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1 Introduction

The anywhere/any time paradigm is becoming the new challenge to the con-
ception, design, and release of the next generation of information systems. New
technologies, like Wi-Fi networks and 3rd generation mobile phones, are offering
the infrastructure to conceive information systems as ubiquitous, that is, systems
that are accessible from anywhere, at any time, and with (almost) any electronic
device. However, the use of such ubiquitous access to information systems re-
quire new conceptualizations, models, methodologies, and support technologies
to fully explore its potential.

In this context, mobility introduces new accessibility scenarios and increases
complexity. New issues, such as how to enable users to retain their ability to
cooperate while located in different workplaces, the role of context and location
in determining cooperation, the support for ad-hoc cooperation in situations
where the fixed network infrastructure is absent or cannot be used are beginning
to arise. The approaches and technologies for supporting these new ways of work-
ing are still under investigation. Nevertheless, a particularly interesting trend is
exploring the Ambient Intelligence paradigm, a multidisciplinary approach that
aims at the integration of innovative technologies that support user activities
through specific services of the environment, which are provisioned with min-
imal user intervention. Essentially, an Ambient Intelligence system should be
aware of the presence of a person, perceive the needs of this person and be able
to adapt to the needs of the users in a relaxed and unobtrusive manner [20].

Ambient Intelligence (in the following, abbreviated as AmI) requires new
environments for software development and deployment, where large quantities
of different devices and sensors need to be integrated, building a programmable
and auto-configurable infrastructure. Several projects, e.g. Gaia, CoBrA, CHIL,
etc., have developed prototypes of such environments, but usually with focus only



at specific use cases, user tasks or application domains. Hence, most researches
have come up with pragmatic, problem-specific solutions, which are difficult to
generalize and port to other applications. However, we believe that in a few
years, nearly every public and private space will be equipped with sensors and
smart appliances that are able to automatically adapt to the preferences and
demands of the local user(s) and by such provide special context-specific services
to them. Such systems will be open, i.e. these spaces will potentially serve any
user with a communication device (e.g., a smart-phone with powerful computing
and multimedia capabilities), which will be the unique digital interface of the user
with the ambient services and with the devices of other users. Thus, openness
entails that both software agents responsible for user devices (e.g., agents for
assisting the user), and agents responsible for smart spaces (e.g. agents that
control the devices of a room according to its current use), must be prepared to
interact with an a priori unknown set of other software entities.

In this chapter, we present existing technologies and current proposals toward
the integration of heterogeneous entities within an Ambient Intelligence system.
Practical realization of applications for AmI poses several challenges to software
developers, many of them related to heterogeneity, dynamism (i.e. mobility) and
decentralization. We make no claim of a complete or exclusive treatment of the
subject. In fact, there are also several other related challenges [55], for example,
identification of user intent, knowledge acquisition, negotiation, etc. But since
these issues are a complex subject on their own right, in this paper we will discuss
only challenges related to context reasoning, distribution, interoperability and
heterogeneity issues.

Context reasoning for AmI is very complex due to the dynamic, imprecise
and ambiguous nature of context data, the need to process large volumes of
data, and the fact that reasoning needs to be performed in a decentralized,
cooperative way among several entities of the system, e.g. entities representing
spaces, devices or users. Decentralization takes the form of physical distribution
of computing and sensor devices, of context providers and consumers, of entities
responsible for reasoning and brokering, of applications and of users that may
potentially engage into a spontaneous collaboration.

Besides, AmI spaces are intrinsically heterogeneous at several levels: At the
infrastructure level, they include a wide range of appliances and gadgets with
very specific data and control access protocols, and which are typically intercon-
nected through different kinds of (wireless) networks with specific protocols and
QoS parameters. Also the providers and the types of context information are
usually very specific for each space and device, as well as their representations
and models, making it difficult to achieve a common representation for different
entities of the ambient context. A similar problem of heterogeneity can be iden-
tified at the level of services due to the very different kinds of ambient control
functions provided, combined with the lack of standardized interfaces for service
access. Finally, heterogeneity problems are found also at the level of knowledge
representation and modeling, where systems may employ very different kinds of
knowledge bases, descriptions and reasoning techniques. Hence, even if two ele-



ments are conscious of the same concrete fact, there is the problem of alignment
of their knowledge representations.

In this chapter, we will focus mainly on decentralized context reasoning, and
on semantic mediation, since we understand that these are some of the main chal-
lenges for enabling interactions among heterogeneous and context-aware entities
in open and dynamic environments of Ambient Intelligence. In the following sub-
section we describe a simple scenario, which highlights several problems related
to AmI, such as location-specific context-awareness, ontology based distributed
reasoning, heterogeneous knowledge basis and semantic mediation.

1.1 Scenario

Silva is a Brazilian professor and researcher who works at PUC-Rio. He is visit-
ing LIP6 with several other researchers. Their purpose is to have joint workshops
related to a collaboration project. Silva carries with him his smart phone and his
notebook, both executing the Campus middleware services dedicated to collect-
ing and interpreting context information and for collective reasoning with other
ambient services and applications. The devices also host some context-aware
applications that support the platform’s self-configuration to adapt to different
situations, according to user’s preferences and environment conditions.

When Silva arrives at LIP6, his Wi-Fi and GPS enabled smart phone (SMP-
1) connects to the network, and using the current GPS data, queries a location
service to find out that its user (Silva) is at LIP6. It then determines that this
university is a partner institution of PUC-Rio; obtains the IP address of the
Ambient management service at LIP6 and registers with it, indicating the user’s
identity and preferences.

The Ambient management service registers SMP-1 and determines that it
belongs to Silva, a visiting professor from PUC-Rio. The system verifies that
Silva is involved with the collaboration project and sets a workspace for him,
communicating with a service running on Silva’s notebook (NTB-1) to configure
it to grant access to the proper network directories & services. This system also
informs other project members at LIP6 about Silva’s arrival.

A personal agenda application running on SMP-1 contacts the context in-
frastructure to be notified about the beginning of each event involving the whole
project team, based on the project schedule and the location. Another appli-
cation on SMP-1, the Configuration manager, requests to be notified whenever
Silva is in a room in which an activity has started, so that it may set the smart
phone to vibe-mode, and as soon as the activity ends, switch it back to the ring
mode.

Notice that when this application interacts with the Ambient’s local context
provider, there could be a semantic mismatch between the terms “activity”,
used in the device’s ontology, and the terms “meeting” or “class”, used in the
Ambient ontology. Due to this semantic mismatch, Silva’s application would not
get the expected response from the Ambient Service and would issue a request
for semantic mapping from a mediation service, which would try to identify
equivalence or subsumption among the concepts and adjust the local ontology



to reflect this new classification. Hence, we identify that the main requirements
of AmI are context-specific reasoning capabilities (i.e. to enable the spaces and
the interacting computing entities to “understand what is going on”) and the
ability to adapt services/behaviors to the current situation and user preferences.
Being the AmI environment an open system, reasoning is inherently distributed.

Due to the intrinsic characteristics of Ambient Intelligence systems, ontologi-
cal and distributed context-reasoning using multi-agent systems seems to be the
most suitable development paradigm (i.e. each agent interacts with other agents
to reinforce and complement its own knowledge about the context). However,
the main problem with distributed reasoning is that heterogeneous knowledge
bases and models have to be mapped (i.e. aligned, mediated), which leads to the
problem of identifying and resolving semantic mismatch of knowledge represen-
tations.

1.2 Outline

The rest of this chapter is organized as follows: next section presents several
fundamental concepts for AmI with which we deal in this chapter. Section 3
discusses the related work on context awareness for AmI. In Section 4 we review
the main approaches to deal with the ontology alignment problem. Section 5
presents the Campus approach for dealing with context and semantic hetero-
geneity in AmI. Section 6 concludes the chapter.

2 Fundamental Concepts

2.1 Ambient Intelligence

Ambient Intelligence (AmI), i.e. “intelligent” pervasive computing, builds on
three recent key technologies [2]: Ubiquitous Computing, Ubiquitous Communi-
cation and Intelligent User Interfaces. Ubiquitous Computing is the integration of
microprocessors into everyday objects like furniture, clothing, white goods, toys,
even paint. Ubiquitous Communication enables these objects to communicate
with each other and the user by means of ad-hoc wireless networking. Intelligent
User Interfaces enable the inhabitants of an AmI environment to control and
interact with the environment in a natural (voice, gesture) and personalized way
(preferences, context).

AmI aims at making use of those entities in order to provide users with an
environment, which offers services when and if needed. One great challenge of
such environments is how to adequately address the heterogeneity and dynamic
nature of users, services and devices. Key issues of the development of AmI are
context-awareness and reasoning and how to identify and activate the appro-
priate service within a continuously changing multitude of services [39]. The
ultimate goal is to make the ambient services more intelligent and adaptive to
the specific needs of their users.



2.2 Context Awareness

Context awareness is the ability of a system to sense the current environment
and autonomously perform appropriate adaptations in regard to its optimal
operation, general behavior and user interaction. When a user enters a new
context, it is desirable that the applications on his devices be able to adapt
to the new situation, and the environment be able to adapt its services to the
presence of the new user.

There exist several definitions for context and context-awareness, but one of
the most referenced one can be found in [19]: “Any information which can be
used to characterize the situation of an entity. An entity is a person, a place or
an object which is considered relevant for the interaction between a user and an
application, including the user and the application”. In an attempt to classify
context, Chen and Kotz [16] identified four basic types of context: computational
context (i.e. state of resources at the device and of the network), user context
(i.e. persons, places and objects), physical context (e.g. luminosity, noise, tem-
perature) and temporal context (e.g. hour, day, period of the year). Abowd et
al [1] proposed the notions of primary context (localization, identity, activity
and time) and of secondary context , where the latter one can be deduced from
the former one and may be used for making adaptation decisions at a higher
level of abstraction.

Conceptually, context provisioning can be organized in three layers [33]: data
acquisition and distribution, interpretation and utilization. Before raw context
data acquired from sensors and devices can be utilized, it must the interpreted
and evaluated with respect to its accuracy, stability and reliability. The inter-
pretation layer may also combine context data from different sources to enhance
its reliability or completeness. For applications to be able to understand, de-
scribe and manage context-aware adaptations, it is necessary to have a context
model, which can be defined at the application or the middleware layer. Strang
and Linnhoff-Popien [62] identified and compared six types of context models:
attribute-value pairs, schema-based models, graphic models, logic-based models,
object-oriented models and ontology-based models. The author’s main conclu-
sion is that the object-oriented and the ontology-based models are the most
complete and expressive ones, and hence are the most suited for modeling con-
text for ubiquitous computing.

2.3 Ontology

Ontology has not only the advantage of enabling the reuse and sharing of com-
mon knowledge among several applications [58], but also of allowing the use
of logic reasoning mechanisms to deduce high-level contextual information [68].
Therefore it has been widely adopted over other conceptual models, such as tax-
onomy, relational database schema and OO software models, for representing
context information in ubiquitous systems.

A taxonomy is a set of terms arranged in a generalization-specialization
(parent-child) hierarchy because they are much more expressive [34]. A con-
trolled vocabulary simply lists a set of terms and definitions. A taxonomy may



or may not define attributes of these terms. A relational database schema de-
fines a set of terms through classes, attributes and a limited set of relationships
among those classes. An OO software model defines a set of concepts and terms
through a hierarchy of classes and attributes and a broad set of binary relation-
ships among classes. Constraints and other behavioral may be specified through
methods on the classes (or objects).

An ontology can express all of the preceding relationships, models and di-
agrams as well as, n-ary relations, a rich set of constraints, rules relevant to
usage or related processes and other differentiators including negation and dis-
junction [25]. Table 1 summarizes the benefits of the adoption of ontology.

• Ontologies are semantically richer, i.e. have greater expression power than tax-
onomies, entity relationships or OO models;

• Conceptual knowledge is maintained through complex and accurate representations
above and beyond hierarchical approaches;

• Ontologies are formal — OWL DL ontologies map directly to Description Logic (a
dialect of first order logics);

• Formal ontologies in the OWL DL standard can be verified/classified with the aid
of Inference Mechanisms, e.g. RACER and FaCT:

– consistency checks;
– classification
– new information discovery;

• OWL ontologies use a XML/RDF syntax that allows them to be automatically
manipulated and understood by most resources on the Internet;

• Ontologies capture and represent finely granulated knowledge;
• Ontologies can be used to reduce ambiguity so as to provide a model over which

information can be freely shared and acted upon by autonomic managers;
• Ontologies are modular, reusable and code independent — ontology driven appli-

cations are specified separately from the ontology itself. Changes to the ontology
should not impact the code or vice versa;

• Ontologies can be combined with emerging rule languages, such as SWRL.

Table 1. Benefits of adopting formal ontology to model ambient knowledge in Campus.

2.4 Context Reasoning

Reasoning is necessary in context aware systems to deal with the intrinsic im-
perfection and uncertainty of context data, and also to infer secondary context
data. Henricksen and Indulska [28] have characterized four kinds of context im-
perfectness: unknown, ambiguous, imprecise, and erroneous. The main tasks of
reasoning are to detect possible errors, make estimates about missing values,
determine the quality and validity of the context data, transform context data
into meaningful information, and infer new, implicit context information, that



may be relevant for the applications. Reasoning is also fundamental for any
kind of context-oriented decision-making, e.g. system adaptations according to
user-provided or learned decision rules.

According to [46] reasoning for context-aware systems can be approached
from four main perspectives: the low-level perspective, which includes basic tasks
such as data pre-processing, data fusion, and context inference, usually per-
formed by the sensors or the middleware, the application-oriented perspective,
where the application can use a wide variety of reasoning methods to process the
context data, the context monitoring perspective, where the main concern is a
correct and efficient update of the knowledge base as the context changes, and,
finally, model monitoring perspective, where the main task is to continuously
evaluate and update learned context classifiers/interpreters and their models,
also taking into account user feedback. Although Nurmi and Floren give an in-
teresting perspective on context reasoning, we understand that instead of four
perspectives, these are in fact complementary tasks, which should be present in
every approach for reasoning in context-aware systems.

For context reasoning, several approaches have been adopted: ontological
reasoning, rule-based reasoning, distributed reasoning and probabilistic reason-
ing [7]. Instead of presenting and comparing the general reasoning approaches,
which are very well surveyed in Bikakis et al [7], in this paper, we will focus
only on ontological and distributed reasoning approaches. On the one hand, on-
tologies offer high expressiveness and the possibility to develop a formal context
model that can be shared, reused, extended to specific domains, and on the other
hand, distributed reasoning is a direct requirement that arises from the open,
dynamic and heterogeneous nature of AmI.

In the next section, we review the main approaches to deal with the con-
textual reasoning and ontological representations for AmI. Section 4 will focus
on ontology alignment and semantic mapping between concepts, to deal with
semantic heterogeneity in AmI. Section 5 will present our proposition to tackle
both issues within the Campus framework.

3 Ontological representation and reasoning about context

In this section we survey several research work that deal with ontological repre-
sentation and reasoning about context for Ambient Intelligence. We first present
the main criteria used for comparison and a proposed taxonomy; then we present
each work with respect to each criteria; and finally, we classify the systems ac-
cording to our taxonomy and discuss their suitability for implementing Ambient
Intelligent environments.

3.1 Evaluation Criteria and Taxonomy

There is much research work on middleware systems that support context mod-
eling and ontological reasoning about context. However, as expected, each one
is based on a different notion of context, uses ontologies in a different way, has



specific goals and approaches for context-specific reasoning and handling hetero-
geneity, and is targeted at specific applications or use scenarios. In this section,
we will compare the works in regard to the following criteria:

1) Types of context. Which types of context information are collected, processed
and distributed by the system (e.g. system context, location, physical context,
user role, preferences, etc.). This information will give an idea of the framework’s
usefulness, scalability and practical feasibility.

2) Ontologies. Which ontologies are used, and for which purpose? What sorts
of concepts and relationships are represented? Is the ontology extensible? How
context instances are updated and persisted, etc.? This criterion assesses the
system’s expressiveness and flexibility.

3) Inferences/Reasoning technique. What kind of reasoning is supported? What
sorts of higher-level context is inferred? Does the work consider uncertainty of
the inferred context? This aspect determines the expressive power, reliability,
completeness and preciseness of the systems reasoning, as well as its practical
applicability.

4) Knowledge Management. Is the knowledge base static, or do most of the
facts in the knowledge require continuous updates? Does the system handle
decentralizedheterogeneous knowledge bases, and if so, do they handle evolving
knowledge models (ontologies). If heterogeneity is supported, what is the basic
mediation or semantic alignment technique employed and how powerful is it? The
evaluation with regard to this aspect will give insight on how well the system
is suited to deal with the inherently dynamic, decentralized and unpredictable
nature of Ambient Intelligence.

5) Architecture. Is the system based on a centralized, fully decentralized, or
hybrid architecture, with respect to the knowledge bases, the reasoning process
and the mediation/brokerage support. By discussing this aspect, we have an
idea on the system’s scalability, reliability and of the implicit execution overhead
related to the distributed interactions.

Although there are many possible means of classifying the context systems,
we believe that the following aspects are the most relevant for assessing their
suitability for developing, open and heterogeneous Ambient Intelligence environ-
ments. Hence, we will use them as the basis for our taxonomy.

1. Centralized versus decentralized knowledge base;
2. Static versus dynamic (or extensible) set of context providers;
3. Main goal of context reasoning: enhance reliability of context information,

derive higher-level context facts, or both;
4. Means of handling heterogeneous knowledge bases, if any.

In the following subsections we summarize and analyse the most represen-
tative middleware systems with regard to the presented criteria, and in Subsec-
tion 3.10, classify each system according to the proposed taxonomy.



3.2 Gaia

Gaia provides a generic computational environment that integrates physical
spaces and their ubiquitous computing devices into a programmable comput-
ing and communication system [52]. It is similar to traditional operating sys-
tems in that it manages the tasks common to all applications built for physical
spaces [50]. Each space is self-contained, but may interact with other spaces.
Gaia provides core services, including events, entity presence (devices, users and
services), discovery and naming. By specifying well-defined interfaces to services,
applications may be built in a generic way so that they are able to run in ar-
bitrary active spaces. Gaia uses CORBA to enable distributed computing. Gaia
is a mature project. The first prototypes were implemented in 2002 and several
applications for active-classrooms have already been developed.

Types of Context. The Gaia Context Infrastructure allows applications to ob-
tain a variety of contextual information. Various components, called Context
Providers, obtain context from either sensors or other data sources. These include
sensors that track people’s locations, room conditions (for example, temperature
and sound) and weather condition. Context Providers allow applications to query
them for context information. Some Context Providers also have an event chan-
nel to asynchronously send context events. Thus, applications can either query
a Provider or listen on the event channel to get context information.

Ontologies. Gaia’s context model is based on first-order predicates. The name of
the predicate indicates the type of context that is being described (e.g. location,
temperature or time), and its typed arguments describe the properties of the
context. For example, if the predicate is “location”, the first argument has to
be a person or object, the second argument has to be a preposition or a verb
like “entering”, “leaving”, or “in” and the third argument must be a locationID.
The structures of different context predicates are specified in an ontology. Each
context type corresponds to a class in the ontology, which also defines the corre-
sponding arguments of the predicate. Moreover, Gaia uses ontologies to describe
various concepts of an Ubiquitous Computing Environment, such as kinds of
applications, services, devices, users, data sources and other entities. They also
define all terms used in the environment and the relationships between different
terms. These ontologies are written in DAML+OIL.

Inferences/Reasoning techniques. Context Synthesizers are Gaia components
that get sensed context data from various Context Providers, derive higher level
or abstract context from these lower-level context data and provide these in-
ferred contexts to applications. Whenever a Synthesizer deduces a change in the
inferred context, it publishes the new information. Gaia adopts two basic infer-
ence approaches. Rule-based Synthesizers use pre-defined rules written in first
order logic to infer different contexts. Each of the rules also has an associated
priority, which is used to choose one rule when multiple rules are valid at the
same time. However, if all the valid rules have the same priority, one of them



is picked at random. Alternatively, some Synthesizers may use machine learn-
ing techniques, such as Bayesian learning and reinforcement learning, to infer
high-level contexts. Past context information is used to train the learner.

Knowledge Management. All the ontologies in Gaia are maintained by an On-
tology Server. Entities contact the Ontology Server to get descriptions of other
entities in the environment, information about context or definitions of vari-
ous terms used in Gaia. The server also supports semantic queries, to get, for
instance, the classification of individuals or subsumption of concepts. The On-
tology Server also provides an interface for adding new concepts to existing
ontologies. This allows new types of contexts to be introduced and used in the
environment at any time. The Ontology Server ensures that any new definition
is logically consistent with existing definitions. Since the ontologies clearly define
the structure of contextual information, different agents can exchange different
types of context information easily. For example, Context Providers and Context
Synthesizers can get the structure of contexts that they provide, while Context
Consumers query the Ontology Server for the structure of the requested context,
and then frame appropriate queries to Context Providers to get the context in-
formation they need.

Architecture. The Gaia kernel consists of a Component Management Core that
dynamically loads, unloads, transfers, creates, and removes any Gaia component
or application. Each active space is self-contained but may interact with other
spaces. For each space, Gaia manages its resources and services; provides loca-
tion, context, and event services; and stores information about it. Gaia provides
a set of basic services to be used by all applications. Among them, the Space
Repository stores information about all software and hardware entities in the
space and lets applications browse and retrieve an entity on the basis of spe-
cific attributes. The Space Repository learns about entities entering and leaving
the active space through the Presence Service, which detects and maintains soft
state information about applications, services, devices, and people in a active
space. When the Presence Service detects that an entity is no longer available
in an active space, it notifies the rest of the space that the entity left. In the
context infrastructure, the Context Provider Lookup Service allows searches for
different context providers. Providers advertise the set of contexts they provide
in the form of a first order expression that describes the context provided. Ap-
plications can query the Lookup Service for a context provider that provides
contextual information it needs.

3.3 CoBrA

Context Broker Architecture (CoBrA) is an infrastructure that supports agents,
services and devices that interact in order to explore context information in
active spaces [17, 18]. Its main component is an intelligent agent called context
broker , which is responsible for providing a common model to represent context
information, mediating the information exchanged between context providers



and resource constrained context consumers, and inferring higher-level context
information not directly available from sensors [17]. In addition, the context
broker is able of detecting and correcting inconsistent context data, and supports
the enforcement of privacy policies defined by the users to control the sharing
of their contextual information among other users. The proposed architecture
is based on a central entity that was implemented as a FIPA-compliant agent
using Jade.

Types of Context. CoBrA has a context-acquisition module, which is a set of
library procedures for acquiring contextual information from sensors, agents and
the Web. This library includes procedures for collecting information from Smart
Tag sensors (location) and environment sensors (temperature, sound, luminosity,
etc), but any other information can be added.

Ontologies. The base ontologies used for representing context information are
the CoBrA Ontology (COBRA-ONT) and SOUPA. COBRA-ONT is a set of
ontologies for agents to describe contextual information and to share context
knowledge. It defines concepts for representing actions, agents, devices, meet-
ings, time, and space. The SOUPA ontology, on the other hand, is a standard
ontology for supporting pervasive and ubiquitous computing applications. It con-
sists of vocabularies for expressing common concepts that are associated with
person, agent, belief-desire-intention (BDI), action, policy, time, space and event,
and also a set of vocabularies for supporting specialized domains of pervasive
computing, such as smart spaces and peer-to-peer data management. The devel-
oper of a new system must design its specific ontology reusing some others that
may be adequate.

Inference/Reasoning techniques. CoBrA’s context reasoning is backed by the
Jena rule engine, the Java Expert System Shell (JESS) and the Theorist system.
The reasoning for interpreting context information uses two different rule-based
systems. Jena rule-based reasoners are used for OWL ontology inferences and
the JESS rule engine is used for interpreting context using domain specific rules.
CoBrA supports also reasoning for maintaining a consistent context model by
detecting and resolving inconsistent information, and the Theorist system is used
for supporting the necessary logical inferences in that case. When a new context
data is asserted into the knowledge base, the context broker first selects the type
of context it attempts to infer (such as a person’s location or a meeting’s state). If
such information is unknown, the broker decides whether it can infer this type of
context using only ontology reasoning (Jena Rules). If logic inference is required,
the context broker attempts to find all essential supporting facts by querying the
ontology model and asserts them into the Jess engine. Before asserting the new
inferred information into the knowledge base, ontology reasoners are used to
infer whether the context described by the instant data is consistent with the
model defined by the ontology. If not, a Theorist assumption-based reasoning is
used for resolving inconsistent information.



Knowledge Management. The system provides a centralized (and homogeneous)
model of context that all devices, services, and agents in the space must share.
The knowledge of the context broker is represented as RDF statements and is
stored in a persistent knowledge base. To acquire contextual information, all
agents must send query messages to the context broker.

Architecture. CoBrA has a centralized architecture, where a single context broker
agent should be deployed and all computing entities must be aware of this broker
from the beginning. Usually, a single context broker is sufficient to support a
small-scale smart space. However, being the main service provider in the space,
the context broker may become the bottleneck of the system and a single point
of failure. A team of context brokers can be deployed to overcome this problem,
as well to improve system robustness through redundancy.

3.4 Semantic Space

Semantic Space [67, 68] is a context infrastructure developed to address three
key issues. First, it aims to provide an explicit representation of the raw context
data that is obtained from various sources in different formats. Furthermore,
it provides means for the applications to selectively access a subset of context
data through expressive context queries. Finally, it provides reasoning capabili-
ties for inferring higher-level contexts. A prototype of the context infrastructure
has been developed, and a prototype context-aware application was also im-
plemented. The application, called SituAwarePhone, adapts mobile phones to
changing situations while minimizing user distraction.

Types of Context. In Semantic Space, context wrappers obtain raw context in-
formation from various sources such as hardware sensors and software programs
and transform them into context data. Some context wrappers work close to
the hardware sensors deployed in the prototypical smart space, gathering in-
formation such as user’s location, environmental temperature, noise, and light,
status of doors (open or closed) of rooms, etc.. Software-based context include
the activity of the user, based on the schedule information from Outlook Web
Access; the status of different networked devices (such as voice over IP or mobile
phones), the status (idle, busy, closed) of applications such as JBuilder, Microsoft
Word, and RealPlayer from their CPU usage; and weather information obtained
by periodically querying a weather web service.

Ontologies. Semantic Space uses the CONtext ONtology (CONON) for model-
ing context in pervasive computing environments [68]. Rather than completely
modeling all sorts of context in different kinds of smart spaces, this ontology
aims to be an extensible upper-level context ontology providing a set of ba-
sic concepts that are common to different environments. To characterize smart
spaces, there are three classes of real-world objects (user, location, and comput-
ing entity) and one class of conceptual objects (activity), which together form
the skeleton of a “contextual-rich environment”. Consensus domain ontologies



such as friend-of-a-friend (FOAF), RCAL Calendar, and FIPA Device Ontology
were also integrated into CONON to model users, activities, and device contexts,
respectively.

Inference/Reasoning techniques. Two context reasoners are available, a descrip-
tion logic based reasoner and a first-order logic based situation reasoner, both
implemented using Jena Semantic Web Toolkit to perform forward reasoning
over the knowledge base. The description logic based reasoner was built to carry
out ontology reasoning. The more flexible first-order logic based situation rea-
soner deduces a wide range of higher-level, conceptual context from relevant
low-level context, such as user’s activity. Semantic Space requires developers to
write rules describing higher-level context information for each particular appli-
cation based on its needs.

Knowledge Management. In each smart space resides a Context Knowledge Base,
which provides persistent context knowledge storage. It stores the extended con-
text ontology for a particular space and the context data provided by users or
gathered from context wrappers. The Context Aggregator , is responsible for dis-
covering context wrappers, gathering context data from them, and then asserting
the gathered data into the context knowledge base. It updates the knowledge
base whenever a context event occurs. The scope of contexts that the knowledge
base manages may change depending on the availability of wrappers. When a
context wrapper joins the smart space, the context aggregator adds the provided
contexts to the knowledge base, and when the wrapper leaves, the aggregator
deletes the contexts it supplied to avoid stale information.

Architecture. The architecture is centralized around a Context Aggregator and a
Context Knowledge Base. Developers can add new wrappers to expand the scope
of contexts in a smart space or remove existing wrappers when the contexts it
provides are no longer needed.

3.5 CHIL

The middleware infrastructure developed in the CHIL (Computers in the Human
Interaction Loop) Project [60] provides mechanisms for service access, context
modeling, control of sensors and actuators, directory services for infrastructure
elements and services, as well as fault tolerance mechanisms. In general, this mid-
dleware infrastructure allows developers to focus on the service logic, rather than
on the details of context processing and utility services, also providing a frame-
work with several components that can be reused across different ubiquitous
computing services. Mechanisms for modeling composite contextual information
and describing networks of situation states are also available. The middleware
has been implemented as a distributed multi-agent system where the agents are
augmented with fault tolerance capabilities using the agent’s capacity to migrate
between hosts.



Types of Context. The infrastructure can exploit numerous sensors for context
acquisition, and new sensors can be plugged into the framework to provide in-
formation that may be used to compound derived contextual information or
define situations that will trigger system’s responses. Context information is ob-
tained from sensors by software agents and made accessible to other agents of
the system through the Knowledge Base Agent . Monitoring and control of sen-
sors is performed through special Proxy agents that represent the sensors in the
world of agents. Each proxy agents exposes a universal virtualized interface to
the agent framework. A sensor specific driver is required to adapt the universal
interface commands to the low-level capabilities of each particular sensor. This
low-level driver is based on the control API offered by the sensor. Actually, three
concrete proxy agents were implemented: one generic, one for microphones and
one for cameras.

Ontologies. The CHIL ontology aims to establish a general-purpose core vocab-
ulary for the various concepts comprising a multi-sensor smart space and the
context-aware applications associated [47]. It was modularized to allow different
parts to be used in different contexts and applications. Separated namespaces
are used so that developers may safely introduce new concepts locally in their
module’s name-space without interfering with other modules. Assuming that
other modules use similar concepts that should be merged, the core module
may provide a merged version of the concept. To globally put together all the
modules, the ontology consists of a main OWL file, which imports all modules.
Developers interested only in a subset of modules can define a main OWL file of
their own that imports only the modules of interest. The main component is the
core module chil-core, which introduces concepts of perceivable entities such as,
for example, Person, MeetingRoom, Table or Whiteboard , as well as perceivable
roles of such entities, such as the Location of a Person or the ActivityLevel of a
MeetingRoom.

Inference/Reasoning techniques. The approach adopted by CHIL to infer high-
level contexts is based on the notion of networks of situation states. According to
this approach a situation is considered as a state description of the environment
expressed in terms of entities and their properties. Changes in individual or
relative properties of specified entities correspond to events that signal a change
in the situation. The concept of role serves as a variable’ for the entities to which
the relations are applied, thus allowing an equivalent set of situations to have the
same representation. A role is played by an entity that can pass an acceptance
test for the role, in which case, it is said that the entity can play or adopt the
role for that situation. For example, in the scope of a meeting involving short
presentations, at any instant, one person plays the role’ of the presenter’, while
the other persons play the role of attendees’. Dynamically assigning a person to
the role of presenter’ makes it possible to select sensors to acquire images and
sound of the current speaker. Detecting a change in some role allows the system
to reconfigure the video and audio acquisition systems.



Knowledge Management. The knowledge base was developed as a server acces-
sible both locally and remotely through a unique interface. The server remote
interface is programming language independent, so that client components may
be written in a variety of programming languages. The knowledge base server
API is tailored to OWL.

Architecture. This architecture is centralized around some core agents, which
are independent of the service and smart room installation. They provide the
communication mechanism for the distributed entities of the system, control of
the sensing infrastructure, and allow service providers to register their service
logic into the framework. Besides, some agents that provide basic services such
as the ability to track composite situations, the control of sensors, access to
the knowledge base, are tightly coupled with the installed infrastructure of each
smart room.

3.6 SAMOA

SAMOA framework [8] supports the creation of semantic context-aware social
networks, which consist of logical abstractions that represent groups of mobile
users who are in physical proximity and share common affinities, attitudes, and
social interests. In particular, SAMOA lets mobile users create roaming social
networks that, following user movements, at each instant reflect all nearby en-
counters of interest. Mobile users interested in creating social networks are called
managers. They are responsible for defining the scope (i.e. radius) of discovery
of their social network and the selection criteria. Other users located within the
discovery boundaries are those eligible to become members of the manager ’s
social network. But only the users that are selected by the manager become
affiliated with that social network.

Types of Context. To support the creation of social networks in ubiquitous en-
vironments, SAMOA relies on geographical context information, e.g. a user’s
location and reciprocal proximity, user attributes and social preferences, and
place descriptions. Users’ location and proximity are determined either by the
network cell (or the WiFi access point) the user is currently attached to, or by the
number of network hops between users in an ad-hoc network. The middleware
provides graphic tools for specifying profiles of users and places.

Ontologies. SAMOA models and represents context data in terms of semantic
metadata. Places and users are the entities in the system. They are associated
with profiles describing their characteristics. A place profile has an identification
and an activity parts. The former includes a unique identifier, a name and a de-
scription of the physical place, and the latter includes all of the social activities
that characterize the place, and which sorts of information members located in
that place are expected to share. The user profile consists of an identification
and a preference parts. The identification part provides user naming informa-
tion and describes user properties, such as age, gender and education, and the



preference part defines the activities the user is interested in and, for each of
these activities, the user’s specific preferences. Besides place and user profiles,
managers also have a discovery profile associated with each place, defining which
preferences user profiles must match to join the manager’s social network at that
place. Preferences in discovery profile include desired client attributes for each
activity. While activities and preferences in the place profile and in the man-
ager’s discovery profile are represented as classes, activities and preferences in a
user profile are defined as instances.

Inferences/Reasoning techniques. SAMOA exploits two semantic matching al-
gorithms for analyzing profiles and inferring potential semantic compatibility
among users. The first algorithm operates on user and place profiles to identify
a first set of eligible members located within an area of interest around a place.
Only those users whose profiles have activities that are semantically related to
that of the place profile activities become eligible members. The second matching
algorithm selects among the previously selected eligible members only those users
whose attributes semantically match the preferences included in the manager’s
discovery profile for that particular place. Moreover, the matching algorithms
perform also ontology reasoning to identify if the activity or preference in the
user profile is an instance of a more generic activity or preference class, or an in-
stance of a more specialized activity or preference class in the manager’s place or
discovery profile. SAMOA relies on the Pellet DL reasoner [59] for implementing
both matching algorithms.

Knowledge Management. No centralized database is kept in SAMOA. Place and
discovery profiles are maintained and analyzed separately. The user’s mobile
devices keep their own user profiles. Some users that may become managers of
a social-network keep on their devices discovery profiles associated with each
place. Stationary devices may keep place profiles for each place. The manager
communicates only the place profile to co-located users, preserving the privacy of
its discovery profile. Similarly, users return their user profiles only to managers
that provided places with activities of interest. In addition, keeping place and
discovery profiles separate lets SAMOA distribute the overhead of the social-
network extraction among all users, since the semantic analysis of the place
profile is performed on user’s devices, and semantic matching between discovery
and user profiles is performed on manager devices.

Architecture. The SAMOA middleware has totally distributed architecture or-
ganized in two logical layers: the basic service layer and the social-network man-
agement layer . The basic service layer provides facilities for naming, detection of
co-located users, and device communication. In this layer, the locationproximity
manager (L/PM) lets SAMOA entities advertise their online availability by pe-
riodical broadcasts of advertisement messages. L/PM senses incoming advertise-
ments and builds a table of “discovered” co-located users. The social-network
management layer includes facilities for semantic-based social network extrac-
tion and management. In this layer, the place-dependent social-network manager



(PSNM) creates and maintains a table that includes all members of the man-
ager’s social-network that are currently co-located with the manager. The global
social-network manager (GSNM) keeps a record (in a dedicated table) of all
place-dependent social networks previously formed at the visited places, i.e. the
manager’s global social network. In addition, the table stores the place profile
and the discovery profile of the manager, which guided the selection of each
member.

3.7 CAMUS

Context-Aware Middleware for URC (Ubiquitous Robotic Companion) System
(CAMUS) is a context-aware infrastructure for the development and execution
of a network-based intelligent robot system [36]. It was designed to overcome lim-
itations of the ubiquity, context-awareness, and intelligence that existing mobile
service robots have. CAMUS gathers context information from different sensors
and delivers appropriate context information to different applications. Moreover,
CAMUS provides context-aware autonomous service agents that are capable of
adapting themselves to different situations.

Types of Context. In CAMUS, a sensor framework processes input data from
various sources such as physical sensors, applications and user commands and
transfers them to the Context Manager through an Event System. The Context
Manager manages context information collected from the Sensor Framework.
When context information in the environment is changed, the Context Manager
transfers events to the Event System. The context represented includes the user
context, environment context, and computing device context. User context in-
cludes user profile, user’s task information, user preference, etc. Environment
context includes hierarchical location information, time, etc. Computing device
context includes information about available sensors and actuators.

Ontologies. The context model in CAMUS is represented as a four-layered space,
where each layer has a different abstraction level. In the common ontology layer
are modeled the ontology concepts that are commonly used in various applica-
tions. The common ontology provides the high-level knowledge description to
context-aware applications. Generally, highly abstracted knowledge can be eas-
ily reused by various applications. The domain ontology layer comes below the
common ontology layer . It provides the domain specific knowledge to context-
aware applications. This layer is composed of the infrastructure domain ontology
and a set of specific domain ontologies for the application. The infrastructure
domain ontology is the schema of the context model that is represented and
managed in the context-aware system. The specific domain ontology is about
specific services, for example, a presentation service. The domain ontology layer
provides the schema to the layer below, the instance layer , where instances of
the ontology concepts are represented. Above the common ontology layer there
is the shared vocabulary layer , where is defined a set of shared vocabulary (and
their semantics) used in the common ontology layer .



Inferences/Reasoning techniques. CAMUS context reasoning engine include many
different reasoners, which handle the facts present in the repository and produce
higher-level contexts [26]. The reasoning service is used by some context map-
ping services and context aggregators. They invoke the reasoners through a fixed
API, providing the reasoners with context data. All new inferred facts will be in-
serted into that context data for later queries. The use of a fixed interface for all
kinds of reasoning engine makes it possible to add and handle different reasoners.
Multiple reasoning mechanisms are available. Reasoners can infer high-level con-
texts using rules written in different types of logic like first order logic, temporal
logic, description logic (DL), higher order logic, fuzzy logic, etc. Instead they can
also use various machine learning techniques, such as Bayesian learning, neural
networks, reinforcement learning, etc. The middleware defines wrappers for each
reasoner type. Besides, a Racer server [27] provides ontology reasoning to in-
fer subsumption relationships, instance relationships, and consistency of context
knowledge base.

Knowledge Management. The application context model is stored in the CAMUS
context storage through a Knowledge Base adaptor. Applications can refer and
change application context through Jena APIs. Moreover, application context
model can be updated and changed through Jena rule engine and OWL reasoner
depending on application-specific inference rules and subsumption reasoning.

Architecture. CAMUS has a centralized architecture composed of three parts:
Main Server, Service Agent Manager and Service Agents. The Main Server
manages context information delivered from Service Agent Managers. It gen-
erates and disseminates appropriate events to applications according to the con-
text changes. The Service Agent Manager provides the container where Service
Agents are executed. A Service Agent is a software module that acts as a proxy to
connect various external sensors and smart devices to CAMUS. It delivers infor-
mation of sensors in environment to the Main Server, receives control commands
from the Main Server, controls devices in the environment, and conducts applica-
tions. The entities in the system communicate using PLANET, a lightweight and
fault-tolerant communication mechanism which also supports the disconnected
operations and asynchronous operations.

3.8 OWL-SF

The distributed semantic service framework, OWL-SF [44], supports the design
of ubiquitous context-aware systems considering both the distributed nature of
context information and the heterogeneity of devices that provide services and
deliver context. It uses OWL to represent high-level context information in a
semantically well founded form. Devices, sensors and other environmental enti-
ties are encapsulated and connected to the upper context ontology using OMG’s
Super Distributed Objects technology [54] and communicate using the Represen-
tational State Transfer protocol [23]. Integrated reasoning facilities perform the
automatic verification of the consistency of the provided service specifications



and the represented context information, so that the system can detect and rule
out faulty service descriptions and can provide reliable situation interpretation.
A prototype of the system has been implemented and tested.

Types of Context. OWL-SF uses Super Distributed Objects (SDOs) [54] to
encapsulate context providers, which may be sensors, devices, user’s interfaces
(GUIs) or services.

Ontologies. Each SDO that encapsulates context providers and service-providing
devices is an OWL-SDO. This OWL extension adds new methods to a standard
SDO which allow accessing the current state of an object as an OWL description.
Each functional entity implemented as OWL-SDO has to be described using its
own ontology containing terminological knowledge that enables the automatic
classification of the object into appropriate service categories. The state of an
object stores context values and is represented by an instance of a class in the
ontology.

Inferences/Reasoning techniques. Deduction servers (DSs) are specific OWL-
SDO with an RDF inference mechanism and an OWL-DL reasoner. The rule-
based reasoning process is provided by the RDF inference component and the de-
duced facts are used to trigger events to other SDOs and to process service calls.
A subscription notification mechanism is used to monitor the SDO parameters to
generate notifications whenever an observed parameter changes, triggering the
deduction process to update the global ontology model accordingly. The RDF
inference component is connected to the OWL-DL reasoner, which is responsible
for classification and answering OWL-DL queries. The Racer system [27] is used
as an OWL-DL reasoner.

Knowledge Management. Besides providing deductive support, DSs are responsi-
ble for collecting the status of SDOs, published in the OWL format, and building
an integrated OWL description accessible to the reasoning process. The semantic
representation of each SDO is added to the internal database of the DS. This se-
mantic representation consists of a set of instances augmented with rules. Facts
deduced from rules are only used to change parameters and to call services but
never modify the knowledge base.

Architecture. OWL-SF is a distributed system an its functional architecture
integrates two basic building blocks: OWL-SDOs and DSs. A system may be
composed of multiple components of both types which can be added and re-
moved dynamically at runtime. DSs use the SDO discovery and announcement
implementation to get aware of new SDOs in the environment. Whenever a new
SDO is discovered, its semantic representation is added to the internal database.

3.9 DRAGO

Distributed Reasoning Architecture for a Galaxy of Ontologies (DRAGO) [57]
is a distributed reasoning system, implemented as a peer-to-peer architecture in



which every peer registers a set of ontologies and mappings, and the reasoning
is implemented using local reasoning in the registered ontologies and by coordi-
nating with other peers when local ontologies are semantically connected with
the ontologies registered in other peers. DRAGO is implemented to operate over
HTTP and access ontologies and mappings published on the web.

Types of Context. DRAGO does not implement a context layer, i.e. it does not
have any service for context collection, storing or distribution.

Ontologies. DRAGO considers a web of ontologies distributed among a peer-
to-peer network. Each peer may contain a set of different ontologies describing
specific domains of interest (for example, ontologies describing different activities
of users in a university). These ontologies may differ from a subjective perspective
and level of granularity. In each peer there are also semantic mappings defining
semantic relations between entities belonging to two different ontologies. These
semantic mappings are described using C-OWL [9]. To register an ontology at a
peer the users specify a logical identifier for it, i.e an URI, and inform a physical
location of the ontology in the web. Besides that, it is possible to assign semantic
mappings to the ontology, providing, in the same manner, the location of the
mappings on the web. New peers may be added dynamically to the system,
providing new ontologies and semantic mappings.

Inferences/Reasoning techniques. The reasoning process may compare concepts
in different ontologies to check concept satisfiability, determining if a concept
subsumes the other (i.e. the latter is less general than the former), based on
the semantic mappings relating both ontologies. In a set of ontologies intercon-
nected with semantic mappings, the inference of concept subsumption in one
ontology (or between ontologies) may depend also on other ontologies related to
the previous ones through those mappings. Every peer registers a set of ontolo-
gies and mappings, and provides reasoning services for ontologies with registered
mappings. Each peer may also request reasoning services from other peers when
their local ontologies are semantically connected (through a mapping) with the
ontologies registered at the other peer. The reasoning with multiple ontologies is
performed by a combination of local reasoning operations, internally executed in
each peer for each distinct ontology. A distributed tableau algorithm is adopted
for checking concept satisfiability in a set of interconnected ontologies by com-
bining local (standard) tableaux procedures that check satisfiability inside the
single ontology. Due to the limitations of the distributed tableau algorithm, for
a semantic mapping DRAGO supports three types of rules connecting atomic
concepts in two different ontologies: is equivalent , is subsumed and subsumes. A
Distributed Reasoner was implemented as an extension to the open source OWL
reasoner Pellet [59].

Knowledge Management. As each peer registers sets of heterogeneous ontologies
and mappings, the knowledge base is totally distributed. When users or appli-
cations want to perform reasoning with a registered ontology they refer to the



corresponding peer and invoke its reasoning services giving the URI to which
the ontology was bound.

Architecture. DRAGO aggregates a web of ontologies distributed amongst a
peer-to-peer network in which each participant is called a DRAGO Reasoning
Peer (DRP). A DRP is the basic element of the system and is responsible for
providing reasoning services for ontologies using the semantic mappings regis-
tered. As these mappings establish a correlation between the local ontology and
ontologies assigned to other DRPs, a DRP may also request reasoning services
of other DRPs as part of a distributed reasoning task. A DRP has two interfaces
that can be invoked by users or applications. A Registration Service Interface
is available for creating/modifying/deleting registrations of ontologies and map-
pings assigned to them. A Reasoning Service Interface enables requests of rea-
soning services for registered ontologies. Among the reasoning services DRAGO
allows to check for ontology consistency, build classifications, verify concepts
satisfiability and check entailment.

3.10 Conclusion

In this section, we classify the surveyed systems according to our taxonomy (cf.
Table 2), and discuss their suitability for implementing context-oriented onto-
logical reasoning for Ambient Intelligence. The eight systems we presented not
only have different features, but some of them have been developed with different
purpose. Gaia, CoBrA, Semantic Spaces and CHIL offer middleware infrastruc-
ture for Smart Spaces; SAMOA is designed specifically to support applications
that deal with social networks in ubiquitous environments; CAMUS provides an
infrastructure for the development and execution of a network-based intelligent
robot system; OWL-SF supports the design of generic distributed context-aware
systems; finally, DRAGO provides reasoning about heterogeneous ontologies.

Comparing the four frameworks for Smart Spaces, it may be said that Gaia is
the only one that supports distributed knowledge bases and is the one that best
deals with dynamic scenarios, allowing context providers to be added or removed
dynamically and ontologies to be dynamically modified with regard to types of
context and their properties. Despite not being tailored specifically for smart
spaces, OWL-SF may be used for implementing such systems, as its singular
characteristic is its support for distributed inference. Similar to Gaia, OWL-SF
considers a distributed knowledge base. Hence, in each space, the aggregated con-
text information will depend on the available providers, avoiding communication
bottlenecks and allowing more efficient information processing and dissemina-
tion. The disadvantage of this approach is that context consumers cannot know
beforehand which context information will be available at each space, and that
it may happen that the necessary information may not be available.

While most systems have no mechanism to deal with heterogeneity of context
representation through different spaces, CAMUS and DRAGO pay attention to
this subject. CAMUS has its ontology structured in layers to provide a shared
vocabulary as an approach to tackle the problem, while DRAGO is the only that



Set of context
providers

Ontology
update

Knowledge
base

Main goal of
reasoning

Handling of
heterogeneous

knowledge
bases

Gaia Dynamic Dynamic Distributed
Derive

higher-level
facts

No

CoBrA Dynamic Static Centralized Both No

Semantic
Spaces

Dynamic Static Centralized
Derive

higher-level
facts

No

CHIL Static Static Centralized
Derive

higher-level
facts

No

SAMOA Static Dynamic Distributed
Derive

higher-level
facts

No

CAMUS Dynamic Dynamic Centralized
Derive

higher-level
facts

Shared
vocabulary

layer

OWL-SF Dynamic Static Distributed Both No

DRAGO — Dynamic Distributed Classification
Semantic
Mapping

Table 2. Classification of middleware systems for context-oriented ontological reason-
ing.

supports the inclusion of generic mappings between the ontologies. However,
DRAGO does not provide a context infrastructure, i.e. it does not have any
service for context acquisition and distribution. In fact, it is solely dedicated to
support reasoning with heterogeneous ontologies.

AmI applications are composed of independent entities that act autonomously
in an open-ended environment, driven by their own goals. In order to fulfill their
tasks, collaboration with peers is often required. Different entities are very likely
to employ different knowledge representations; therefore the ability to align such
representations into a single one that can be shared by different applications is
paramount to ensure communication. DRAGO architecture, presented in this
section, relies on pre-defined mappings to align different ontologies. Neverthe-
less, in practical implementations of AmI it is not feasible to build in advance
mappings of all possible pairs of different ontologies that may be needed. There



are other techniques to overcome the barrier of heterogeneous representations
in such conditions. The next section is dedicated to a survey of approaches that
try to solve exactly this problem.

4 Approaches for Ontology Alignment

Entities acting autonomously in an open-ended environment will often require
collaboration with peers to fulfill their goals. Because different entities are likely
to provide separate ontologies, the ability to integrate the ontologies into a single
representation is paramount to ensure overall communication. This need, often
referred to the ontology alignment problem [35] consists in finding a set of equiv-
alence between a set of nodes in ontology A and a set of nodes in ontology B (see
Figure 1). More formally, the problem of ontology alignment can be compared
to that of database schema matching. Given two schemas, A and B, one wants
to find a mapping m from the concepts in A into the concepts of B in such a
way that, for all (a, b) ∈ A×B, if a = µ(b), then b and a have the same meaning.
Several approaches have been proposed to perform such alignments. They can be
organized into three categories [35]: structural methods (which rely only on the
structure of the ontology and the nodes labels), instance-based methods (which
compare the instances of each concept in the ontologies) and methods based on
a reference ontology which acts as a mediator. This field is wide and complex3,
but its application to the interaction of entities in ubiquitous environments leads
to the specification of a sub-category of problems:

– The alignment process must be performed on the fly and in a limited amount
of time. Indeed, in open systems, it is not possible to know in advance the
nature of the entities that interact, which makes impossible to compute in
advance the alignment of their ontologies.

– The entities that interact share common goals or common capacities. Thus,
one can consider in most applications that the intersection of ontologies will
not be empty. As a consequence, there always exists an acceptable alignment
between two ontologies. However, one cannot take for sure that concepts will
appear at the same level of specialization. For instance, one ontology can
have a single class for the concept of research paper , while the other directly
works with the sub-concepts journal , conference proceedings, etc.

– The ontology alignment must be performed automatically (whereas a lot of
work in this domain relies on semi-automatic approaches). As a consequence,
entities must decide on alignments without the validation of a human ex-
pert. Thus, they must be able to evaluate the trust they have in the resulting
alignment, e.g. by valuating the equivalence links depending on their ambi-
guity.

The next subsection present the lexical alignment (a.k.a anchoring) that
is used as a basis by all ontology alignment approaches. We then present the
3 See http://www.ontologymatching.org for a complete description.



three main approaches for ontology alignment (structural, instance-based and
mediation-based). We illustrate the advantages and drawbacks of each technique
and a brief overview of most significant work in each category. Subsection 4.5
then presents a brief overview of semantic similarity measures and how they can
offer a new solution for ontology alignment.

Fig. 1. Ontology alignment is a set of equivalence between nodes of both ontologies.
This schema presents the three classical solutions: alignment based on the structural
properties, alignment based on the concepts instances and alignment based on a “back-
ground ontology”.

4.1 Lexical Alignment

Lexical anchoring is, generally, the first processing step of ontology alignment
tools. It is possible to differentiate several kinds of approaches, with advantages
and drawbacks. First, classical Natural Language Processing tools, as lemmati-
zation (which constructs singular or infinitive forms of words, for instance, deter-
mining that kits is the plural of kit , bought is a derived form of buy), tokenization
(which considers each word of a compound concept, like long brain tumor sub-
ClassOf long tumor [3]) or suffixprefix approach (which searches in a sub-part of
the words. For instance, like net is an abbreviation of network , ID can stand for
PID). However, these approaches have some limitations: the lemmatization can
be ambiguous (out of the sentence context, left can be lemmatized either into
left:adjective or leave:verb); the tokenization requires to choose the correct sub-
concepts inference (is brain tumor subClassOf brain a valid association?); and
the prefixsuffix alignment is strongly dependant of the language (for instance,



hotel should not match hot , nor can word be seen as an abbreviation of sword).
For these reasons, the lexical anchoring has to be used with great care and to
be completed and/or confirmed with other techniques.

A complementary approach of all these methods is the lexical distance mea-
sure, so called “edit distance” between two strings (Hamming distance or Lev-
enhstein distance). For example, the Levenhstein distance is given by the mini-
mum number of operations needed to transform one string into the other, where
an operation may be an insertion, deletion, or substitution of a single charac-
ter. It is widely used for spell checking. The main advantages of edit distance
are that it reproduces NLP approaches when words are not too much complex.
For instance, the translation from plural to the singular form has a cost of 1 in
most words (removing the trailing “s”). However, some drawbacks still remain,
like sword is equivalent to word , which has a cost of 1 and could be wrongly
accepted.

Fig. 2. Structural alignment error example based on hierarchy analysis in Ctx-
Match [10].

4.2 Structural Approaches

Structural approaches are based on the structural comparison of the two con-
cepts graphs (in the meaning of graph theory). It relies on lexical anchoring as
a first step for associating lexically-close labels from both ontologies. The com-
plementary alignment pairs are obtained by an extended hierarchy comparison
around these anchored concepts (e.g. in CATO [14], the authors make use of a
specific algorithm for three comparison (so-called TreeDiff) to find the largest
common substructure between trees. The CATO system will be presented in
more details in Subsection 5.4). More generally, such structural methods will
match terms like PC and Personal Computers when sub-classes and properties
described the same concept (like ID, model, etc.). However, structural align-
ment may fail if the information is not classified using the same criterion or if
the ontologies do not cover the same fields or instances. As Figure 2a shows, the



concept “Italy” from the ontology to the right will be correctly aligned with the
concept “Italy” from the ontology to the left, because they share lexically-close
concepts in their whole hierarchical structures. But in Figure 2b, the concept
“England” from one ontology will be wrongly aligned with the concept “France”
from the other ontology, because, although they do not have the same meaning,
they also share lexically-close concepts in their whole hierarchical structures.

4.3 Instances-based approaches

The objective of these methods is to determine an alignment using common in-
stances between the two ontologies. When the common instances are identified,
the main idea is to suppose that the hierarchy declares theses instances under the
same concepts (maybe structurally or lexically different). For example, in [30],
the authors tried to align the categories hierarchy of Google and Yahoo. An
instance is identified using the URL of websites. Regarding to [63], the positive
and/or negative matches of instances between two concepts allows them to com-
pute subsumption alignment, in addition of equivalence alignment. For example,
in Figure 3, if instances of roadvehicle concept of ontology 2 are classified as
instances of vehicle concept of ontology 1, and the opposite is not true, then it
is possible to deduce that vehicle is a super-class of roadvehicle. If instances of
van concept of ontology 1 are classified as instances of roadvehicle concept of
ontology 2, and not the opposite, roadvehicle is identified as a super-class of van.

Fig. 3. Instance-based alignment [63], permits to construct subsumption alignment in
addition of equivalence alignment.

However, the main drawback of this approach is the instances detection.
For example, the work by Ichise et al. comparing Yahoo and Google hierarchy
only generates 10% of common instances. Moreover, in van Diggelen work, it



is difficult to conclude if instances intersection is not complete (i.e. if one class
does not contain all instances of another class), even if it is just a problem of
miss-definition of concepts in one of the two ontologies.

4.4 Mediated approaches

Mediated approaches are based on the use of a third ontology to mediate the
alignment process (see for instance [4, 10]4). The main advantage of these meth-
ods is to be more robust in case of ontologies that differ greatly either lexically
or structurally, or when no instances are provided. For example, in [3], the au-
thors align two ontologies with very different formalisms, which could not be
done using a structural approach. Thus, one of the major prerequisite (which is
also the major limit of the approach) is to have access to a mediator-ontology
with enough of information to anchor concepts from the two initial ontologies
on it. The anchoring stage is generally a lexical anchoring as presented in the
previous section. After the anchoring stage, the two ontologies are represented
by two set of concepts from the mediator ontology. For example, in Figure 4,
following the “is more general” relation allows the authors to find an alignment
between “Aorta thoracalis dissection” (ontology A) and “Dissection of artery”
(ontology B). The main difficulty in mediated approaches is to define a strategy
to construct semantic paths between these two sets, using the structure of the
mediator ontology.

Fig. 4. Mediated alignment approach. Example from [3].

4 Work from [10] is essentially structural. However, they also use WordNet [22] as
mediator to solve some ambiguity.



4.5 Alignment based on semantic similarity

Finding paths between concepts in an ontology is at the core of mediated ap-
proaches but it can also be used to complete lexical and structural alignments.
For instance, a given ontology concept may not be directly attached to an
application-defined concept, as required for context interpretation. This case
may happen, for instance, if the alignment was difficult, or if the ontology is
large. Thus, we can use semantic similarity measure on the entity ontology (as
it is done on the background ontology in mediated approaches) to compute cor-
rect semantic paths and to valuate the strength of this path.

In this section, we first recall the general principle of semantic similarity and
we then propose to use it within a mediated approach for aligning two entity
ontologies.

Semantic similarity. From a theoretical point of view, semantic similarity is a
formula that allows users to evaluate the amount of common attributes shared by
two concepts. Different kinds of approaches were proposed, based on a concepts
hierarchy (e.g. [15]), on glosses from a dictionary (e.g. [6, 43, 48]), etc. In this
paper, we will focus in similarity for ontology, since it is suitable with our initial
problem of interaction between entities.

Work on semantic similarity with ontologies can be splitted in two major
methods: the edge-based approach and the node-based approach. The edge-based
approach [49] makes use of the shortest taxonomic path to define the semantic
similarity between two concepts. The main idea behind is intuitive: in a semantic
taxonomy, the longer the path, the less semantic similar are the two concepts.
Recent work in this area has focused on the issue of weighting the edges, which
permits to refine the value of a semantic link (e.g. [29, 31, 70, 71]).

The node-based approach [51] is the most used nowadays and is considered
to be the most efficient for the semantic similarity ( [15] provides a good survey
on the subject). The weight of a node represents the information content of
the concept. In other words, the more general a concept is (i.e. near from the
root), the less information it contains. There exist different kinds of formulae
that combine the information content of the two target nodes and their closest
common parent. The closest common parent is the node that is the most specific
in the set of common ancestors nodes (e.g. [32, 37, 38]).

Semantic-similarity based alignment. In Aleksovski work (Section 4.4),
the use of mediator ontologies is limited to a reduced set of patterns of paths,
which are considered to be “semantically correct”. Thus, two concepts can only
be related with a binary relation (the alignment exist or it does not exist). In
the framework of interacting entities, we suggest that it is necessary to have a
solution to valuate the strength of an alignment. This weight will be useful to
solve ambiguity and to propose more complex dialogue strategies, as proposed
in [41].

The mediator ontology should be either WordNet [22] (especially for hu-
man/agent communication) or the ontology of a third mediator agent if this



ontology contains some common concepts of the two other ontologies. A first
lexical anchoring of terms within the mediator ontology is performed, using the
edit distance of Levenshtein. Then, the system computes the set of all possible
semantic score between each concept from the set of anchored concept of the
first ontology to the set of anchored concept of the second ontology.

The key problem in this approach is that a real ontology inherently con-
tains a lot of different relation types. To tackle this problem, we have proposed
a measure of semantic relatedness [42], which is more general than similarity
measure [51], to take into consideration the entire graph and not only the hi-
erarchy. The preliminary evaluation of our measure, applied to human-machine
communication, emphasized that our correlation factor with human judgment is
approximately 20% better that other measures.

4.6 Conclusion

Ontology alignment is a key issue in open systems that require some form of
distributed reasoning, such as in open Ambient Intelligence. While most middle-
ware systems currently use a single ontology, openness and heterogeneity require
distributed entities to be able to interpret information derived from other peers,
based on an a priori unknown ontology. The three main approaches for ontol-
ogy alignment we presented (structural, instance-based and mediation-based)
all contain some limitation. While the structural methods are the most efficient
ones, they require that the ontologies be very similar (e.g. two ontologies derived
from a single initial specification). The instance-based approaches offer the con-
sistency of Description Logic inference rules, but they work only if each concept
is associated with a complete set of instances (e.g. document URIs). Mediation
allows aligning very heterogeneous ontologies (even the knowledge representa-
tion formalisms can differ), but the background ontology is generally very large
(i.e. larger than each one of the mediated ontologies).

5 The Campus Approach

In this section, we discuss Campus, a framework for the development of Am-
bient Intelligence applications [56]. Based on multi-agent systems technology,
Campus provides an infrastructure to develop innovative context aware appli-
cations that accommodate mobile devices and environment sensor devices. The
Campus architecture is intended as a configurable framework in which users can
decide what services they want to enable in their environments, rather then a
monolithic application. It is composed of three levels: the context-provisioning
layer, the communication and coordination layer, and the ambient services’ layer,
as illustrated by Figure 5. In a nutshell, the bottom level is responsible for of-
fering basic middleware services and functionalities, such as providing context
information and device discovery. The communication and coordination layer
offers support for semantic interoperability, providing discovery, exchange and
collaboration among hybrid entities, regardless of proprietary representations of



information. Finally, the topmost layer provides application specific and ambi-
ent services and acts as a hotspot, i.e., allows users to extend the framework by
plugging in specific services required by a particular user, environment, type of
collaboration, of interest to their environment.

Fig. 5. Abstract view of Campus architecture.

As shown in Figure 6, agents distributed through the two bottom layers im-
plement the main functionalities of Campus. In the context-provisioning layer,
Context Monitor Agents (CMA) collect raw context data from various sources
such as devices, sensors and applications, and make it available for interested
entities. Distributed Reasoning Agents (DRA) infer and disseminate higher-level
context information. In each smart space a Local Knowledge Agent provides per-
sistent knowledge storage. It aggregates the context information obtained from
context providers (i.e. CMAs and DRAs) available in that area, and builds a
partial ontological view. The LKA may be queried by entities interested in find-
ing context providers in that area. In the communication and coordination layer,
a Knowledge Interoperability Agent (KIA), is responsible for semantic alignment
of ontologies. It will provide this information to LKA whenever needed. In the
further part of this section, the main features of Campus are discussed separately.

5.1 Context Types

In the Campus framework, context data comprises not only information about
mobile devices, users’ preferences and roles, description of institutional physi-
cal spaces, but also data collected from personal and smart spaces applications
(e.g. appointments in a personal agenda, list of activities in an organizational
scheduler, etc). Context Monitor Agents (CMA) are responsible for collecting
raw context data from various sources such as sensors, devices and user applica-
tions; interpreting it as context information according to a predefined ontology;
and making this information available for interested entities.



Most information about mobile devices is acquired with the aid of the MoCA
middleware [53], a component that supports the development of context-aware
applications and services for mobile computing. MoCA provides efficient services
to collect context information associated with mobile devices (e.g. CPU usage,
available memory, battery level, etc). This information comprises not only raw
data related to the device’s resources and the wireless links (currently, only
IEEE 802.11), but also the symbolic location of each device, which is inferred
from the RSSI values measured at the device with respect to all the Wi-Fi Access
Points in the devices vicinity. On the other hand, much context data is obtained
from applications and files that store personal and organizational information.
For example, a CMA running on the notebook of professor Silva could make
available information about Silva’s agenda and preferences, and also about the
Silva’s notebook. A CMA agent running on a fixed computer at LIP6 could
collect data about the schedule of activities, worker profiles, etc.

5.2 Ontologies

The Campus upper ontology serves as a knowledge base for the framework imple-
mentation, i.e., provides the necessary semantics to allow high-level exchanges,
including brokering, negotiation and coordination amongst software entities. It
contains precise definitions for every relevant concept in the framework, e.g., it
defines that context providers and services are described by a tuple containing
its name, a parameter list, a capability list, the communication port number,
and protocol. Of course, the concepts of name, parameter list, capabilities list,
port and protocol are also defined in the ontology. This ontology serves as a
static model of our domain and will be used as a basis upon which mediation
services will try to reason and understand the information provided by entities
in the environment.

5.3 Reasoning

In Campus, we propose a distributed reasoning mechanism to infer and dis-
seminate higher-level context information, i.e. context information that may be
deduced using data obtained from other context providers. In our approach,
each reasoning element is called a Distributed Reasoning Agent (DRA). A DRA
is able to deduce new knowledge reasoning about description logic rules. In such
rules, atoms that depend on some context data compose the antecedent of the
rule, while the consequent of the rule defines a new piece of context information.
CMAs collect context information from several sensors or obtain it from applica-
tions and database files that contain user’s preferences, device’s descriptions or
specific data, such as the list of activities scheduled for a set of rooms, and made
it available for DRAs. Facts are deduced in runtime, described according with
the respective ontology, and updated in the knowledge base. DRA implements
also an event-based communication interface to where other entities subscribe
their interest about a high-level context (defined by a rule). These entities are
notified whenever the state context satisfies a given rule [64].



Fig. 6. Campus multi-agent architecture.

Since we consider a fully distributed environment, some context information
necessary for processing the logical inference of a given rule may not be directly
available from CMAs for a DRA. In such case, the DRA will subscribe at other
DRAs, which are capable of providing (by inference) the required piece of con-
text information. In this sense, each DRA acts simultaneously as a provider, a
reasoner and a consumer of context knowledge. This distributed approach brings
several advantages. It allows the distribution of the high computational cost of
the inferences process. As each DRA may have a different “context view”, de-
pending on the device on which it is running and its location, not all items need
to be kept at a single database, avoiding a communication bottleneck. Besides,
distributed inference may hide private data still revealing context information
that may be inferred from it.

Figure 6 shows an example of this distributed interaction in the scenario
where Mr. Silva enters a classroom to attend a meeting with the Campus team.
In this case, Silva’s smart phone executes DRAU (user’s DRA) that has access
to the data obtained from the sensors at the smart phone (sound, luminosity,
movement), its own location data and some administrative data available for
Silva. As he enters the room, i.e. changes its location, DRAU initiates a discovery
process, and as a result, it detects the presence of LKAE and then another
reasoner, DRAE , which is responsible for accessing the room’s sensors, storing



their context data and doing ambient-specific context reasoning. We assume
that an application at the smart phone responsible for managing the ring tone
has already subscribed at DRAU to get control notifications for the ring tone
adjustment according the following rule:

Device(?d) ∧ isLocatedIn(?d,?e) ∧ ClassroomInUse(?e) ⇒ InSilenceMode(?d)

While a CMA that wraps a location service delivers the smartphone’s binary
property “isLocatedIn” to DRAU , the “ClassroomInUse” unary property is only
made available by the DRAE responsible for the classroom. This property is
inferred from the following rule:

Environment(?e) ∧ hasScheduledActivity (?e, ?a) ∧ ClassActivity(?a) ∧

ActivityOncourse (?a) ∧ LecturerPresent(?e) ⇒ ClassroomInUse(?e)

Moreover, supposing that DRAE has no direct access to the activities’ time
schedule and time reference, nor to the location data of every person in the
institution, it has to rely on context knowledge inferred by another two agents:
DRA3 to monitor the “ActivityOnCourse” unary property and DRA4 to obtain
notifications of the “LecturerPresent” unary property. Then, DRA3, running on
an “activity manager” (i.e. fixed device running a CMA dedicated to monitor
the time and the schedule of activities) will process the following rule:

Activity(?a) ∧ startTime(?a, ?t1) ∧ finishTime(?a, ?t2) ∧ presentTime(?t3) ∧

isLessThan(?t1, ?t3) ∧ isBiggerThan (?t2, ?t3) ⇒ ActivityOncourse (?a)

At the same time, DRA4, running on a “location manager” which has access
to location information from all mobile devices detected in the building, will
process the following rule:

Device(?d) ∧ isLocatedIn(?d,?e) ∧ isCarriedBy(?d,?p) ∧ playsRole(?p, ?r) ∧

Lecturer(?r) ⇒ LecturerPresent(?e)

In fact the reasoning outcome of DRAU will be the result of the cascading
reasoning, with new context data being inferred initially by DRA4.

It is straightforward to notice that for interactions among DRAs referencing
different ontologies, it is necessary to provide an intermediating agent that has
the ability to resolve – or at least, try to resolve – the semantic mismatch among
nodes in the different ontologies. For example, when the DRAU , which is a
foreign entity, wants to obtain the “ClassroomInUse” context data, and this same
information is represented as “RoomBusy” in DRAE , then the intermediate
agent will have to support the interaction between the entities identifying the
identity of “ClassroomInUse” and “RoomBusy” in the scope of this particular
application.



5.4 Ontology Alignment

In this section, we will consider the problem of ontology alignment (as defined in
Section 4) in the Campus architecture. To enable the automation of the process,
we coded the resource representations using W3C’s OWL-DL ontology standard,
for the reasons previously discussed in Subsection 2.3. Ontologies are expressive,
formal, machine processable representations that fulfill the knowledge require-
ments of AmI applications.

Our past experience with semantic interoperability enabled us to provide
CATO [11, 13, 14, 21], a solution that combines well known algorithmic solu-
tions, e.g., natural language processing, the use of similarity measurements, and
tree comparison, to the ontology alignment problem. We propose to incorpo-
rate CATO to the kernel of the Campus framework. The philosophy underlying
CATO’s strategy mixes syntactical and semantic analysis of ontological compo-
nents. Its current implementation combines the lexical and structural approaches
discussed in Subsections 4.1 and 4.2 respectively.

During the alignment, lexical and structural comparisons are performed in
order to determine if concepts in different ontologies should be considered se-
mantically compatible. A refinement approach is used that alternates between
lexical and structural comparison between ontological concepts. The process be-
gins when concepts from both ontologies go through a lexical normalization
process, in which they are transformed to a canonical format that eliminates the
use of plurals and gender flexions. The concepts are then compared, with the
aid of a dictionary. The goal is to identify pairs if lexically equivalent concepts.

We assume that lexically equivalent concepts imply the same semantics, if the
ontologies in question are in the same domain of discourse. For pairs of ontolo-
gies in different domains, lexical equivalence does not guarantee that concepts
share the same meaning [45, 61]. To solve this problem, we adopted a structural
comparison strategy. Concepts that were once identified as lexically equivalent
are now structurally investigated. Making use of the intrinsic structure of ontolo-
gies, a hierarchy of concepts connected by subsumption relationships, we now
isolate and compare concept sub-trees. Investigation on the ancestors (super-
concepts) and descendants (sub-concepts) will provide the necessary additional
information needed to verify whether the pair of lexically equivalent concepts
can actually be assumed to be semantically compatible.

Lexical comparison is done during the first and second steps of the strat-
egy. Structural analysis is done in the second and third steps of the strategy.
The final result is a OWL document containing equivalent class statements
(<owl:equivalentClass>) that relate the equivalent concepts from the two in-
put ontologies. This is equivalent to a mapping between conceptual schemas.
The proposed strategy is depicted in Figure 7.

First Step: Lexical Comparison. The goal of this step is to identify lex-
ically equivalent concepts between two different representations, as presented
in Subsection 4.1. We begin by assuming that lexically equivalent concepts are



also semantically equivalent in the domain of discourse under consideration, an
assumption that is not always warranted.

Each concept label in the first ontology is compared to every concept label
present in the second one, using lexical similarity as the criteria. Filters are used
to normalize the labels to a canonical format: (i) If the concept is a noun, the
canonical format is the singular masculine declination; (ii) if the concept they
represent is a verb, the canonical format is its infinitive. Besides using the label
itself, synonyms are also used. The use of synonyms enriches the comparison pro-
cess because it provides more refined information. For example, in the scenario
proposed in Subsection 1.1 of this chapter, the “activity”, “class” and “meeting”
concepts were identified as synonyms in our database.

Fig. 7. CATO ontology alignment strategy [13].



Lexical similarity alone is not enough to assume that concepts are semanti-
cally compatible. We also investigate whether their ancestors share lexical simi-
larity. It is important to note that the alignment strategy in this step is restricted
to concepts and properties of the ontology. As a result of the first stage of the
proposed strategy, the original ontologies are enriched with synonyms and links
that relate concepts that are known to be lexically equivalent.

Second Step: Structural Comparison Using TreeDiff . Comparison at this
stage is based on the subsumption relationship that holds among ontology con-
cepts, similarly to what was discussed in Subsection 4.1, not taking into consider-
ation ontology properties and restrictions. Our approach is thus more restricted
than the one proposed by Noy and Musen [45], that analyses the ontologies as
graphs, taking into consideration both taxonomic and non taxonomic relation-
ships among concepts.

Because we only consider lexical and structural relationships in our analysis,
we are able to make use of well-known tree comparison algorithms. We are
currently using the TreeDiff [65]. Our choice was based on its ability to identify
structural similarities between trees in reasonable time.

The goal of the TreeDiff algorithm is to identify the largest common sub-
structure between trees, described using the DOM (Document Object Model)
model [5]. This algorithm was first proposed to help detect the steps, including
renaming, removing and addition of tree nodes, necessary to migrate from one
tree to another (both trees are the inputs to the algorithm).

The result of the Tree Diff algorithm is the detection of concept equivalence
groups. They are represented as subtrees of the enriched ontologies. Concepts
that belong to such groups are compared in order to identify if lexically equiv-
alent pairs can also be identified among the ancestors and descendants of the
original pair. Differently from the first step, where we based our analysis and
compared concepts that were directly related to one another, we are now con-
sidering the structural vicinity of concepts. Every concept in the equivalence
group is investigated in order to determine lexically equivalent pairs, number of
matching sons, number of synonymous concepts in the sub-trees, available from
the previous step, and ancestor equivalence.

Third Step: Fine Adjustments based on Similarity Measurements. The
third and last step is based on semantic similarity measurements, as discussed in
Section 4.5. In CATO, concepts are rated as very similar or little similar based on
pre-defined similarity thresholds. We only align concepts that were both classified
as lexically equivalent in the second step, and thus rated very similar. Thus the
similarity measurement is the deciding factor responsible for fine-tuning our
strategy. We adapted the semantic similarity measurement strategies proposed
in [40]. The similarity threshold is fixed by the users, and can be adjusted to
enforce a firmer similarity policy.

During this step the “Activity” and “Class” concepts, from the visiting pro-
fessor scenario, are aligned with the “Talk” and “Lecture” concepts belonging



to the Campus upper ontology. Those concepts were rated equivalent during the
second step. Their similarity level is calculated in the third step.

The final ontology, containing mappings between concepts imported from
the two input ontologies, will provide a common understanding of the semantics
represented by both input ontologies. This representation can now be shared by
entities searching for information, seeking to discover or to compose with other
AmI applications. Code 1 depicts a part of the output ontology for this example.

In Campus, the ontology alignment is implemented by the Knowledge Inter-
operability Agent (KIA), which is responsible for applying the CATO strategy for
determining the equivalent classes between different ontologies, whenever foreign
entities come to interact together. If an entity queries the context infrastructure
looking for some context information represented using a different ontology, it
will resort to KIA to obtain the equivalent class in the prevalent ontology.

Code 1 :Ontology alignment

<owl:Class rdf:ID=“Activity”>

<rdfs:subClassOf rdf:resource=“#CATO Thing”/>

<owl:disjointWith rdf:resource=“#Event”/>

<owl:equivalentClass>

<owl:Class rdf:about = “Talk”>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:ID=“Lecture”>

<rdfs:subClassOf rdf:resource=“Educational Activity”/>

<owl:equivalentClass>

<owl:Class rdf:about = “Class”>

</owl:equivalentClass>

</owl:Class>

The main contribution of CATO’s strategy is to combine well-known algo-
rithmic solutions, such as natural language processing and tree comparison, to
the ontology integration problem. CATO is fully implemented in Java and re-
lies on the use of the JENA API. The use of the API helped us focus on the
alignment process, for it made ontology manipulation transparent. JENA reads
and filters information from the tags of files written in an ontology language and
transforms it to an abstract data model in which ontological concepts can be
manipulated as objects.

6 Conclusion and Open Problems

Design and operation of open Ambient Intelligence Environments pose several
huge challenges to the research community, which are caused mainly by the
inherently heterogeneous, distributed and dynamic nature of these systems. In
this chapter we first surveyed, analyzed and classified several middleware sys-
tems that propose partial solutions to the corresponding complex problem of
distributed context reasoning. It turned out that only some of the systems sup-
port distributed context reasoning, and in fact only two tackle the problem



of managing heterogeneous context knowledge. Then, we discussed the main
general approaches for semantic alignment of ontologies, as this is a basic re-
quirement for coping with heterogeneous knowledge representations. Finally, we
presented our approach for distributed reasoning and semantic alignment in the
scope our ongoing effort to develop a multi-agent based framework Campus for
development of Ambient Intelligence.

Within the Campus framework we focused on the provision of distributed
context reasoning – using Distributed Reasoner Agents (DRAs) – and the con-
struction of a software component responsible for the automatic alignment of
ontologies – the Knowledge Interoperability Agent (KIA). Our strategy is based
on the application of well-known software engineering strategies, such as lexical
analysis, tree comparison and the use of similarity measurements, to the prob-
lem of ontology alignment. Motivated by the requirements of AmI applications,
we proposed an ontology alignment strategy and tool that produces an ontolog-
ical representation that makes it possible for such applications share common
understanding over information available on environment [69].

6.1 Discussion and Future Work

Building complex Ambient Intelligence environments requires the integration
of several different context providers, which may be dedicated sensors, user’s
applications, databases monitors, etc. The inclusion of new types of context
providers will require the implementation of new Context Monitor Agents with
specific interfaces and functionalities.

The distributed inference of high-level context information brings the advan-
tage of sharing the complexity of the reasoning process among several devices,
allowing quicker response times. But on the other hand it requires efficient con-
text dissemination to work efficiently. Aiming for efficient performances, the
balanced distribution of DRAs among the devices that compose Ambient Intel-
ligence typical scenarios is an issue to be investigated.

Any automated ontology alignment solution presents some degree of risk,
in the sense that it cannot fully guarantee that the most adequate equivalence
between concepts will be always identified. Limitations of the algorithms used,
time to perform the computations, and possible lack of information coded in the
original ontologies may, in some of the cases, prevent the automated solution
to identify answers that would be otherwise manually found. The success of the
CATO approach depends on the volume and quality of the information coded in
the input ontologies. The richer and more complete the information, the better
the results. Conversely, if the input ontologies are poorly defined, incomplete or
lacking, the ontology integration engine has little data to work upon, and thus
is not likely to deliver adequate results.

To tackle such situations, an alternative solution may be the use of an
instance-based approach, as presented in Subsection 4.3. Each implementation
of a device, such as Dr. Silva’s smart phone (SMP-1) or notebook (NTB-1) can
be thus represented by an ontology, containing a set of classes, restrictions, prop-
erties (data schema), that corresponds to the internal knowledge representation



of each device. The goal of the instance-based approach is the same, i.e., find
matching classes across different ontologies.

The instance based approach uses a query probing technique that consists of
exhaustively sending keyword queries to original ontologies [66]. Further analysis
of the results using learning algorithms and statistical analysis provides indica-
tion of good matches. This approach can be generalized to any domain that pro-
vides a reliable substitute for an unique instance identifier. In the Geographic In-
formation systems domain, for example, there are various geo-referencing schemes
that associate geographic object with a description of its location on the Earth’s
surface. This location acts as a universal identifier for the object, or at least an
approximation thereof. We have successfully applied this approach to build me-
diators for Geographic Data Catalogs [11, 12, 24]. We are currently adapting the
approach to be part of the Campus Framework kernel and help improve CATO
results.

The CATO semantic adjustment makes use of the Maedche architecture [40],
to confirm that a “very similar” rated alignment is semantically correct (and not
only lexically and structurally). However, as stated by Maedche himself, the se-
mantic measure used has two limits: 1) it only uses the taxonomic information
from the ontology; 2) it does not consider that two different given edges in a
taxonomy do not carry the same information content (as demonstrated in [51],
see Subsection 4.5). We have proposed in [42] a new measure of semantic relat-
edness, which considers different weight for edges and different edges types. The
preliminary evaluation of our measure shows that it increases approximately by
20% the correlation factor with human judgment. We currently try to integrate
this measure in a refinement of the Maedche algorithm, in order to enhance the
semantic adjustment in the CAMPUS framework.
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