
A Predictive Method for Providing Fault Tolerance in Multi-Agent Systems

Alessandro de Luna Almeida, Samir Aknine, Jean-Pierre Briot, Jacques Malenfant
Université Pierre et Marie Curie-Paris6,UMR 7606, Paris, F-75005 France

{Alessandro.Luna-Almeida, Samir.Aknine, Jean-Pierre.Briot, Jacques.Malenfant}@lip6.fr

Abstract

The growing importance of multi-agent applications
and the need for a higher quality of service in these
systems justify the increasing interest in fault-tolerant
multi-agent systems. In this article, we propose an
original method for providing dependability in multi-
agent systems through replication. Our method is
different from other works because our research focuses
on building an automatic, adaptive and predictive
replication policy where critical agents are replicated to
avoid failures. This policy is determined by taking into
account the criticality of the plans of the agents, which
contain the collective and individual behaviors of the
agents in the application. The set of replication strategies
applied at a given moment to an agent is then fine-tuned
gradually by the replication system so as to reflect the
dynamicity of the multi-agent system. We report on
experiments assessing the efficiency of our approach.

1. Introduction

The notion of agent (and multi-agent systems) is
getting increased attention as a very promising approach
for designing and building future cooperative distributed
applications (e.g., crisis management systems, air traffic
control, industrial plant automation, e-commerce,
communication network management…). Being
distributed systems, MASs are susceptible to the same
faults that any distributed system is susceptible to, such as
software bugs, system crashes, shortage of resources,
slow downs or failures in the communication links [1].

In order to prevent that a system stop working properly
due to the occurrence of faults, many fault tolerance
approaches have been proposed, some more curative e.g.,
based on exception handling and cooperative recovery
[2], and some more preventive, notably based on the
concept of replication, i.e. creation of copies of a
component in distant machines.

As discussed by [3], software replication in distributed
environments has some advantages over other fault-
tolerance solutions: it provides the groundwork for the
shortest recovery delays, it is less intrusive with respect to
execution time, and it scales much better. As we show in
the paper, our solution is furthermore transparent, as the

task of deciding what entities to replicate and how to
parameterize replication is handled automatically.

In most cases, replication is decided and applied
statically, before the application starts. However, recent
applications, especially those designed as multi-agent
systems, can be very dynamic because of the process of
reallocation of tasks, flexible organizations,
replanification, changes in the roles of the agents, etc. It is
thus very difficult, or even impossible, to identify in
advance the most critical software components of the
application.

Consequently, it is necessary to replicate in an
automatic and dynamic way. This involves the study of
mechanisms to determine when to replicate the agents,
which agents are to be replicated, the quantity of replicas
to be made and where to deploy those replicas.

In this paper, we will introduce our approach to
building reliable multi-agent systems. It is based on the
concept of criticality, a value (evolving in time)
associated to each agent in order to reflect the effects of
its failure on the overall system. This value is calculated
using the plans of the agent, i.e., the actions that the agent
has planned to execute in the near future.

A plan-based fault-tolerant mechanism acts as a
promising preventive method since it takes into account
the prediction of the future behavior of the agents and
their influence over the other agents of the society.

The remainder of this paper is organized as follows.
Section 2 defines the fault tolerance problem we deal with
in this paper. Section 3 explains how the plans of the
agents can be used as an approach to this problem.
Section 4 describes the general architecture of the
experimental platform. Section 5 shows some preliminary
results. Section 6 provides an overview of the state of the
art. Finally, in section 7 we present our conclusions and
perspectives for future work.

2. Problem Definition

The fault tolerance problem described in this paper
considers a set of agents S = {Agent1, Agent2, ..., Agentn}
that have to complete a set of tasks. For example, consider
a set of agents called assistants, which elaborate plans for
a patrolling task (see Fig. 1). The patrol is, in this case,
performed by a set of autonomous agents, called
patrollers. Each patrolling agent will interact with its

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore. Restrictions apply.

corresponding assistant agent in order to discover the
sequence of sites which must be visited. A predetermined
priority is associated to each site.

Figure 1. Example of the patrolling task

While trying to accomplish their tasks, agents can stop
executing. In this work, we consider the crash type of
failures, that is when a component stops producing output.
It is the simplest type of failure to contend with. However,
in various cases our solution allows to deal with other
types of failures (omission, timing, byzantine). They are
currently being investigated, but will not be considered in
this paper.

To minimize the impact of failures, agents can be
replicated. A replicated software component has
representations (replicas) on two or more hosts [3]. The
two main types of replication protocols are: active
replication, in which all replicas process concurrently all
input messages ; passive replication, in which only one of
the replicas processes all input messages and periodically
transmits its current state to the other replicas in order to
maintain consistency.

 Replicating every agent is not a feasible approach
since not only the available resources are often limited,
but also the overhead imposed by the replication could
degrade performance significantly. The problem consists
in finding a replication scheme which minimizes the
probability of failure of the most critical agents. This
scheme must also be revised over time, considering that
the multi-agent execution context of tasks is dynamic and,
thus, the criticalities of the agents vary at runtime.

3. Our Plan-Based Criticality Assessment
Method

In our approach to solve the problem defined in the last
section, we consider that each agent of the system knows
which sequence of actions (plan) must be executed in
order to accomplish its current task. Since unexpected
events may occur in dynamic environments, agents
usually interleave planning and execution. Consequently,
their plans are established just for the short term. We
assume that at each given instant of time the agent is
executing at most one action.

Using the same approach established by [4], we
represent the plan of an agent as a directed acyclic

AND/OR graph where each node represents an action.
The nodes are connected by AND or OR edges. A node n
which is connected to k nodes (n1, n2, ..., nk) by means of
AND edges represents an action An after which all the
actions An1, An2, …, Ank will be executed. However, if a
node n is connected to k nodes (n1, n2, ..., nk) by means of
OR edges, it suffices that at least one of the actions An1,
An2, …, Ank be executed after the execution of the action
An.

In the example of Fig. 2, we show two patrolling plans
elaborated by the assistant agents. For legibility purposes,
let us denote the action “visit the site X” simply as “X”.
After performing the action A, Agent1 needs to have both
B and C executed in order to accomplish its plan.
However, after C, only one of D or E needs to be
performed so that Agent1 accomplishes its plan.

Figure 2. Example of plans of two interacting
agents (dashed circles represent external
actions)

Definition 1: An external action is an action belonging
to the plan of an agent which will be executed by others.
For example, consider the action C belonging to the plan
of Agent1 in Fig. 2. Since this action is performed by
Agent2, it is an external action in the current plan of
Agent1.

Definition 2: A terminal action is an action after
which no other known action will be performed. In Fig. 2,
B, D, E, I, J, K, and L are terminal actions.

3.1. Agent Criticality

The criticality of an agent at any time can be calculated

based on the criticalities of the forthcoming actions which
belong to its plan. An agent which executes important
actions must be considered critical. In a given time t, the
criticality of the agent will be given by the relative
criticality of the current root of its plans’ graph.

Before defining the relative criticality of an action,
let’s first introduce the concept of absolute criticality. The
absolute criticality (AC) of an action is defined without
taking into account the current plans of the agents. It is
given a priori by the system designer and can be
determined in function of a number of factors:

- Number of agents capable of performing the action:
an action that can be done by many agents can be

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore. Restrictions apply.

considered not too critical, since it is probably easier to
reschedule it, if it ever fails, than if only a few agents
were capable of performing it.

- Resources required for the execution of the action:
the size of the set of required resources can also be used
to determine the absolute criticality. For example, under
some circumstances, actions which are expected to take
too long could be considered more critical than short
ones.

- Semantic information: the system designer can use
semantic information to determine the criticality of the
action, since, depending on the field of application, some
actions are more important than others. For example, the
absolute criticality of the action “visit the site s” in the
case of the patrolling task is given by the priority of the
site s.

The relative criticality (RC) of an action executed by
an agent (possibly jointly with other agents) estimates the
impact of its failure to the multi-agent system as a whole.
The RC depends on the absolute criticality of the action
and on the usefulness of its results to all the agents which
depend on it to perform their tasks.

The relative criticality is calculated as follows:
- For an external action, it is equal to the local relative

criticality (LRC). The LRC is obtained using the AND-
aggregation function if the action is connected to its
children by means of AND edges or the OR-aggregation
function if it is connected by OR edges. The parameters
of these two functions are the relative criticalities of the
children of the action. We use as an AND-aggregation
function the sum of its parameters and as OR-aggregation
function, the mean of its parameters. If the action has only
one child, its LRC is equal to the relative criticality of its
child. If the action is terminal (i.e. it has no child), its
local relative criticality is equal to zero.

- For a non-external action a, its relative criticality is
equal to its absolute criticality plus the sum of the local
relative criticalities of a in each plan to which it belongs.

Table 1 shows the relative criticalities of each action in
the example of Fig. 2 if the corresponding absolute
criticalities are considered.

Table 1. Calculation of Criticality

Action Absolute
Criticality

Relative
Criticality

A 4 15
B 8 8

C (Agent1) 4 3
C (Agent2) 4 13
D 5 5
E 1 1
F 6 30
G 3 7
H 2 4
I 2 2
J 4 4

K 3 3
L 1 1

In order to obtain those values for the relative

criticalities, the method previously described is used. For
example, the action B belonging to the plan of Agent1 is a
non-external action. Then its relative criticality is
calculated by adding its absolute criticality with its local
relative criticality. Since it is a terminal action, its local
relative criticality is equal to zero.

RC(B) = AC(B) + LRC(B, Agent1) = 8 + 0 = 8 (1)

However, we calculate the relative criticality of the
action C in the plan of Agent1 differently because it is an
external action (it will be executed by Agent2). In this
case, the relative criticality is simply equal to the value of
the local relative criticality. In order to calculate the LRC
of C in Agent1’s plan, we use the mean aggregation
function with the relative criticalities of the children of
action C (namely D and E) as parameters.

RC(C_Agent1) = LRC(C, Agent1) = Mean(RC(D),
RC(E)) = Mean(5, 1) = 3

(2)

In dynamic and unreliable environments, actions with
a late start time will be executed less possibly than actions
with an early starting time, since the plans can change or
failures can happen. Consequently, we have also refined
this strategy by considering the expected starting time of
actions.

Figure 3. Impact of time in the criticality of
actions

In Fig. 3, the Action A of Plan1 and the action D of
Plan2 will have a relative criticality of 3. However, since
it is not certain that actions B and C will be executed, the
action D should be more critical than the action A. Hence,
we propose another approach to calculate the relative
criticalities, where we multiply the relative criticality of
the actions by a factor which decreases along time, taking
into account the expected time that the action will start to
be executed.

Let t be the estimated starting time of the action and
RCold its relative criticality calculated using the previous
approach. Then we calculate the relative criticalities in the
new approach (RCnew) using the following exponentially
decreasing function:

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore. Restrictions apply.

RCnew = RCold / b
t, where b ≥ 1 (3)

We intend to study other functions besides the
exponential one, such as a linear or hyperbolic decay.

We compute the estimated starting time of the actions
using a topological sorting in the graph (top-down)
considering the elapsed times of the antecedents and
siblings’ actions [5].

In the example of Fig. 3, if we consider that the
duration of all the actions is equal to three units of time,
and the amortizing base b is equal to e, the following
relative criticalities would be obtained:

Table 2. Calculation of Criticality considering
time

Action Relative Criticality

A
RC(A) = (AC(A) + LRC(A, Agent))/eta =

(AC(A) + RC(B))/eta =
(1 + e-3 + e-9)/e0 = 1 + e-3 + e-9

B
RC(B) = (AC(B) + LRC(B, Agent))/etb =

(AC(B) + RC(C))/etb =
(1+ e-6)/e3 = e-3 + e-9

C RC(C) = AC(C)/etc = 1/e6 = e-6
D RC(D) = AC(D)/etd = 3/e0 = 3

Using this new mechanism for calculating the relative

criticalities, the action A in Plan1 is less critical than the
action D in Plan2, as desired.

3.2. Revision of the Criticality

Since multi-agent systems are often dynamic and non-
deterministic, it is not possible to know in advance the
complete plan of the agent. Actually, during the execution
of multi-agent plans, one or more agents might determine
that the context has changed so much that the agents’
partial plan should be modified.

Consequently, the initial criticality of the agents in the
instant t = 0 is quite precise, but it needs to be updated
along time. The question is when and how to update those
criticalities. We propose two main types of strategies to
revise the criticality: time-driven strategies and event-
driven strategies.

Time-driven strategies are based on local clocks
associated to each agent. Whenever the clock alarms, the
criticality of the corresponding agent is re-evaluated. The
interval of time between two consecutive alarms can be
fixed or variable. Using an initial approach, at each fixed
interval ∆t, the clock will sound the alarm and the
criticality will be updated. The value of ∆t could be
variable so as to reflect the dynamicity of the system. If
this is the case, the length of the interval is initially set to
a predefined value. It is reduced if a substantial
modification in the criticality has been noticed in the last
interval of time or, inversely, it would be increased if
almost no change has been observed in the criticality.

Event-driven strategies are based on critical events that
might change the criticality in a substantial way.
Whenever one of these events is detected, the criticality is
updated. There are two main types of events: those which
depend on the application (completion of an action,
changes in the plan of the agent, …) and those related to
failures (failure of an agent or a machine).

3.3. Agent Replication Mechanism

Once estimated the criticality of the agents (using the
strategies described in the last section, for example), one
may ask which agents should be replicated and where to
deploy the replicas. In order to determine which agents to
replicate, Guessoum et al [6] proposed an agent
replication mechanism which, at each interval of time ∆t,
recalculates and updates the number of replicas that each
agent must possess. It is directly proportional to the
criticality of the agent and the number of replicas
available and inversely proportional to the sum of
criticality of all agents in the system.

One problem with this technique of calculating the
number of replicas that should be given to each agent is
that it does not address the problem of where deploying
efficiently the replicas. In other words, it does not take
into consideration the future failure probability of the
replica. In fact, it is better to have only one replica which
will have in the future an almost zero probability of
failure than having many replicas which are not reliable.

Hence, we will propose another mechanism of replica
allocation, which considers the probability of failures. In
this new mechanism, we define the value of the replica rk
(denoted by vk), as the probability that it will not crash. A
value of one will be attributed to a completely reliable
resource, whereas an unreliable one shall have a near zero
value.

The probability of failure of a given set of replicas R =
{r1, r2, … , rn}, is given by:

P (Failure (R) = 1) = (1-v1) × (1-v2) × … × (1-vn) (4)

Let S be the sum of the values of all the replicas in the
system. Then, an agent Agenti is allowed to be replicated
using a total value of replicas (ti) proportional to the
percentage of its criticality (ci) with respect to the sum of
agents’ criticalities (C), as given by the equation:

ti = ci × V / C (5)

The system of replication will then allocate to the
agent the set of replicas R = {r1, r2, … , rn}, such that v1 +
v2 + … + vn ≤ ti and its probability of failure is minimal
among all the possible sets of replicas.

One can apply the same possible strategies used as the
agent criticality update policy (time-driven or event-
driven) to decide when to re-calculate the values of ti. For
instance, one can use a variable window of time ∆t for

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore. Restrictions apply.

each agent Agenti. If the quantity of replicas (whose total
value does not exceed ti) that the agent Agenti can acquire
does not change significantly, the window of time ∆t can
be increased, otherwise it is decremented. Another
possibility is to recalculate the value of ti whenever the
value of ci is updated.

4. Architecture and Implementation

To implement the agent replication mechanism
described in the previous section, we used the framework
DARX (Dynamic Agent Replication eXtension) [7].

DARX relies on the notion of replication group (RG).
Every agent of the application is associated to an RG,
which DARX handles in a way that renders replication
transparent to the application at runtime. Each RG has
exactly one ruler, which communicates with the other
agents. Other RG members, referred to as subjects, are
kept consistent with their ruler according to the
replication strategies. Several different strategies, ranging
from passive to active, may be applied within a
replication group. The number of subjects and the
replication strategy may be adapted dynamically.

DARX provides atomic and ordered multi-cast for the
replication groups’ internal communication. Messages
between agents are also logged by each replica, and
sequences of messages can be re-emitted for recovery
purposes.

As shown in Fig. 4, DARX offers several services.
Failure detection enables to suspect host and process
failures based on a hierarchy of adaptive failure detectors.
Naming and localisation provides a means to supply
agents and their replicas with unique identifiers
throughout the system, and to retrieve their location
whenever the application requires it.

DARX is coded in Java 1.4 and uses RMI as a means
to simplify the coding of network issues. It can be easily
integrated to any agent platform by means of an
interfacing component. Current implementation provides
the integration to DIMA and Madkit multi-agent
platforms.

We implemented the proposed replication mechanism
in an adaptive replication control module, which we have
coupled to the DARX platform. This module is
completely distributed and uses the replication service of
DARX to provide a suitable replication scheme for every
agent.

Figure 4. DARX framework design

5. Experimental Results

We are currently conducting experiments, whose
preliminary results we summarize in this paper. In our
experiments, each agent has to accomplish its own
sequence of 5 plans, one at a time, each with 10 actions.
The average duration of actions is of 2 seconds. We
repeated ten times each experiment (the results shown are
the mean of those several runs). We maintained the same
sequence of plans and actions that each agent must
execute in those runs.

In the first place, we ran each experiment considering a
completely reliable environment (no failures) and
calculated the CPU time (in milliseconds) required for the
completion of all the plans by all the agents. Fig. 5 shows
the effect of changing the number of agents on the CPU
time required (y-axis) by our replication mechanism and
by the execution of the multi-agent system with no
replication at all. Whenever replication is present, the
number of replicas available at the machine is half of the
number of agents. One can notice that using no replication
always outperform our replication mechanism, but the
overhead of our mechanism is negligible (less than 4%).

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Number of agents

C
PU

 ti
m

e
(s

)

With replication Without replication
Figure 5. Impact of the usage of replication on
CPU time

In order to assess the quality of a replication
mechanism, we considered the sum of the absolute
criticalities of the actions which were executed with
success using the corresponding mechanism. During the

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore. Restrictions apply.

execution of each experiment, at each interval of 2s and
for each agent, a failure generator will cause the agent to
fail with a probability equal to its probability of failure
given by Eq. 4. Whenever an agent fails (because all its
replicas failed), its current plan fails, the agent is restarted
with its next plan and all the replicas which were
allocated to it are made available for use.

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Number of agents

Q
ua

lit
y

of
 th

e
st

ra
te

gy

Random Plan-based Failure-free
Figure 6. Quality of the replication mechanism
used vs. a failure-free execution

Fig. 6 shows the maximum quality that could be
obtained (in a completely reliable environment) compared
to the quality of our strategy of replication and to a
random one, which allocates randomly each replica
available. We varied the probability of failure of the
replicas, but due to space constraints, only a fixed value
of 0.3 is reported in Fig. 6. The results are encouraging in
the sense that our strategy is more accurate to determine
and replicate the most critical agents than the random one.
In fact, the probability that a critical agent fails with our
strategy is lower than with a random strategy.
Additionally, the quality of our mechanism is quite close
(80% at average) to the maximum value that could be
obtained in a failure-free execution.

The results show here are just partial. In fact, we
envisage following the work of experimentation and
evaluation by integrating other methods of the domain
with which we intend to compare our approach.

6. Related Work

Several approaches have addressed the problem of

fault tolerance. In fact, many toolkits include replication
facilities to build reliable applications. However, most of
them are not quite suitable for implementing large-scale,
adaptive replication mechanisms.

The first type of solution has been introduced by using
reactive MASs, such as those based on the metaphor of
ant nests [8]. An ant nest is composed of a set of simple
agents which act in a complex environment and which
can exhibit intelligent and adaptive behaviours. They are
robust and fault tolerant systems a priori, since they are
founded on the redundancy of similar reactive agents. The

fault of an agent does not affect, thus, the global system
functioning. However, this redundancy is not a priori
guaranteed to cognitive MASs, since cognitive agents can
present very different, dependant and complex
behaviours.

Hägg [9] proposes an approach to the problem in
which sentinel agents monitor inter-agent communication,
build models of other agents and take corrective actions.
Since the sentinels analyze the entire communication
going on in the system to detect state inconsistencies, it
would be far too expensive in terms of computation and
communication to take total control of possible fault
situations and global consistency. Additionally, sentinels
are themselves points of failures.

Decker et al [10] and Shen et al [11] offer dynamic
cloning of specific agents in multi-agent systems. But
their motivation is different, in view of the fact that their
objective is to improve the availability of an agent if it is
too congested (load balancing). Fault tolerance aspects are
not addressed.

Fedoruk and Deters [1] also use replication to improve
fault tolerance. Their work implements the passive
strategy (hot-standby) of replication in a transparent way
using proxies. All messages going to and from a replicate
group are funnelled through the replicate group message
proxy. Kraus et al [12] define the problem of fault
tolerance as a deployment problem and propose a
probabilistic approach to deploy the agents in a multi-
agent application. The main problem of these two works
is that replication is applied statically before the
application starts. This is not desirable in the case of
dynamic multi-agent applications because the criticality
of agents may evolve dynamically during the course of
computation.

In distributed computing, many toolkits include
replication facilities to build reliable application.
However, many of products are not enough flexible to
implement an adaptive replication. MetaXa [13]
implements in Java active and passive replication in a
flexible and transparent way. Authors extended Java with
a reactive meta-level architecture. However, MetaXa
relies on a modified Java interpreter. GARF [14] uses a
reflexive architecture to allow the development of fault-
tolerant Smalltalk applications. It provides different
replication strategies, but, it does not offer adaptive
mechanisms to apply these strategies.

There are other software infrastructures for adaptive
fault tolerance [15]–[17] where existing strategies can be
dynamically changed. Nevertheless, such a change must
have been devised by the application developer before
runtime or the modifications must be specified and
applied in a non-automatic way during the execution of
the system.

As we said before, Guessoum et al [6] propose an
adaptive replication mechanism based on the criticality of
the agents. Their work uses system-level information

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore. Restrictions apply.

(communication load and processing time) as well as
semantic-level information (the role taken by an agent in
an organization, e.g., role of broker, manager) to calculate
the criticality of an agent. However, they do not consider
the probability of failures of replicas and do not address
the problem of where deploying the agents. Additionally,
the future behavior of the agents is not taken into account
when calculating the criticalities.

7. Conclusion

Large-scale multi-agent systems are often distributed
and must run without any interruption. To make these
systems reliable, we proposed an original predictive
method to evaluate dynamically the criticality of agents.
Our approach takes profit of the specificities of multi-
agent applications and analyses the agents’ plans to
determine their importance to the system. This approach
allows us to obtain a more precise value of the criticality
since it takes into account the future behavior of the
agents. The agent criticality is then used to replicate
agents in order to maximize their reliability and
availability based on available resources.

The proposed mechanism was implemented over the
DARX replication platform. We have tested it and we
believe that our current results are promising. In fact, the
algorithms have a negligible overhead and provide a
satisfactory reliability.

One of the perspectives of this work is to better
formalize the problem of fault tolerance in multi-agent
systems and its evaluation measures, in order to compare
the different proposed strategies with an optimal one.

Additionally, different real-world applications will be
implemented and used to validate our approach. Two
applications are for the moment envisaged: the personal
meeting assistants and the patrolling agents [18].

References

[1] A. Fedoruk, R. Deters, “Improving fault-tolerance
by replicating agents”, In Proc. AAMAS-02, Bologna,
Italy, 2002, pp. 737-744.

[2] A. Romanovsky, C. Dony, J.L. Knudsen, and A.
Tripathi (eds). “Advances in Exception Handling
Techniques”, LNCS 2022, Springer, 2001.

[3] R. Guerraoui and A. Schiper, “Software-based
Replication for Fault Tolerance”, IEEE Computer, vol.
30, no. 4, 1997, pp. 68-74.

[4] B. Horling et al., “The TAEMS White Paper”,
January 1999.

[5] Hillier and Lieberman, “Introduction to Operations
Research”. Third Edition. Holden-Day Inc, pp. 246-259.

[6] Z. Guessoum, J.-P. Briot, O. Marin, A. Hamel, P.
Sens, “Dynamic and adaptive replication for large-scale
reliable multi-agent systems”, In Software Engineering
for Large-Scale Multi-Agent Systems (SELMAS), LNCS
2603, April 2003, pp. 182-198.

[7] O. Marin, P. Sens, J.-P. Briot, Z. Guessoum,
“Towards adaptive fault-tolerance for distributed multi-
agent systems”, In Proc. of ERSADS'2001, Bertinoro,
Italy, 2001, pp. 195-201.

[8] A. Drogoul, J. Ferber, “Multi-Agent Simulation as
a Tool for Modeling Societies: Application to Social
Differentiation in Ant Colonies”, In Decentralized A.I.,
vol. 4, Elsevier North-Holland, 1992.

[9] S. Hägg, “A sentinel approach to fault handling in
multi-agent systems”, In Proc. of the Second Australian
Workshop on Distributed AI, Cairns, Australia, August
27, 1996.

[10] K. S. Decker, K. Sycara, “Intelligent adaptive
information agents”, Journal of Intelligent Information
Systems, vol. 9, 1997, pp. 239 - 260.

[11] W. Shen, D. H. Norrie, “A Hybrid Agent-
Oriented Infrastructure for Modeling Manufacturing
Enterprises”. In Proceedings of Eleventh Workshop on
Knowledge Acquisition, Modeling and Management,
Banff, Canada, 1998, pp. 1-19.

[12] S. Kraus, V.S. Subrahmanian, N. Cihan,
“Probabilistically survivable MASs”, In Proc. of
Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), 2003, pp. 789-795.

[13] M. Golm, “MetaXa and the Future of Reflection”,
In OOPSLA Workshop on Reflective Programming in
C++ and Java, Springer Verlag, 1998, pp. 238–256.

[14] R. Guerraoui, B. Garbinato, K. Mazouni,
“Lessons from Designing and Implementing GARF”. In
Proc. Object-Based Parallel and Distributed
Computation, LNCS 1101, 1995, pp. 238-256.

[15] Z. Kalbarczyk, S. Bagchi, K. Whisnant, R.K. Iyer,
“Chameleon: a software infrastructure for adaptive fault
tolerance”, IEEE Transactions on Parallel and
Distributed Systems, 1999, pp. 560-579.

[16] M. Cuckuern et al, “AQuA: an adaptive
architecture that provides dependable distributed objects”,
In Proc. of the 17th IEEE Symposium on Reliable
Distributed Systems (SRDS'98), West Lafayette, Indiana,
October 20-23, 1998, pp. 245-253.

[17] F. Favarim, F. Siqueira, J. S. Fraga, “Adaptive
fault-tolerant CORBA components”, In Middleware
Workshops 2003, pp. 144-148.

[18] A. L. Almeida et al, “Recent advances on multi-
agent patrolling,” In Proc. SBIA 2004, pp. 474-483.

Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'06)
0-7695-2748-5/06 $20.00 © 2006Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:23 UTC from IEEE Xplore. Restrictions apply.

