graph where each node 
represents an action. The nodes are connected by AND or OR 
edges. In the example of Figure 2, we show two patrolling plans 
elaborated by the assistant agents (Plan1 for Patroller1 and Plan2 
for Patroller2). For legibility purposes, let us denote the action 
“visit the site X” simply as “X”. After performing the action A, 
Patroller1 needs to have both B and C executed in order to 

accomplish its plan. However, after C, only one of D or E needs 
to be performed so that Patroller1 accomplishes its plan. 

Definition 1: We call an external action an action belonging to 
the plan of an agent which will be executed by others. For 
example, consider the action C belonging to the plan of Patroller1 
in Figure 2. Since this action is performed by Patroller2, it is an 
external action in the current plan of Patroller1. 

Definition 2: The set of children actions of an action a in a plan p 
(denoted by Children (a, p)) is the set of actions which are 
directly connected to the action a in the plan p. For example, in 
Figure 2, Children (A, Plan1) = {B, C}. 

Definition 3: A terminal action is an action with no child.  

3.1 Agent Criticality 
The criticality of an agent at any time can be calculated based on 
the criticalities of the forthcoming actions which belong to its 
plan. An agent which executes critical actions must be considered 
critical. In a given time t, the criticality of the agent will be given 
by the relative criticality of the current root of its plans’ graph. 

Before defining the relative criticality of an action, let’s first 
introduce the concept of absolute criticality and children relative 
criticality. The absolute criticality (AC) of an action is defined 
without taking into account the current plans of the agents. It is 
given a priori by the system designer and can be determined in 
function of a number of factors: number of agents capable of 
performing the action, resources required for the execution of the 
action, application dependant information. 

In the case of the patrolling task, the absolute criticality of the 
action “visit the site s” is given by the priority of the site s. 

The children relative criticality (CRC) of an action in the context 
of a plan estimates the aggregation of the criticalities of the 
children of the action in the plan. Let a be one action belonging to 
a plan p, and f be the aggregation function (SUM for the AND 
edges or MEAN for the OR edges) of the children of a in p. Then, 
the children relative criticality of a in p (CRC (a, p)) is formally 
defined by: 

CRC(a, p) = f (RC(c1), RC(c2),…), ∀ci ∈ Children(a, p) (1)

Finally, the relative criticality (RC) of an action executed by an 
agent (possibly jointly with other agents) estimates the impact of 
its failure to the multi-agent system as a whole. The RC reflects 
the importance of the action with respect to the other actions of 
the system. The RC depends on the absolute criticality of the 
action and on the usefulness of its results to all the agents which 
depend on it to perform their tasks. For an external action, it is 
equal to the children relative criticality. For a non-external action 
a, its relative criticality is equal to its absolute criticality plus the 
sum of the children relative criticalities of a in each plan to which 
it belongs. In other words: 

RC(a) = AC(a) + Σ(CRC(a,pi)), ∀pi | a ∈ pi (2)

In dynamic and unreliable environments, actions with a late start 
time will be executed less probably than actions with an early 
starting time, since the plans can change or failures can happen. 
Consequently, we have also refined this strategy for calculating 
criticalities by considering the expected starting time of actions. 



We compute the estimated starting time of the actions using a 
topological sorting in the graph (top-down) considering the 
elapsed times of the antecedents and siblings’ actions. 

To deal with the dynamicity of multi-agent systems, criticalities 
need to be updated along time. We proposed two main types of 
strategies to revise the criticality: time-driven strategies and 
event-driven strategies (action completion, failure). More details 
are presented in  [1]. 

3.2 Agent Replication Mechanism 
Once estimated the criticality of the agents, one may ask which 
agents should be replicated and where to deploy the replicas. 
When addressing the problem of where deploying efficiently the 
replicas it is essential to take into consideration the failure 
probability of the replicas. In fact, it is better to have only one 
replica which will have in the future an almost zero probability of 
failure than having many replicas which are not reliable. 

Hence, we propose the definition of a replica allocation problem 
which considers the probability of failures and a mechanism 
which solves this problem in a satisfactory way. 

The problem of replica allocation considers a set of agents S = 
{Agent1, Agent2, ..., Agentna} and a set of replicas R = {r1, r2, …, 
rnr}. Na and nr are respectively, the total number of agents and of 
replicas. We define the value of the replica rk (denoted by vk), as 
the probability that it will not crash. A value of one will be 
attributed to a completely reliable resource, whereas an unreliable 
one shall have a near zero value. 

We define the problem of replica allocation as the optimization 
problem of finding an allocation of replicas to the agents which 
maximizes the expected value of the sum of the utility of the 
MAS. For that, we define an expected global utility function u 
which evaluates a given allocation. The higher the value obtained 
by u, the more efficient and fault-tolerant the allocation. 
Intuitively, an allocation strategy which makes reliable the most 
critical agents should be well evaluated. 
Let g be an allocation of replicas, ci the criticality of Agenti  and pi 
the probability that it will not fail, then: 

u(g) = c1 × p1 + c2 × p2 + … + cna × pna (3) 

Thus, the problem of replica allocation consists in finding a 
replica allocation gmax which maximizes the expected global 
utility function u. 
Our agent replication mechanism tries to find a satisfactory 
replica allocation function. In our mechanism, let V be the sum of 
the values of all the replicas in the system. Then, an agent Agenti 
is allowed to be replicated using a total value of replicas (ti) 
proportional to the percentage of its criticality (ci) with respect to 
the sum of agents’ criticalities (C), as given by the formula: 

ti = ci × V / C (4)

The system of replication will then allocate to the agent the set of 
replicas Ri = {ri1, ri2, … , rin}, such that vi1 + vi2 + … + vin ≤ ti and 
its probability of failure is minimal among all the possible sets of 
replicas. 

One can apply the same possible strategies used as the agent 
criticality update policy (time-driven or event-driven) to decide 
when to re-calculate the values of ti. 

4. CONCLUSION AND PERSPECTIVES 
Large-scale multi-agent systems are often distributed and must 
run without any interruption. To make these systems reliable, we 
proposed an original predictive method to evaluate dynamically 
the criticality of agents. Our approach takes profit of the 
specificities of multi-agent applications and analyses the agents’ 
plans to determine their importance to the system. This approach 
allows us to obtain a more precise value of the criticality and it 
takes into account the future behaviors of the agents. The agent 
criticality is then used to replicate agents in order to maximize 
their reliability and availability based on available resources. 

We are currently conducting experiments, and we believe that our 
current results are promising. In fact, the algorithms have a 
negligible overhead and provide a satisfactory reliability. 

One of the perspectives of this work is to refine the problem of 
fault tolerance in multi-agent systems and its evaluation measures, 
in order to compare the different proposed strategies with an 
optimal one and using large-scale experiments. 
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