
D. Weyns, H.V.D. Parunak, and F. Michel (Eds.): E4MAS 2006, LNAI 4389, pp. 221–238, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Enhancing the Environment with a Law-Governed
Service for Monitoring and Enforcing Behavior in Open

Multi-Agent Systems

Rodrigo Paes1, Gustavo Carvalho1, Maíra Gatti1,
Carlos Lucena1, Jean-Pierre Briot1,2, and Ricardo Choren3

1
PUC-Rio, Rua M de S Vicente 225, Gávea

22453-900, Rio de Janeiro, Brazil
{rbp, guga, mgati, lucena}@inf.puc-rio.br

2
LIP6, 4, place Jussieu
75005 Paris, France

jean-pierre.briot@lip6.fr
3

IME, Pça General Tibúrcio 80, Praia Vermelha
22290-270, Rio de Janeiro, Brazil
choren@de9.ime.eb.br

Abstract. Environment is an essential part of any multi-agent system (MAS),
since it provides the surrounding conditions for agents to exist. For some sort of
systems, the environment can be viewed as providing a set of services, in which
some of them, such as directory facilities, are used explicitly by the agents to
perform their tasks, and other such as monitoring, behavioral enforcement and
security can be done transparently by the environment. We join the idea that the
specification of environments of open multi-agent systems should include laws
that define what and when something can happen in an open system. Laws are
restrictions imposed by the environment to tame uncertainty and to promote
open system dependability. This paper proposes a design approach and
application of a middleware based on laws in multi-agent systems. The
approach can be viewed as a set of services provided by the environment.

1 Introduction

The agent development paradigm has posed many challenges to software engineering
researchers. This is particularly true when the systems are distributed and inherently
open to accept new modules that may have been independently developed by third
parties. Such systems are characterized by having little or no control over the actions
that agents can perform. The greater the dependence of our society on open
distributed applications, the greater will be the demand for dependable applications.

Environment is an essential part of any multi-agent system (MAS), since it
provides the surrounding conditions for agents to exist [25]. Several aspects of MAS
that are vital for agents do not belong to agents themselves but are part of the
environment [5]. We believe that the specification of environments of open

222 R. Paes et al.

multi-agent systems (MAS) should include laws that define what and when something
can happen in an open system [4][5]. Laws are restrictions imposed by the
environment to tame uncertainty and to promote open system dependability [15][17].
In this sense, the environment performs an active role monitoring and verifying if
behavior of agents are in conformance with the laws. This kind of environment is
composed of a governance mechanism, which is the mediator that enforces the law
specification. Examples of governance mechanisms are LGI [15], Islander [7] and
MLaw [18].

Governance for open multi-agent systems can be defined as the set of approaches
that aims to establish and enforce some structure, set of norms or conventions to
articulate or restrain interactions in order to make agents more effective in attaining
their goals or more predictable [14].

Despite the growing interest in the area, mature governance approaches will only
be achieved through the use of Software Engineering techniques and tools that
support the development of more predictable and better quality software systems.
There has been advance in this area through well founded engineering tools for
governed interaction such as the work of LGI [15], Islander [7] and Rubino [21]. This
paper deals with the above mentioned problem through a design approach and
application of a middleware for governance in multi-agent systems. Notably, we
propose the modeling of laws for governance, based on XML. This includes norms
but also other abstractions such as protocols, scenes, constraints and clocks, in order
to achieve a good expressivity. In another paper, we also addressed the issue of
specialization of governance specifications using abstractions for extension [4]. The
middleware can be used in conjunction with a specific agent platform (such as JADE
[2]), and it permits configuration of interaction rules, monitoring of agent interaction
and verification of the conformity between the interaction specification and the actual
interaction. We have already used the middleware in a variety of different situations,
such as monitoring criticality of agents [11], tests [20] and mediation of inter-bank
operations.

This paper is organized as follows. Section 2 introduces the relationship between
the environment and the interaction Laws. Section 3 introduces the main Governance
concepts used in this paper. Section 4 presents the middleware for governance used in
this work. Section 5 shows how the framework can be effectively used to enhance the
notion of environment and presents an experiment that was performed using the
middleware. Section 6 presents some related work and details on where this paper
gives the contribution. Finally, Section 7 presents some discussion and conclusions
about this work.

2 Environment and Interaction Laws

The precise definition of environment is still under the core of the discussions among
the research community [26]. One of the reasons that definitions of environment have
proliferated is that MAS have been applied to a wide range of different application
domains [24]. For example, it is natural for designers of a business-to-business
application to associate the environment with the existent infrastructure of hardware
and software on which the agents will have to execute. In another domain, such as an

 Enhancing the Environment with a Law-Governed Service 223

agent-based simulation of an ecosystem, the environment as well as the agents will be
custom built for the application [24].

A very common distinction for environments is between physical and virtual
environment. In the physical environment there are the physical constraints of the
existent entities. An example is that in an agent system that controls robots in which
two robots are not allowed to occupy the same place at the same time. The virtual
environment provides the principles and processes that govern and support the
exchange of ideas, knowledge and information [24].

A very deep discussion on environments can be found in [26]. They define an
environment as a first-class abstraction that provides the surrounding conditions for
agents to exist and that mediates both the interaction among agents and the access to
resources.

An environment provides the conditions under which an entity exists [16]. Multi-
agent environments are typically open and have no single centralized designer, they
contain agents that are autonomous, distributed and may be self-interested or
cooperative. Furthermore, environments provide a computational infrastructure that
enables agents to communicate with one another [13].

It is the responsibility of the environment to define the rules for, and enforce the
effects of, the agents’ actions. An appealing way to exert the necessary level of
control over an agent in an open system is through an adequate MAS infrastructure
[23], which can be viewed as part of the environment. The type of services provided
by the infra-structure, and the way in which these services are enacted, limit the set of
possible actions [23]. For that, a MAS designer can use a governing infrastructure to
structure and shape the space of action within MAS in an open environment. This
governing perspective allows managing agent interactions form an external and global
point-of-view.

In this sense, the environment is viewed as an active entity that also contains the
set of behavioral (social) laws, which is constantly monitoring and reacting to agents’
actions. It is very important for the agents to be able to perceive the environment.
Agents can use the percepts to update their knowledge about the environment or use it
for decision making [24]. In this sense, a virtual environment should provide explicit
data structures for notify changing on the environment state.

We have used the reference model of the environment (Figure 1) proposed in [26]
to show how the environment can be viewed. It shows that the environment provides
a set of services, in which some of them, such as directory facilities, are used
explicitly by the agents to perform their tasks, and other such as monitoring,
behavioral enforcement and security can be done transparently by the environment1.
The list of services shown in Figure 1 shows an environment as the basic
infrastructure for supporting agents’ activities in a more dependable manner. In this
paper we focus on the governance services (the law box in the figure), which are used
to monitor and enforce the behavior of agents.

1 In fact, it may be discussed if social laws (regulating interactions between agents) and social

entities (like organizations) are, conceptually and architecturally speaking, part of the
environment of a MAS or if they have a distinct existence (see, e.g., [9]). In this paper, we
describe governance (of social laws) as part of the services offered by a MAS environment.

224 R. Paes et al.

Fig. 1. Reference model of environments [26]

3 Governing Interactions

Law-governed architectures are designed to guarantee that the specifications of open
systems will be obeyed. The core of a law-governed approach is the mechanism used
by the mediators to monitor the conversations between components. We have
developed a software support [18] that, whenever necessary, permits extending this
mechanism to fulfill open system requirements or interoperability concerns. In this
architecture, a communication component is provided to agent developers.

M-Law works by intercepting messages exchanged between agents, verifying the
compliance of the messages with the laws and subsequently redirecting the message
to the real addressee, if the laws allow it. If the message is not compliant, then the
mediator blocks the message and applies the consequences specified in the law
(Figure 2). This architecture is based on a pool of mediators that intercept messages
and interpret the previously described laws. A more detailed explanation about how
this architecture was in fact implemented can be found in [19]. As more clients are
added to the system, additional mediators’ instances can be added to improve
throughput. In relation with the list of services shown in Figure 1, M-Law implements
the monitoring and enforcing of agents’ behavior.

 Enhancing the Environment with a Law-Governed Service 225

Fig. 2. M-Law architecture

M-Law was built to support law specification using XMLaw [17][3]. XMLaw is
used to represent the interaction rules of an open system specification. As mentioned
before, XMLaw is the description language used to configure the M-Law. These rules
are interpreted by M-Law that analyzes the compliance of software agents with
interaction laws at runtime. XMLaw represents the structure and the relationships
between important law elements (Figure 3). A more detailed definition of the
conceptual model can be found in [3] and [17]. A law is a description composed of
law elements, such as e.g., protocols, norms, and scenes, as described in the next
paragraphs.

Norms can be used to enhance scene and transition definitions; constraints in
norms and transitions can act as filters of events; and actions can be used as an
adaptation mechanism to support an active behavior of the environment in an open
system. We selected some elements from XMLaw conceptual model to illustrate our
proposal. Below, we will discuss XMLaw structure using the specification of laws for
the TAC SCM example to facilitate its understanding.

The conceptual model uses the abstraction of Scenes to help to organize
interactions. The idea of scenes is similar to theater plays, where actors play
according to well defined scripts, and the whole play is composed of many scenes
sequentially connected. Scenes are composed of Protocols, Constraints, Clocks, and
Norms. It means that these four elements share a common interaction context through
the scenes. Because protocols define the interaction among the agents, different
protocols should be specified in different scenes. Scenes also specify which agent role
has permission to create scene instances.

Statically, an interaction protocol defines the set of states and transitions (activated
by messages or any other kind of event) allowed for agents in an open system. Norms
are jointly used with the protocol specification, constraints, actions and also temporal
elements, to provide a dynamic configuration for the allowed behavior of components
in an open system. The mediator keeps information about the set of activated
elements to verify the compliance of software agents, the set of deactivated elements
and any other data regarding system execution.

226 R. Paes et al.

Fig. 3. Conceptual model of the elements that can be used to specify laws

Laws may be time sensitive, e.g., although an element maybe active at time t1, it
might not be active at time t2 (t1 < t2). XMLaw provides the Clock element to take
care of the timing aspect. Temporal clocks represent time restrictions or controls and
they can be used to activate other law elements. Clocks indicate that a certain period
has elapsed producing clock-tick events. Once activated, a clock can generate clock-
tick events. Clocks are activated and deactivated by law elements. Both are referenced
to other law elements. Below, we detail the structure of the elements that will be
exemplified in this paper.

3.1 Simple Scenario

The example that will guide our explanation is the Trading Agent Competition -
Supply Chain Management (TAC SCM). The TAC SCM [22][1][6] editions provide
some evidence that the interaction specification evolves over time and so an extension
support can reduce maintenance efforts.

The TAC SCM has been designed with a simple set of rules to capture the
complexity of a dynamic supply chain. SCM applications are extremely dynamic and
involve an important number of products, information and resources among their
different stages. In our case study, we mapped the requirements of TAC SCM into
interaction laws and agents are implemented with JADE [2].

 Enhancing the Environment with a Law-Governed Service 227

Fig. 4. Roles, relationships and cardinalities of TAC SCM

In TAC SCM, we chose the scenario of negotiation between the suppliers and
assemblers to explain how interaction laws are used (Figure 1). According to [1], the
negotiation process involves an assembler agent that buys components from suppliers.
A bank agent also participates in this negotiation because an assembler must pay the
components for the supplier. In this scenario, an assembler may send RFQs to each
supplier every day to order components offered by the supplier. Each RFQ represents
a request for a specified quantity of a particular component type to be delivered on a
specific date in the future. The supplier collects all RFQs received during the “day”
and processes them. On the following “day”, the supplier sends back to each agent an
offer for each RFQ, containing the price, adjusted quantity, and due date. If the agent
wishes to accept an offer, it must confirm it by issuing an order to the supplier.

3.2 Norms

There are three types of norms in XMLaw: obligations, permissions and prohibitions.
The obligation norm defines a commitment that software agents acquire while
interacting with other entities. For instance, the winner of an auction is obligated to
pay the committed value and this commitment might contain some penalties to avoid
breaking this rule. The permission norm defines the rights of a software agent at a
given moment, e.g. the winner of an auction has permission to interact with a bank
provider through a payment protocol. Finally, the prohibition norm defines forbidden
actions of a software agent at a given moment; for instance, if an agent does not pay
its debts, it will not be allowed future participation in a scene.

In TAC SCM, one permission norm was created about the maximum number of
requests for quotation that an assembler can submit to a supplier. According to the
TAC SCM specification, each day each agent may send up to a maximum number of
RFQs. Besides this permission, the constraint on the acceptable due date of an RFQ
regulates the same interaction, the request for quote message.

The structure of the Permission (Code Fragment 1), Obligation and Prohibition
elements are equal. Each type of norm contains activation and deactivation
conditions. In the example, an assembler will receive the permission upon logging in
to the scene (scene activation event) and will lose the permission after issuing an
order (event orderTransition). Furthermore, norms define the agent role that owns it
through the attribute Owner. In that case, the assembler agent will receive the
permission. Norms also have constraints and actions associated with them, but these
elements will be explained later. Norms also generate activation and deactivation
events. For instance, as a consequence of the relationship between norms and

228 R. Paes et al.

transitions, it is possible to specify which norms must be made active or deactivated
for firing a transition. In this sense, a transition could only fire if the sender agent has
a specific norm.

<Norm type="permission” id="AssemblerPermissionRFQ">
 <Assignee role-ref="assembler"
 role-instance="$assembler.instance"/>
 <Activations>
 <Element ref="negotiation"
 event-type="scene_creation"/>
 </Activations>
 <Deactivations>
 <Element ref="orderTransition"
 event-type="transition_activation"/>
 </Deactivations>
 <Constraints>
 <Constraint id="checkCounter" class="CounterLimit"/>
 </Constraints>
 <Actions>
 <Action id="permissionRenew" class="ZeroCounter">
 <Element ref="nextDay" event-type="clock_tick"/>
 </Action>
 <Action id="orderID" class="RFQCounter"/>
 <Element ref="rfqTransition"
 event-type="transition_activation"/>
 </Action>
 </Actions>
</Norm>

Code 1. Permission structure

3.3 Constraints

Constraints are restrictions over norms or transitions and generally specify filters for
events, constraining the allowed values for a specific attribute of an event. For
instance, messages carry information that is enforced in various ways. A message
pattern enforces the message structure fields [17]. A message pattern does not
describe what the allowed values for specific attributes are, but constraints can be
used for this purpose. In this way, developers are free to build as complex constraints
as needed for their applications.

Constraints are defined inside the Transition (Code Fragment 2) or Norm (Code
Fragment 1) elements Constraints are implemented using Java code. The Constraint
element defines the class attribute that indicates the java class that implements the
filter. The use of Java code allows for the specification of complex user defined filter
implementation. This class is called when a transition or a norm is supposed to fire,
and basically the constraint analyzes if the message values or any other events’
attributes are valid. In Code Fragment 2, a constraint will verify if the date expressed
in the message is valid according to TAC rules; if it is not, the message will be
blocked. In Code Fragment 1, a constraint is used to verify the number of messages

 Enhancing the Environment with a Law-Governed Service 229

that the agent has sent until now; if it has been exceeded, the permission is no longer
valid.

<Transition id="rfqTransition" from="as1" to="as2"
 message-ref="rfq>
 <Constraints>
 <Constraint id="checkDueDate" class="ValidDate"/>
 </Constraints>
 ...
</Transition>

Code 2. Constraint in transition tags

3.4 Actions

Environment actions, or just actions, are domain-specific Java codes that run
integrated with XMLaw specifications. Actions can be used to plug services in an
environment. For instance, an environment can call a debit service from a bank agent
to automatically charge the purchase of an item during a negotiation. In this case, we
specify in the XMLaw that there is a class that is able to perform the debit.

Since actions are also XMLaw elements, they can be activated by any event such
as transition activation, norm activation and even action activation. The action
structure is showed in the example of Code Fragment 1. The class attribute of an
Action specifies the java class in charge of the functionality implementation. The
Element tag references the events that activate this action, and as many Element tags
as needed can be defined to trigger an action. In this example, the action is used to
update the context of the norm, counting the number of submitted messages.

An action can be defined in three different scopes: Organization, Scene and Norms.
An action defined in a Norm is only visible at this level. This means that any element
in this scope can reference events issued by this action and that this action can get and
update information at this level and upper levels. Actions defined in the scene scope
can be referenced by any element at this level. And actions defined in the organization
scope are visible to all elements at this level.

4 M-Law

Agent technology advances rely on the development of models, mechanisms and tools
to build high quality systems. The design and implementation of such systems is still
expensive and error prone. Software frameworks deal with this complexity by
reifying proven software designs and implementations in order to reduce the cost and
improve the quality of software. In this way, an object-oriented framework is a
reusable, semi-complete application that can be specialized to produce custom
applications [8].

M-Law was designed as an object-oriented framework, and its hotspots make
possible to plug-in existing agent infrastructures, change the communication
mechanism used by the agents, and plug-in new functionalities through the
component module (to be detailed further in this section).

230 R. Paes et al.

M-Law middleware has to provide the means to effectively support XMLaw and
its evolutions. M-Law is composed of four modules: agent module, communication
module, a mediator agent and an event module. The agent module contains classes
that agent developers may use to develop agents. This module provides a set of
facilities to interact with both the mediator and other agents through methods for
receiving and sending messages. The Agent module uses a Communication module to
send and receive messages. In fact, the Communication module contains a set of
abstract classes and interfaces that have to be extended in order to provide real
functionality. We have made some experiments using JADE Agent Framework to
implement this module. In addition to Jade, we have also implemented a
communication module using pure socket communication. This flexibility provides
the means to build agents using different existing agent frameworks.

On the side of the mediator agent, which is in charge of monitoring and enforcing
agent interaction, there are three main modules: Event, Component and
Communication. Those modules are not visible to agent developers but they were
used to build the mediator agent and they can be extended to support new
functionalities. Agent criticality analysis presented in [11] is an example of the
component module extension.

The event module implements event notification and propagation. It is basically an
implementation of the observer design pattern [10] allowing elements for listening
and receiving events. The communication module has a similar implementation as the
communication module on the client side.

The elements such as scenes, clocks and norms, are implemented to be plugged
into the component module. The component module defines a set of concrete and
abstract classes and interfaces that allows new functionality to be inserted.

Fig. 5. Scene component

 Enhancing the Environment with a Law-Governed Service 231

Components are the set of classes placed in the mediator that implements the behavior
of the XMLaw language elements; for example, Figure 5 shows the scene element in
XMLaw and its set of classes that implements its behavior. In Figure 5, the scene
Element in XMLaw (therefore an XML element) is mapped to a descriptor
(IDescriptor) and execution (IExecution) hierarchies in the internal implementation of
the MLaw. Those hierarchies are hotspots of the component module, and they are
used to plug in new elements in the law definition, allowing, for example, to change
the XMLaw conceptual model.

As shown in Figure 5, the core classes and interfaces of the component module that
provide the hotspots that have to be extended by concrete elements are:

• Handlers: SimpleHandler and ComposedHandler – The component module has
a default XML parser that reads a law specification in XML and delegates the
treatment of each XML tag to a specific handler. The handler is in charge of
receiving the tokens provided by the parser and building the descriptor of the
element.

• IDescriptor – It represents the object model of the XML tag. For example, in
Figure 6, the scene tag in XML is represented by the SceneDescriptor class. Its
main responsibility is creating execution instances of the descriptor.

• IExecution – An object that implements the IExecution interface is an instance
of an element represented by an IDescriptor object. For example, a scene may
be instantiated many times and even various scenes may be running at the
same time (various auctions running in parallel, for instance). Each instance
(IExecution) has to keep its instance attributes and control its lifecycle. The
IExecution interface defines all the callback operations needed by the
component module to control instances.

As an example of how M-Law works in a practical scenario, suppose an agent
playing the role of an employer asks for increasing its own salary to other agent
playing the role of accountant. However, there is a norm specified in XMLaw stating
that employers are prohibited from asking for salary increase. Despite the simplicity
of this scenario, the example is useful to illustrate the basic flow of events inside the
M-Law. Then, M-Law works in the following way:

1. Mediator agent reads the XMLaw specification and starts the component
module;

2. Employer agent calls its communication module and sends the request
message asking for salary increase;

3. The communication module redirects the message to the mediator;
4. Mediator receives the message through its communication module;
5. Mediator fires an event of message arrival through event module;
6. Event module notifies the component module;
7. Norm element, which is part of the component module, receives the event,

verifies that the message is not allowed and fires a message not compliant
event;

8. The mediator receives the message not compliant event and as a consequence,
does not redirect the message to the accountant agent.

232 R. Paes et al.

The main design objectives of M-Law were simplicity, flexibility and reuse. That
is why the elements were implemented as components. In this way, some architectural
decisions made have direct impact over scalability in the current version of M-Law.
The following items discuss in more details some architectural and design aspects of
M-Law:

• Scalability – M-Law is implemented as a centralized mediator. In this way, it
may become a bottleneck for very large systems. In fact, the design of XMLaw
aimed primarily at expressivity (using abstractions such as constraints, scenes,
etc.) and at flexibility (specialization of laws [4]). Also, although a centralized
solution poses scalability questions, it allows the easy specification of global
laws with no need for state synchronization. Furthermore, temporal problems
are also avoided, once there is just one host controlling clocks. We are
currently working on alternative, more decentralized, solutions to this problem.
We are performing experiments on both a network of decentralized mediators,
such as LGI [15], and hierarchal organized mediators, such as Internet DNS.

• Expressivity – M-Law provides full support for XMLaw, which means it is
possible to specify non-deterministic state-based machines, notions of
commitments through norms, time sensitive laws, and execution of java code.

• Flexibility – The use of indirect communication through events in combination
with the component-based module makes it possible to add new functionality
with little difficulty. However, it is known that event-based communication
may lead to software that is harder to understand and debug due to the implicit
nature of communication. We have tried to deal with this drawback by
systematically building test cases, performing code inspections and writing
exhaustive documentation.

5 Using the Middleware

To use the middleware it is necessary perform at least four tasks. First, one must write
the interaction laws using XMLaw language. Second, the mediator has to be started
by execution of the script files provided with M-Law. Then, one has to inform the
mediator about the existence of the new Law (XMLaw file). Finally, the application
agents may be started. The idea is to use the middleware as an environmental service.
In other words, the middleware should be available for the agent developers once they
have their agents running on the environment.

Regarding the development of the application agents, agent developers may want
to extend the agent class provided by the client API of M-Law. This class provides
methods for sending and receiving of messages and methods for direct
communication with the mediator, once the mediator can provide useful information
about the current status of interaction, such as which scenes are running and how
many agents are interacting. In fact, the class LawFacade provides methods for direct
communication with the mediator, and agent class provides methods for sending and
receiving messages. Figure 6 shows the details of those classes.

 Enhancing the Environment with a Law-Governed Service 233

Fig. 6. Client API: LawFacade and Agent classes

We encourage agent developers to use the agent class either by inheritance or
delegation. Yet, developers are free to build their agents using any architecture or
technology. The only requirement is that the agent should know both how to
“speak” FIPA-Agent Communication Language2 and which messages the mediator
expects.

5.1 Case Study (CB)

The Central Bank of Brazil regulates and supervises the national financial system.
This experiment is running based on the SELIC system requirements. SELIC is the
central depository of securities issued by the National Treasury and the Central Bank
of Brazil. It also settles outright and rep transactions with these securities. Besides the
National Treasury and the Central Bank of Brazil, commercial banks, investment
banks, savings banks, dealers and brokers, clearing operators, mutual investment
funds and many other institutions that integrate the financial system participate in
SELIC as holders of custody accounts. In December 2004, the system was composed
of 4,900 participants (or agents).

SELIC system is clearly a system that has a central entity (Central Bank) that
mediates and controls the interaction among the other entities. We have, then,
specified the laws that the institutions must follow using XMLaw, and we have used
M-Law as a mediator that control the interactions. We have implemented a
prototype of a subset of the actual SELIC system for doing this experiment. The
experiment was performed with 10 agents representing different financial
institutions and 1 mediator agent (the MLaw).

There are several requirements that influence the interaction of financial
institutions in a committed operation, as the several types of messages that could be
sent and the several behaviors that should be implemented according to the messages
specified, including norms and constraints. Below (Figure 7), an interaction scenario
is taken from SELIC. This interaction scenario contains three entities: two financial
institutions and the SELIC.

2 FIPA is the organization that establishes specifications for agents. http://www.fipa.org/

234 R. Paes et al.

In this scenario, a financial institution A (FI A) needs to sell bonds to the
financial institution B (FI B). Below (Code Fragment 3), we illustrate the
description of this basic negotiation protocol in XMLaw. We called it Negotiation.
The specification provides the details regarding the expected attributes of the
messages. Furthermore, there in the transition st1 there is a verification step
implemented within a constraint.

This example shows how the laws can be specified and then provided to the
environment through the M-Law in order to effectively monitor and enforce agents’
behavior. On the side of the developers of the domain agents, it is necessary to extend
the class Agent provided with the client API (Figure 6) and then use its methods to
communicate.

Fig. 7. SELIC example

The preliminary results have shown that M-Law and XMLaw have brought some
consequences such as:

• Transparency of the process – Before using our governance solution, the
system had all the laws hard-coded into the source code. With XMLaw the
laws are specified in a purpose specific language which brings the
specification to a higher level of abstraction and then decreases the distance
between the requirements and the implementation. M-Law has a crucial role in
this scenario, since it monitors and interprets the laws.

• Better support for rules customization/configuration – Changing a law with
XMLaw and M-Law is a matter of changing the XMLaw specification, i.e.,
there is no need to go into source code of the application.

 Enhancing the Environment with a Law-Governed Service 235

<Scene id="Negotiation" time-to-live="infinity">
 <Protocol id="negotiation-protocol">
 <Messages>
 <Message id="startMsg">...</Message>
 <Message id="request">
 <Content>
 <Entry key="CodMsg" value="SEL1054"/>
 <Entry key="TpCompr" value="02" />
 <Entry key="NOPRET"/>
 </Content>
 <Message id="inform">
 <Content>
 <Entry key="CodMsg" value="SEL1054"/>
 <Entry key="TpCompr" value="04" />
 <Entry key="NOPRET"/>
 </Content>
 </Message>
 </Messages>
 <States>
 <State id="s1" type="initial"/>
 <State id="s2" type="execution"/>
 <State id="s3" type="execution"/>
 <State id="s4" type="success"/>
 </States>
 <Transitions>
 <Transition id="start" from="s1" to="s2"
 ref="startMsg" event-type="message_arrival" />
 <Transition id="st1" from="s2" to="s3" ref="request"
 event-type="message_arrival"
 <Constraint
 class="selic.constraint.ConditionNOPRET"
 semantics="NOPRETEmpty" />
 </Transition>
 <Transition id="st2" from="s3" to="s4" ref="inform"
 event-type="message_arrival"/>
 </Transitions>
 </Protocol> ...
</Scene>

Code 3. Negotiation structure definition

6 Related Work

It is possible to cite at least two important research projects in which the goals are in
some sense similar to the goals of the work presented here. The first approach is
proposed by Esteva [7]. He uses a set of concepts that have points of intersection with
those used in XMLaw, in fact XMLaw has borrowed some of the ideas of Esteva and
proposed new ideas. For example, both Esteva scenes and protocol elements specify
the interaction protocol using a global view of the interaction. The time aspect is
represented in the Esteva approach as timeouts. Timeouts allow activating transitions
after a given number of time units passed since a state was reached. On the other
hand, due to our event model, the clock element proposed in XMLaw can both

236 R. Paes et al.

activate and deactivate not only transitions, but also other clocks and norms.
Connecting clocks to norms allows a more expressive normative behavior; norms
become time sensitive elements.

Furthermore, XMLaw also includes the concept of actions, which allows execution
of java code in response to some interaction situation. From the implementation point
of view, Esteva does not provide the internal details of its framework (ISLANDER);
but the general architecture proposes to use a set of mediators instead of using only
one mediator. One consequence of this solution is that once a law is specified as a
global view, all the mediators must constantly synchronize their internal states to keep
them consistent. It means that for every message sent by an application agent,
messages are broadcast among the mediators to synchronize the state.

From the point of view of integration with other existent solutions, Islander allows
the use of JADE as communication layer; but only Jade is allowed and there is no
support for extension on this point. Furthermore, there is no indication about the
possibility of integration between Islander and different approaches, such as
integration tests and criticality analysis.

Minsky [15] proposes a coordination and control mechanism called law governed
interaction (LGI). This mechanism is based in two basic principles: the local nature of
the LGI laws and the decentralization of law enforcement. The local nature of LGI
laws means that a law can regulate explicitly only local events at individual home
agents, where home agent is the agent being regulated by the laws; the ruling for an
event e can depend only on e itself, and on the local home agent’s context; and the
ruling for an event can mandate only local operations to be carried out at the home
agent. On the other hand, the decentralization of law enforcement is an architectural
decision argued as necessary for achieving scalability.

However, when it is necessary to have a global view of the interactions, the
decentralized enforcement demands state consistency protocols, which may not be
scalable. Furthermore, it provides a language to specify laws and it is concerned with
architectural decisions to achieve a high degree of robustness. In contrast, M-Law
uses XMLaw, which provides an explicit conceptual model and focuses on different
concepts, such as Scenes, Norms and Clocks. In other words, in our opinion, LGI
design aimed primarily at decentralization and XMLaw design aimed primarily at
expressivity and at possibilities for specialization [4]. A current limitation of XMLaw
is the centralization of the mediator.

A promising direction is to investigate how XMLaw specification could be
compiled into decentralized LGI mediators. In this way, LGI could be viewed by
having the basic foundation to build higher level elements, such the ones in XMLaw.
Moreover, by using M-Law, it is possible to extend the framework hotspots and
introduce new components, which represent concepts in the conceptual model; and
change the communication mechanism.

7 Conclusions

Governance is required in open MAS Environments. A trustable Environment should
offer a service to guarantee that the rules of interaction are obeyed. In this paper, we
proposed to include a governance service within any open MAS Environment. This

 Enhancing the Environment with a Law-Governed Service 237

paper has presented some of the main ideas behind research into governance of agent
systems. Then, from a Software Engineering perspective, we have proposed a
middleware that allows the development of law-regulated systems. We have presented
the main design goals of the middleware, such as flexibility and integration with other
platforms. We believe that this middleware is an enhancement of the current state-of-
the-art of Software Engineering for Governance in the sense that it supports a
language that expresses the main concepts of governance with a good level of
expressivity, and also due to its design concerns, which make use of techniques such
as frameworks and components. Current implementation relies on a centralized
mediator, which is a limitation on scalability. We are currently studying the design of
a future distributed version, inspired from LGI decentralized mediators.

We have shown the use of the middleware on an example inspired from a real
application of the central bank of Brazil. We hope that this example could illustrate
some benefits brought by the use of M-Law, and more generally speaking, the merits
of MAS governance for future applications.

Acknowledgments. This work was partially funded by CNPq through the ESSMA
Project (552068/2002-0) and through individual grants. The work was also supported
by CAPES, in the CAPES/Cofecub International Cooperation Program, through the
EMACA Project (0981-04-4).

References

1. Arunachalam, R., Sadeh, N., Eriksson, J., Finne, N., Janson, S.: The Supply Chain
Management Game for the Trading Agent Competition 2004. CMU-CS-04-107, (2004)

2. Bellifemine, F., Poggi, A., Rimassa G.: JADE: a FIPA2000 Compliant Agent
Development Environment. In: Fifth International Conference on Autonomous Agents
(2001)

3. Carvalho, G., Brandão, A., Paes, R., Lucena, C.: Interaction Laws Verification Using
Knowledge-based Reasoning. In: Workshop on Agent-Oriented Information Systems
(AOIS-2006) at AAMAS 2006.

4. Carvalho, G., Lucena, C., Paes, R., Briot, J.: Refinement operators to facilitate the reuse of
interaction laws in open multi-agent systems. In Proceedings of the 2006 International
Workshop on Software Engineering For Large-Scale Multi-Agent Systems (2006)

5. Carvalho G., Almeida H., Gatti, M., Vinicius, G., Paes, R., Perkusich, A., Lucena, C.:
Dynamic Law Evolution in Governance Mechanisms for Open Multi-Agent Systems.
Second Workshop on Software Engineering for Agent-oriented Systems (2006)

6. Collins, J., Arunachala, R., Sadeh, N., Eriksson, J., Finne, N., Janson, S.: The Supply
Chain Management Game for the 2005 Trading Agent Competition. CMU-ISRI-04-139.
http://www.sics.se/tac/tac05scmspec_v157.pdf (2005)

7. Esteva, M.: Electronic institutions: from specification to development, Ph.D. thesis,
Institut d’Investigació en Intelligència Artificial, Catalonia - Spain. (2003)

8. Fayad, M., Schmidt, D., Johnson, R.E.: Building application frameworks: object-oriented
foundations of framework design. John Wiley & Sons (1999)

9. Ferber, J., Gutknecht, O., Michel, F. From Agents to Organizations: an Organizational
View of Multi-Agent Systems. In Agent-Oriented Software Engineering (AOSE) IV, P.
Giorgini, Jörg Müller, James Odell, eds, Melbourne, July 2003, LNCS 2935, pp. 214-230
(2004)

238 R. Paes et al.

10. Gamma, E., Johnson, R., Helm, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, (1995)

11. Gatti M., Lucena C., Briot J.P.: On Fault Tolerance in Law-Governed Multi-Agent
Systems. 5th International Workshop on Software Engineering for Large-scale Multi-
Agent Systems (SELMAS) at ICSE (2006)

12. Guessoum, Z., Faci, N., Briot, J-P.: Adaptive Replication of Large-Scale Multi-Agent
Systems - Towards a Fault-Tolerant Multi-Agent Platform. In: International Workshop on
Software Engineering for Large-scale Multi-Agent Systems - SELMAS at ICSE (2005)

13. Huhns, M.N., Stephens, L.M.: Multi-agent Systems and Societies of Agents. G. Weiss
(ed.), Multi-agent Systems, ISBN 0-262-23203-0, MIT press (1999)

14. Lindermann, G., Ossowski, S., Padget, J., Vázquez Salceda, J.: International Workshop on
Agents, Norms and Institutions for Regulated Multiagent Systems (ANIREM 2005),
http://platon.escet.urjc.es/ANIREM2005/ accessed in December, 2006.

15. Minsky, N.H., Ungureanu V.: Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems, ACMTrans. Software Engineering
Methodology 9(3) 273–305. (2000)

16. Odell, J., Parunak, H.V.D., Fleischer, M., Breuckner, S.: Modeling Agents and their
Environment. Agent-Oriented Software Engineering III, Giunchiglia, F., Odell, J., Weiss,
G. (eds.) Lecture Notes in Computer Science, Vol. 2585. Spriner-Verlag, Berlin
Heidelberg New York (2002)

17. Paes, R.B., Carvalho G.R., Lucena, C.J.P., Alencar, P.S.C., Almeida H.O., Silva, V.T.:
Specifying Laws in Open Multi-Agent Systems. In: Agents, Norms and Institutions for
Regulated Multi-agent Systems (ANIREM), AAMAS2005. (2005)

18. Paes, R.B, Lucena, C.J.P, Alencar, P.S.C.: A Mechanism for Governing Agent Interaction
in Open Multi-Agent Systems. http://wiki.les.inf.puc-rio.br/index.php/Publications (2005)

19. Paes, R.B., Gatti, M.A.C., Carvalho, G.R., Rodrigues, L.F.C., Lucena, C.J.P.: A
Middleware for Governance in Open Multi-Agent Systems. Technical Report 33/06, PUC-
Rio, 14 p. (2006)

20. Rodrigues, L., Carvalho, G., Paes, R., Lucena, C.: Towards an Integration Test
Architecture for Open MAS. In: Software Engineering for Agent-oriented Systems -
SEAS05 , (2005)

21. Rubino, R., Omicini, A., Denti, E.: Computational Institutions for Modeling Norm-
Regulated {MAS}: An Approach Based on Coordination Artifacts. In: Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems, Springer, vol. 3913,
127—141 (2006)

22. Sadeh, N., Arunachalam, R., Eriksson, J., Finne, N., Janson, S.: TAC-03: a supply-chain
trading competition, AI Mag. 24 (1) 92–94 (2003)

23. Schumacher, M., Ossowski, S.: The Governing Environment, E4MAS (2005)
24. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for

Multiagent Systems: State-of-the-Art and Research Challenges. Lecture Notes in
Computer Science Vol. 3374, Springer (2004)

25. Weyns, D., Michel, F., Parunak, H.V.D.: The Third International Workshop on
Environments for Multi-Agent Systems - http://www.cs.kuleuven.ac.be/~distrinet/events/
e4mas/2006/print.php - accessed in October (2006)

26. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent
systems. In: Autonomous Agents and Multi-Agent Systems 14(1), 5-30 (2007)

	Introduction
	Environment and Interaction Laws
	Governing Interactions
	Simple Scenario
	Norms
	Constraints
	Actions

	M-Law
	Using the Middleware
	Case Study (CB)

	Related Work
	Conclusions
	References

