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Abstract 
 

The growing importance of multi-agent applications 
and the need for a higher quality of service in these 
systems justify the increasing interest in fault-tolerant 
multi-agent systems. In this article, we propose an 
original method for providing dependability in multi-
agent systems through replication. Our method is 
different from other works because our research focuses 
on building an automatic, adaptive and predictive 
replication policy where critical agents are replicated to 
avoid failures. This policy is determined by taking into 
account the criticality of the plans of the agents, which 
contain the collective and individual behaviors of the 
agents in the application. The set of replication strategies 
applied at a given moment to an agent is then fine-tuned 
gradually by the replication system so as to reflect the 
dynamicity of the multi-agent system. We report on 
experiments assessing the efficiency of our approach. 
 
 
1. Introduction 
 

The notion of agent (and multi-agent systems) is 
getting increased attention as a very promising approach 
for designing and building future cooperative distributed 
applications (e.g., crisis management systems, air traffic 
control, industrial plant automation, e-commerce, 
communication network management…). Being 
distributed systems, MASs are susceptible to the same 
faults that any distributed system is susceptible to, such as 
software bugs, system crashes, shortage of resources, 
slow downs or failures in the communication links [1]. 

In order to prevent that a system stop working properly 
due to the occurrence of faults, many fault tolerance 
approaches have been proposed, some more curative e.g., 
based on exception handling and cooperative recovery 
[2], and some more preventive, notably based on the 
concept of replication, i.e. creation of copies of a 
component in distant machines. 

As discussed by [3], software replication in distributed 
environments has some advantages over other fault-
tolerance solutions: it provides the groundwork for the 
shortest recovery delays, it is less intrusive with respect to 
execution time, and it scales much better. As we show in 
the paper, our solution is furthermore transparent, as the 

task of deciding what entities to replicate and how to 
parameterize replication is handled automatically. 

In most cases, replication is decided and applied 
statically, before the application starts. However, recent 
applications, especially those designed as multi-agent 
systems, can be very dynamic because of the process of 
reallocation of tasks, flexible organizations, 
replanification, changes in the roles of the agents, etc. It is 
thus very difficult, or even impossible, to identify in 
advance the most critical software components of the 
application.  

Consequently, it is necessary to replicate in an 
automatic and dynamic way. This involves the study of 
mechanisms to determine when to replicate the agents, 
which agents are to be replicated, the quantity of replicas 
to be made and where to deploy those replicas. 

In this paper, we will introduce our approach to 
building reliable multi-agent systems. It is based on the 
concept of criticality, a value (evolving in time) 
associated to each agent in order to reflect the effects of 
its failure on the overall system. This value is calculated 
using the plans of the agent, i.e., the actions that the agent 
has planned to execute in the near future. 

A plan-based fault-tolerant mechanism acts as a 
promising preventive method since it takes into account 
the prediction of the future behavior of the agents and 
their influence over the other agents of the society.  

The remainder of this paper is organized as follows. 
Section 2 defines the fault tolerance problem we deal with 
in this paper. Section 3 explains how the plans of the 
agents can be used as an approach to this problem. 
Section 4 describes the general architecture of the 
experimental platform. Section 5 shows some preliminary 
results. Section 6 provides an overview of the state of the 
art. Finally, in section 7 we present our conclusions and 
perspectives for future work. 
 
2. Problem Definition 
 

The fault tolerance problem described in this paper 
considers a set of agents S = {Agent1, Agent2, ..., Agentn} 
that have to complete a set of tasks. For example, consider 
a set of agents called assistants, which elaborate plans for 
a patrolling task (see Fig. 1). The patrol is, in this case, 
performed by a set of autonomous agents, called 
patrollers. Each patrolling agent will interact with its 
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corresponding assistant agent in order to discover the 
sequence of sites which must be visited. A predetermined 
priority is associated to each site. 

 
Figure 1. Example of the patrolling task 

While trying to accomplish their tasks, agents can stop 
executing. In this work, we consider the crash type of 
failures, that is when a component stops producing output. 
It is the simplest type of failure to contend with. However, 
in various cases our solution allows to deal with other 
types of failures (omission, timing, byzantine). They are 
currently being investigated, but will not be considered in 
this paper. 

To minimize the impact of failures, agents can be 
replicated. A replicated software component has 
representations (replicas) on two or more hosts [3]. The 
two main types of replication protocols are: active 
replication, in which all replicas process concurrently all 
input messages ; passive replication, in which only one of 
the replicas processes all input messages and periodically 
transmits its current state to the other replicas in order to 
maintain consistency. 

 Replicating every agent is not a feasible approach 
since not only the available resources are often limited, 
but also the overhead imposed by the replication could 
degrade performance significantly. The problem consists 
in finding a replication scheme which minimizes the 
probability of failure of the most critical agents. This 
scheme must also be revised over time, considering that 
the multi-agent execution context of tasks is dynamic and, 
thus, the criticalities of the agents vary at runtime. 

 
3. Our Plan-Based Criticality Assessment 
Method 
 

In our approach to solve the problem defined in the last 
section, we consider that each agent of the system knows 
which sequence of actions (plan) must be executed in 
order to accomplish its current task. Since unexpected 
events may occur in dynamic environments, agents 
usually interleave planning and execution. Consequently, 
their plans are established just for the short term. We 
assume that at each given instant of time the agent is 
executing at most one action. 

Using the same approach established by [4], we 
represent the plan of an agent as a directed acyclic 

AND/OR graph where each node represents an action. 
The nodes are connected by AND or OR edges. A node n 
which is connected to k nodes (n1, n2, ..., nk) by means of 
AND edges represents an action An after which all the 
actions An1, An2, …, Ank will be executed. However, if a 
node n is connected to k nodes (n1, n2, ..., nk) by means of 
OR edges, it suffices that at least one of the actions An1, 
An2, …, Ank be executed after the execution of the action 
An. 

In the example of Fig. 2, we show two patrolling plans 
elaborated by the assistant agents. For legibility purposes, 
let us denote the action “visit the site X” simply as “X”. 
After performing the action A, Agent1 needs to have both 
B and C executed in order to accomplish its plan. 
However, after C, only one of D or E needs to be 
performed so that Agent1 accomplishes its plan. 

 
Figure 2. Example of plans of two interacting 
agents (dashed circles represent external 
actions) 

Definition 1: An external action is an action belonging 
to the plan of an agent which will be executed by others. 
For example, consider the action C belonging to the plan 
of Agent1 in Fig. 2. Since this action is performed by 
Agent2, it is an external action in the current plan of 
Agent1. 

Definition 2: A terminal action is an action after 
which no other known action will be performed. In Fig. 2, 
B, D, E, I, J, K, and L are terminal actions. 

 
3.1. Agent Criticality 

 
The criticality of an agent at any time can be calculated 

based on the criticalities of the forthcoming actions which 
belong to its plan. An agent which executes important 
actions must be considered critical. In a given time t, the 
criticality of the agent will be given by the relative 
criticality of the current root of its plans’ graph. 

Before defining the relative criticality of an action, 
let’s first introduce the concept of absolute criticality. The 
absolute criticality (AC) of an action is defined without 
taking into account the current plans of the agents. It is 
given a priori by the system designer and can be 
determined in function of a number of factors: 

- Number of agents capable of performing the action: 
an action that can be done by many agents can be 
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considered not too critical, since it is probably easier to 
reschedule it, if it ever fails, than if only a few agents 
were capable of performing it. 

- Resources required for the execution of the action: 
the size of the set of required resources can also be used 
to determine the absolute criticality. For example, under 
some circumstances, actions which are expected to take 
too long could be considered more critical than short 
ones. 

- Semantic information: the system designer can use 
semantic information to determine the criticality of the 
action, since, depending on the field of application, some 
actions are more important than others. For example, the 
absolute criticality of the action “visit the site s” in the 
case of the patrolling task is given by the priority of the 
site s. 

The relative criticality (RC) of an action executed by 
an agent (possibly jointly with other agents) estimates the 
impact of its failure to the multi-agent system as a whole. 
The RC depends on the absolute criticality of the action 
and on the usefulness of its results to all the agents which 
depend on it to perform their tasks. 

The relative criticality is calculated as follows: 
- For an external action, it is equal to the local relative 

criticality (LRC). The LRC is obtained using the AND-
aggregation function if the action is connected to its 
children by means of AND edges or the OR-aggregation 
function if it is connected by OR edges. The parameters 
of these two functions are the relative criticalities of the 
children of the action. We use as an AND-aggregation 
function the sum of its parameters and as OR-aggregation 
function, the mean of its parameters. If the action has only 
one child, its LRC is equal to the relative criticality of its 
child. If the action is terminal (i.e. it has no child), its 
local relative criticality is equal to zero. 

- For a non-external action a, its relative criticality is 
equal to its absolute criticality plus the sum of the local 
relative criticalities of a in each plan to which it belongs. 

Table 1 shows the relative criticalities of each action in 
the example of Fig. 2 if the corresponding absolute 
criticalities are considered. 

Table 1.  Calculation of Criticality 

Action Absolute 
Criticality 

Relative 
Criticality 

A 4 15 
B 8 8 

C (Agent1) 4 3 
C (Agent2) 4 13 
D 5 5 
E 1 1 
F 6 30 
G 3 7 
H 2 4 
I 2 2 
J 4 4 

K 3 3 
L 1 1 

 
In order to obtain those values for the relative 

criticalities, the method previously described is used. For 
example, the action B belonging to the plan of Agent1 is a 
non-external action. Then its relative criticality is 
calculated by adding its absolute criticality with its local 
relative criticality. Since it is a terminal action, its local 
relative criticality is equal to zero. 

RC(B) = AC(B) + LRC(B, Agent1) = 8 + 0 = 8 (1)

However, we calculate the relative criticality of the 
action C in the plan of Agent1 differently because it is an 
external action (it will be executed by Agent2). In this 
case, the relative criticality is simply equal to the value of 
the local relative criticality. In order to calculate the LRC 
of C in Agent1’s plan, we use the mean aggregation 
function with the relative criticalities of the children of 
action C (namely D and E) as parameters. 

RC(C_Agent1) = LRC(C, Agent1) = Mean(RC(D), 
RC(E)) = Mean(5, 1) = 3 

(2)

In dynamic and unreliable environments, actions with 
a late start time will be executed less possibly than actions 
with an early starting time, since the plans can change or 
failures can happen. Consequently, we have also refined 
this strategy by considering the expected starting time of 
actions. 

 
Figure 3. Impact of time in the criticality of 
actions 

In Fig. 3, the Action A of Plan1 and the action D of 
Plan2 will have a relative criticality of 3. However, since 
it is not certain that actions B and C will be executed, the 
action D should be more critical than the action A. Hence, 
we propose another approach to calculate the relative 
criticalities, where we multiply the relative criticality of 
the actions by a factor which decreases along time, taking 
into account the expected time that the action will start to 
be executed. 

Let t be the estimated starting time of the action and 
RCold its relative criticality calculated using the previous 
approach. Then we calculate the relative criticalities in the 
new approach (RCnew) using the following exponentially 
decreasing function: 
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RCnew = RCold / b
t, where b ≥ 1 (3)

We intend to study other functions besides the 
exponential one, such as a linear or hyperbolic decay. 

We compute the estimated starting time of the actions 
using a topological sorting in the graph (top-down) 
considering the elapsed times of the antecedents and 
siblings’ actions [5]. 

In the example of Fig. 3, if we consider that the 
duration of all the actions is equal to three units of time, 
and the amortizing base b is equal to e, the following 
relative criticalities would be obtained: 

Table 2.  Calculation of Criticality considering 
time 

Action Relative Criticality 

A 
RC(A) = (AC(A) + LRC(A, Agent))/eta = 

(AC(A) + RC(B))/eta = 
(1 + e-3 + e-9)/e0 = 1 + e-3 + e-9 

B 
RC(B) = (AC(B) + LRC(B, Agent))/etb = 

(AC(B) + RC(C))/etb = 
(1+ e-6)/e3 = e-3 + e-9 

C RC(C) = AC(C)/etc = 1/e6 = e-6 
D RC(D) = AC(D)/etd = 3/e0 = 3 

 
Using this new mechanism for calculating the relative 

criticalities, the action A in Plan1 is less critical than the 
action D in Plan2, as desired. 
 
3.2. Revision of the Criticality 
 

Since multi-agent systems are often dynamic and non-
deterministic, it is not possible to know in advance the 
complete plan of the agent. Actually, during the execution 
of multi-agent plans, one or more agents might determine 
that the context has changed so much that the agents’ 
partial plan should be modified. 

Consequently, the initial criticality of the agents in the 
instant t = 0 is quite precise, but it needs to be updated 
along time. The question is when and how to update those 
criticalities. We propose two main types of strategies to 
revise the criticality: time-driven strategies and event-
driven strategies. 

Time-driven strategies are based on local clocks 
associated to each agent. Whenever the clock alarms, the 
criticality of the corresponding agent is re-evaluated. The 
interval of time between two consecutive alarms can be 
fixed or variable. Using an initial approach, at each fixed 
interval ∆t, the clock will sound the alarm and the 
criticality will be updated. The value of ∆t could be 
variable so as to reflect the dynamicity of the system. If 
this is the case, the length of the interval is initially set to 
a predefined value. It is reduced if a substantial 
modification in the criticality has been noticed in the last 
interval of time or, inversely, it would be increased if 
almost no change has been observed in the criticality. 

Event-driven strategies are based on critical events that 
might change the criticality in a substantial way. 
Whenever one of these events is detected, the criticality is 
updated. There are two main types of events: those which 
depend on the application (completion of an action, 
changes in the plan of the agent, …) and those related to 
failures (failure of an agent or a machine). 
 
3.3. Agent Replication Mechanism 
 

Once estimated the criticality of the agents (using the 
strategies described in the last section, for example), one 
may ask which agents should be replicated and where to 
deploy the replicas. In order to determine which agents to 
replicate, Guessoum et al [6] proposed an agent 
replication mechanism which, at each interval of time ∆t, 
recalculates and updates the number of replicas that each 
agent must possess. It is directly proportional to the 
criticality of the agent and the number of replicas 
available and inversely proportional to the sum of 
criticality of all agents in the system. 

One problem with this technique of calculating the 
number of replicas that should be given to each agent is 
that it does not address the problem of where deploying 
efficiently the replicas. In other words, it does not take 
into consideration the future failure probability of the 
replica. In fact, it is better to have only one replica which 
will have in the future an almost zero probability of 
failure than having many replicas which are not reliable. 

Hence, we will propose another mechanism of replica 
allocation, which considers the probability of failures. In 
this new mechanism, we define the value of the replica rk 
(denoted by vk), as the probability that it will not crash. A 
value of one will be attributed to a completely reliable 
resource, whereas an unreliable one shall have a near zero 
value. 

The probability of failure of a given set of replicas R = 
{r1, r2, … , rn}, is given by: 

P (Failure (R) = 1) = (1-v1) × (1-v2) × … × (1-vn) (4)

Let S be the sum of the values of all the replicas in the 
system. Then, an agent Agenti is allowed to be replicated 
using a total value of replicas (ti) proportional to the 
percentage of its criticality (ci) with respect to the sum of 
agents’ criticalities (C), as given by the equation: 

ti = ci × V / C (5)

The system of replication will then allocate to the 
agent the set of replicas R = {r1, r2, … , rn}, such that v1 + 
v2 + … + vn ≤ ti and its probability of failure is minimal 
among all the possible sets of replicas. 

One can apply the same possible strategies used as the 
agent criticality update policy (time-driven or event-
driven) to decide when to re-calculate the values of ti. For 
instance, one can use a variable window of time ∆t for 
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each agent Agenti. If the quantity of replicas (whose total 
value does not exceed ti) that the agent Agenti can acquire 
does not change significantly, the window of time ∆t can 
be increased, otherwise it is decremented. Another 
possibility is to recalculate the value of ti whenever the 
value of ci is updated. 
 
4. Architecture and Implementation 
 

To implement the agent replication mechanism 
described in the previous section, we used the framework 
DARX (Dynamic Agent Replication eXtension) [7]. 

DARX relies on the notion of replication group (RG). 
Every agent of the application is associated to an RG, 
which DARX handles in a way that renders replication 
transparent to the application at runtime. Each RG has 
exactly one ruler, which communicates with the other 
agents. Other RG members, referred to as subjects, are 
kept consistent with their ruler according to the 
replication strategies. Several different strategies, ranging 
from passive to active, may be applied within a 
replication group. The number of subjects and the 
replication strategy may be adapted dynamically. 

DARX provides atomic and ordered multi-cast for the 
replication groups’ internal communication. Messages 
between agents are also logged by each replica, and 
sequences of messages can be re-emitted for recovery 
purposes. 

As shown in Fig. 4, DARX offers several services. 
Failure detection enables to suspect host and process 
failures based on a hierarchy of adaptive failure detectors. 
Naming and localisation provides a means to supply 
agents and their replicas with unique identifiers 
throughout the system, and to retrieve their location 
whenever the application requires it. 

DARX is coded in Java 1.4 and uses RMI as a means 
to simplify the coding of network issues. It can be easily 
integrated to any agent platform by means of an 
interfacing component. Current implementation provides 
the integration to DIMA and Madkit multi-agent 
platforms. 

We implemented the proposed replication mechanism 
in an adaptive replication control module, which we have 
coupled to the DARX platform. This module is 
completely distributed and uses the replication service of 
DARX to provide a suitable replication scheme for every 
agent. 

 
Figure 4. DARX framework design 
 

5. Experimental Results 
 

We are currently conducting experiments, whose 
preliminary results we summarize in this paper. In our 
experiments, each agent has to accomplish its own 
sequence of 5 plans, one at a time, each with 10 actions. 
The average duration of actions is of 2 seconds. We 
repeated ten times each experiment (the results shown are 
the mean of those several runs). We maintained the same 
sequence of plans and actions that each agent must 
execute in those runs. 

In the first place, we ran each experiment considering a 
completely reliable environment (no failures) and 
calculated the CPU time (in milliseconds) required for the 
completion of all the plans by all the agents. Fig. 5 shows 
the effect of changing the number of agents on the CPU 
time required (y-axis) by our replication mechanism and 
by the execution of the multi-agent system with no 
replication at all. Whenever replication is present, the 
number of replicas available at the machine is half of the 
number of agents. One can notice that using no replication 
always outperform our replication mechanism, but the 
overhead of our mechanism is negligible (less than 4%). 
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Figure 5. Impact of the usage of replication on 
CPU time 
 

In order to assess the quality of a replication 
mechanism, we considered the sum of the absolute 
criticalities of the actions which were executed with 
success using the corresponding mechanism. During the 

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00  © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore.  Restrictions apply. 



execution of each experiment, at each interval of 2s and 
for each agent, a failure generator will cause the agent to 
fail with a probability equal to its probability of failure 
given by Eq. 4. Whenever an agent fails (because all its 
replicas failed), its current plan fails, the agent is restarted 
with its next plan and all the replicas which were 
allocated to it are made available for use. 
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Figure 6. Quality of the replication mechanism 
used vs. a failure-free execution 
 

Fig. 6 shows the maximum quality that could be 
obtained (in a completely reliable environment) compared 
to the quality of our strategy of replication and to a 
random one, which allocates randomly each replica 
available. We varied the probability of failure of the 
replicas, but due to space constraints, only a fixed value 
of 0.3 is reported in Fig. 6. The results are encouraging in 
the sense that our strategy is more accurate to determine 
and replicate the most critical agents than the random one. 
In fact, the probability that a critical agent fails with our 
strategy is lower than with a random strategy. 
Additionally, the quality of our mechanism is quite close 
(80% at average) to the maximum value that could be 
obtained in a failure-free execution. 

The results show here are just partial. In fact, we 
envisage following the work of experimentation and 
evaluation by integrating other methods of the domain 
with which we intend to compare our approach. 
 
6. Related Work 

 
Several approaches have addressed the problem of 

fault tolerance. In fact, many toolkits include replication 
facilities to build reliable applications. However, most of 
them are not quite suitable for implementing large-scale, 
adaptive replication mechanisms. 

The first type of solution has been introduced by using 
reactive MASs, such as those based on the metaphor of 
ant nests [8]. An ant nest is composed of a set of simple 
agents which act in a complex environment and which 
can exhibit intelligent and adaptive behaviours. They are 
robust and fault tolerant systems a priori, since they are 
founded on the redundancy of similar reactive agents. The 

fault of an agent does not affect, thus, the global system 
functioning. However, this redundancy is not a priori 
guaranteed to cognitive MASs, since cognitive agents can 
present very different, dependant and complex 
behaviours. 

Hägg [9] proposes an approach to the problem in 
which sentinel agents monitor inter-agent communication, 
build models of other agents and take corrective actions. 
Since the sentinels analyze the entire communication 
going on in the system to detect state inconsistencies, it 
would be far too expensive in terms of computation and 
communication to take total control of possible fault 
situations and global consistency. Additionally, sentinels 
are themselves points of failures. 

Decker et al [10] and Shen et al [11] offer dynamic 
cloning of specific agents in multi-agent systems. But 
their motivation is different, in view of the fact that their 
objective is to improve the availability of an agent if it is 
too congested (load balancing). Fault tolerance aspects are 
not addressed. 

Fedoruk and Deters [1] also use replication to improve 
fault tolerance. Their work implements the passive 
strategy (hot-standby) of replication in a transparent way 
using proxies. All messages going to and from a replicate 
group are funnelled through the replicate group message 
proxy. Kraus et al [12] define the problem of fault 
tolerance as a deployment problem and propose a 
probabilistic approach to deploy the agents in a multi-
agent application. The main problem of these two works 
is that replication is applied statically before the 
application starts. This is not desirable in the case of 
dynamic multi-agent applications because the criticality 
of agents may evolve dynamically during the course of 
computation. 

In distributed computing, many toolkits include 
replication facilities to build reliable application. 
However, many of products are not enough flexible to 
implement an adaptive replication. MetaXa [13] 
implements in Java active and passive replication in a 
flexible and transparent way. Authors extended Java with 
a reactive meta-level architecture. However, MetaXa 
relies on a modified Java interpreter. GARF [14] uses a 
reflexive architecture to allow the development of fault-
tolerant Smalltalk applications. It provides different 
replication strategies, but, it does not offer adaptive 
mechanisms to apply these strategies. 

There are other software infrastructures for adaptive 
fault tolerance [15]–[17] where existing strategies can be 
dynamically changed. Nevertheless, such a change must 
have been devised by the application developer before 
runtime or the modifications must be specified and 
applied in a non-automatic way during the execution of 
the system. 

As we said before, Guessoum et al [6] propose an 
adaptive replication mechanism based on the criticality of 
the agents. Their work uses system-level information 
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(communication load and processing time) as well as 
semantic-level information (the role taken by an agent in 
an organization, e.g., role of broker, manager) to calculate 
the criticality of an agent. However, they do not consider 
the probability of failures of replicas and do not address 
the problem of where deploying the agents. Additionally, 
the future behavior of the agents is not taken into account 
when calculating the criticalities. 
 
7. Conclusion 
 

Large-scale multi-agent systems are often distributed 
and must run without any interruption. To make these 
systems reliable, we proposed an original predictive 
method to evaluate dynamically the criticality of agents. 
Our approach takes profit of the specificities of multi-
agent applications and analyses the agents’ plans to 
determine their importance to the system. This approach 
allows us to obtain a more precise value of the criticality 
since it takes into account the future behavior of the 
agents. The agent criticality is then used to replicate 
agents in order to maximize their reliability and 
availability based on available resources. 

The proposed mechanism was implemented over the 
DARX replication platform. We have tested it and we 
believe that our current results are promising. In fact, the 
algorithms have a negligible overhead and provide a 
satisfactory reliability.  

One of the perspectives of this work is to better 
formalize the problem of fault tolerance in multi-agent 
systems and its evaluation measures, in order to compare 
the different proposed strategies with an optimal one. 

Additionally, different real-world applications will be 
implemented and used to validate our approach. Two 
applications are for the moment envisaged: the personal 
meeting assistants and the patrolling agents [18]. 
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