
Minh Nguyen-Duc, Zahia Guessoum, Olivier Marin,
Jean-François Perrot, Jean-Pierre Briot
Computer Science Laboratory of Paris 6

104, avenue du Président Kennedy
75016 Paris

France
{minh.nguyen-duc, zahia.guessoum, olivier.marin, jean-francois.perrot, jean-pierre.briot}@lip6.fr

Abstract
Air Traffic Control (ATC) is going to be a
typical critical socio-technical system in
which controllers use a large number of dis-
tributed software tools to provide safety ATC
services. The reliability of these services re-
lies on the availability of the various tools. In
the process of integrating more and more so-
phisticated tools in their daily work, control-
lers need to feel confident in the reliability of
their tool set. This paper presents a multi-
agent approach to this reliability problem. We
propose an agent-based decision-aided system
that helps controllers in using their multiple
software tools in situations where some tools
are not available due to technical incidents.
As it is critical to conduct experiments on real
air traffic, we build and test our Multi-Agent
System (MAS) in a simulation environment,
thus develop an Agent-Based Simulation
(ABS). Experimental work on this ABS has
demonstrated the significance of our system to
air traffic controllers.

1 Introduction
Air Traffic Control (ATC) provides services whose
objective is to direct aircraft on the ground and in the
air. Its tasks are to separate aircraft, to ensure safe
orderly and expeditious flow of traffic, and to give
information to pilots, such as weather and navigation
information.

1.1 Reliabil ity problem
According to the First ATC Support Tools Implemen-
tation (FASTI) program [Petricel and Costelloe 2007],
the need for support tools for air traffic controllers has
never been greater. The forecast growth in air traffic
requires the adoption of new technologies and related
procedures enabling the safe and efficient provision of
ATC services to a larger number of aircraft. Our work
is concerned with the next generation of software sys-
tems for ATC, which will include software tools.
These tools will increase the controllers’ capacity at
the expense of a complexification of their task. Archi-

tecturally, they will be distributed over local area net-
works (LANs) in each control center and the wide area
network (WAN) between centers (see Section 2 for
more details).

The reliability of ATC services relies on the avail-
ability of the various tools. Indeed, the failure of a tool
or of the connection of a tool with a Controller Work-
ing Position may cause delays or even, in some cases,
crashes. To avoid such incidents, mechanisms for fault
tolerance must be built into the support system.

Moreover, like in any critical socio-technical sys-
tem, the integration of sophisticated tools in the con-
trollers’ daily work currently faces difficulties. On the
one hand, controllers have to change their usual,
trusted working procedures. The safety and power that
the tools are expected to provide will only become
effective if the controllers are able to make the most of
the tools’ functionalities. And that strongly depends on
their familiarity with the tools. On the other hand, the
controllers need to feel confident in the reliability of
their software tools.

1.2 Fault tolerance
Tools can encounter partial or total failures as a result
of internal or external events. Fault tolerance is in-
tended to preserve the delivery of correct service in the
presence of active faults [Cristian et al. 1996]. It is
generally implemented by error detection and subse-
quent system recovery, and possibly by error contain-
ment. There are mainly two types of approaches to
improving the fault tolerance of services: replication
(or preventive approaches) and diagnostic (or correc-
tive approaches).

At the heart of all fault tolerance techniques is some
form of redundancy. This means that components that
are prone to defects are replicated in such a way that if
a component fails, one or more of the non-failed repli-
cas will continue to provide services with no apprecia-
ble disruption.

Diagnosis informs the user of the damage and of the
recovery possibilities. The diagnostic can be relying
on organization of agents in the environment, excep-
tion handling, monitoring, etc.

Actually, preventive and corrective approaches are
complementary [Guessoum et al. 2006] (see also 5.3).

A Multi-Agent Approach to Reliable Air Traffic Control

This is our longer term objective, but will not be ad-
dressed in this paper.

1.3 Our approach
We adopt a corrective approach, especially applied
when faults occur. We argue that the best way to prove
the reliability of a support system is to show that the
ATC system, as a whole, can still provide full traffic
control services when errors suddenly appear. Indeed,
if the controllers are timely and adequately informed
of the incidents, they can accordingly adjust their cur-
rent control tasks and the following tasks. They can
often manage without some of their tools. According
to the Guidance Material for Contingency Planning
[ESP 2007], this kind of working mode can be seen as
a type of Degraded Mode of Operation.

Therefore, there exists a need for a decision-aided
system that helps the controllers in using their multiple
software tools, particularly in situations where some
tools are not available, or in other words when techni-
cal incidents happen. Our aim is to show that a suit-
able use of multi-agent technology can help in this
respect. To develop such a system, we propose a solu-
tion based on software agents (see Section 4).

1.4 Outline of the paper
The paper is organized as follows. Section 2 presents
the ATC system and its basic future architecture. Sec-
tion 3 analyzes a typical example of technical incident.
Section 4 proposes our MAS solution. Section 5 de-
scribes the development of our ABS for experiments.
Then in Section 6, an experiment clearly shows how
our agents react to a typical network failure. Section 7
discusses related work. Finally, Section 8 draws a
conclusion.

2 Air Traffic Control

Figure 1. Basic future ATC system architecture.

The current ATC system is airspace-based. The air-

space is divided into many sectors whose size depends
on the average traffic volume and the geometry of air
routes. There are usually two air traffic controllers to
handle the traffic in each air sector: an executive con-
troller who communicates with pilots, and a planning
controller who plans his colleague’s work. Also, the
sectors are regrouped into regions each of which is
under control of a control center. For example, the
Athis-Mons center is responsible for air traffic control
in the Parisian region.

The general structure of the ATC system sketched
above would not be expected to change. But a new
architecture would have to support the introduction of
distributed software tools, as discussed above. Figure
1 illustrates a typical application context where two
different control centers are connected with a common
flight data-processing center through the inter-center
network (a WAN). In each control center one (or sev-
eral) application server(s) host(s) the various software
tools in use. These application servers are connected
with the Controller Working Positions (CWP) by
means of a local network (LAN). The LANs of the
control centers are connected via the inter-center
WAN.

A typical example of support tool is the Medium-
Term Conflict Detection (MTCD) [Petricel and Costel-
loe 2007]. Once aircraft trajectories have been pre-
dicted, they can be employed to detect medium-term
conflicts. There also exist many other tools such as
Short-Term Conflict Alert (STCA), MONitoring Aid
(MONA), Airspace Penetration Warning (APW), and
Minimum Safe Altitude Warning (MSAW).

3 Typical Example
In this section, we would like to analyze a typical
situation in which a technical incident occurs. It can
help with understanding the influence of the incident
on the controllers’ work and what they need in such
situation.

Figure 2. Typical example of a handover situation: the
two controller’s screens on both sides of the border.

We hence consider two (executive) controllers

(named Co1 and Co2) responsible for two neighboring
sectors (named S10 and S12), at the border of two con-
trol centers (named A and B). They are often in hand-
over situations, i.e. they have to transfer the control of
aircraft flying from one sector to the other. We sup-
pose that at a moment there are several potential con-
flicts among which a particular one concerns two air-
craft: TH003 flying from S10 to S12, and TH004 flying

in the opposite direction. Moreover, all the conflicts
are going to happen in S10.

These conflicts can be automatically detected by
Co1’s MTCD or “manually” by Co1 himself. He does
or does not perform control operations to resolve a
detected conflict, depending on the real aircraft trajec-
tories which probably evolve before the conflict hap-
pens. Since Co1 can only resolve conflicts one by one,
he has to sequence all the detected conflicts to be re-
solved. Therefore, he needs to decide to (or not to)
resolve a conflict at least T minutes before it happens.
Indeed, T is common to all the detected conflicts, and
it has to be sufficiently large that the controller can
perform good conflict sequencing.

We suppose that a network failure occurs at the time
when the potential conflicts appear: center B is dis-
connected from the flight data-processing center (see
the basic ATC system architected illustrated by Figure
1). Consequently, a demand for exit flight level change
for TH004 sent by Co2 to the data-processing center is
lost. Accordingly, the flight data of TH004 are no
longer accessible from center A and therefore unusable
for Co1’s MTCD.

This failure makes Co1’s MTCD unable to detect
conflicts not only for TH004, but also for all the air-
craft flying from center B. However, it still correctly
detects the “local conflicts” that only concern the air-
craft flying in S10. So we can see it as “locally avail-
able”.

We now consider the controller’s (Co1’s) reaction to
the unavailability of his MTCD. It is supposed that
there exists a fault detection equipment which will
give him some warning. We are thus interested in
when he is informed of the tool unavailability and in
which additional information he gets. We would like
to underline the two following cases.

In the first case, Co1 is only aware of the unavail-
ability of his MTCD when some potential conflicts are
closely going to happen (in less than T minutes). As
discussed above, this will embarrass his conflict se-
quencing, and can then make him nervous.

In the second case, Co1 is already aware of the un-
availability of his MTCD but does not know its “local
availability”. He has to detect himself all the potential
conflicts. To do that, he verifies and follows all the
aircraft he suspects. However in reality, MTCD is not
totally unavailable, and still locally available. Such an
exhaustive verification will unnecessarily increase
Co1’s workload because, in fact, he can still rely on the
results given by MTCD for the local conflicts.

In conclusion, we notice that, in situations where
some tools are not available, the controllers need not
only to be timely informed of the unavailability of the
tools, but also to obtain adequate information about
their state, e.g. the “local availability” of MTCD. One
could see that if the controllers are guaranteed to be
provided what they require to manage without the
unavailable tools, they will feel more confident on the
reliability of the support system.

4 Our Multi-Agent System Solution
To solve the problem presented in the previous sec-
tion, a decision-aided system for the air traffic control-
lers is needed. Its missions are to communicate with
the controllers, to inform them of the environment
state and to show them information of tools’ availabil-
ity. More ambitiously, the decision-aided system
would be endowed with the capacity to propose cor-
rective actions to be performed following technical
incidents.

Besides, this system helps with mitigating the ef-
fects of software faults in a distributed environment. It
monitors software components which run on different
machines, and keeps an eye on the interactions be-
tween the users (i.e. the controllers) and these compo-
nents. To this end, it also has to be distributed. It ob-
serves complex data (e.g. air traffic data) at the input
and output of each computation module of any soft-
ware tool.

Also, this system builds up confidence for users of a
safety-critical software system. In consequence, it has
to guarantee a safety level with respect to the services
it offers. All its monitoring services have to run in
real-time so that it can inform the users of some
change of the software system’s state as soon as it
happens. Moreover, information it provides need to be
not only concise but also adequate, in such a way that
the users can determine exactly what to do in response
to this change.

In view of these requirements of the decision-aided
system to be developed, we propose a Multi-Agent
System (MAS) solution. Our MAS communicates with
the controllers through assistant agents and monitor
the software tools through monitor agents. The capac-
ity of the agents to exchange data with each other will
allow acquiring in real-time information to be pre-
sented to the controllers.

4.1 Agents
Since our agents have to take care of the monitoring of
software tools and of the communication with the
controllers, we design different kinds of agent aiming
to perform these two common tasks. We currently use
two monitoring agents for each tool, i.e. a data sentinel
and a computation sentinel, and assign an assistant
agent to each controller.

1 Data sentinel agent: observes the input and output
data of a specific software tool and communicates
with other agents in order to discover data losses
(see Section 6 for more details).

2 Computation sentinel agent: observes the input and
output data of a specific software tool and commu-
nicates with other agents in order to discover com-
putation faults (e.g. a computation sentinel checks
timeout errors).

3 Assistant agent: communicates with other agents in
order to determine the automated tools’ availabil-
ity, and informs a controller of this availability; an
assistant agent can observe the controller’s actions

in such a way that it can notify the monitoring
agents of relevant events.

At the individual level, these agents need not to be
complicated. A monitoring agent simply reacts to
technical incidents that it discovers itself or of which it
is notified by other monitoring agents. An assistant
agent would only be endowed with some limited rea-
soning capacity to be able to propose corrective ac-
tions to perform (which are predefined) following
incidents. The agents’ simplicity would bring not only
more reactivity, but also more robustness to the MAS.

4.2 Organization of our MAS
On each LAN in a control center we install a group of
coordinated agents that are distributed over the whole
local network. Each local group of agents is composed
of assistant agents and of monitoring agents. We asso-
ciate with each Controller Working Position (CWP) an
assistant agent. Each tool instance is observed by
monitoring agents. Please note that monitoring and
assistant agents may be hosted on any of the machines,
or even on additional independent network nodes, as
long as they retain the capacity to display information
on the controller’s screen.

When an incident occurs, the related tool’s monitor-
ing agent first discovers the critical situation by using
the data it gathers from the tool’s input/output, as well
as the information it receives from other monitoring or
assistant agents. Then, it transmits information about
the tool’s state to the assistant agents of the CWPs that
use this tool. These assistants display green/yellow/red
flags on their controller's screen, thereby indicating the
tool’s total/partial availability, together with the rele-
vant information.

By communicating about observed tools’ data and
controllers’ actions with each other, the agents can
notify the controllers of what they should consider
following their actions perturbed by the incident. For
instance, in the scenario presented in Section 6, the
monitoring agents exchange events of request for data
change so that they can find out lost data due to net-
work failures. Then, when the controllers see this in-
formation shown by their assistants, they know that the
related aircraft’s flight plan is inconsistent and that
they cannot use MTCD anymore to detect conflicts for
it.

5 Agent-Based Simulation

5.1 Objective
Of course the future ATC system we have described
above has not yet been implemented. Moreover, any
novel application to a critical system like ATC has to
be tested in simulations before its real world imple-
mentation. We embed our agents into the eDEP plat-
form (Early Demonstration & Evaluation Platform)
[eDEP 2007], which provides a distributed simulated
ATC environment with realistic air traffic. In this way,
we obtain an Agent-based Simulation. Our agents are

built with the DimaX platform [DimaX 2007], which
helps with developing reliable multi-agent systems.

5.2 ATC simulation platform - eDEP
eDEP [2007] is a Java platform developed by Euro-
control that uses RMI (Remote Method Invocation) to
distribute its components over a LAN. It gives a set of
standard ATC elements, e.g. “airspace” (a database of
static airspace information); “integrated air surveil-
lance” (a database of surveillance radar tracks); “initial
flight plan” (an initial plan that defines route con-
straint points and altitude limits); “trajectory predic-
tor” (a trajectory prediction algorithm which uses air-
crafts’ kinematic models to predict the real motion of a
particular aircraft); and Controller Working Position
(the main graphical interface to the system based on a
plan view display of the control sector). The support
tools for air traffic controllers, e.g. STCA and MTCD,
are implemented in eDEP as independent components
which can run on different machines.

5.3 Multi-agent platform - DimaX
DimaX is a Java multi-agent platform which gives a
generic and modular agent architecture, and allows
high heterogeneity in agent types (reactive, delibera-
tive and hybrid). It is in fact based on the extension of
modeling and implementation facilities offered by
object-oriented languages. In DimaX, an agent at the
smallest granularity is simply a single-threaded object,
and a complicated agent can be constituted by smaller
agents. Also, this platform allows adding new behav-
iors to any agent by using programming libraries.

Since we would like our MAS to be used in a criti-
cal socio-technical system like ATC, the MAS itself
has to be reliable. DimaX can help with developing
such MAS. This multi-agent platform is in fact the
result of the integration of its previous generation
(named DIMA – Development and Implementation of
MAs) and a fault-tolerance framework (named DarX
[Marin et al. 2003]), which brings in services, e.g.
Fault Detection Service and Replication Service,
which provides transparent support for making MAS
fault-tolerant through adaptive replication.

5.4 Overview of our ABS
We manage at least two Controller Working Positions
(implemented by the CWP component in eDEP), be-
longing to two different control centers. The LAN of
each control center is realized on at least two com-
puters (one for the CWP and the other for the applica-
tion server). The data-processing center is realized as a
separate machine. This machine together with the two
LANs make up our image of the inter-center WAN.
Each application server runs a copy of each of five
tools, i.e. MTCD, STCA, MONA, APW, MSAW (also
provided as eDEP components).

The integration of our DimaX agents and eDEP
components follows the FIPA Agent Software Integra-
tion Specification [FIPA 2001]. The DimaX platform
already includes a generic wrapper agent ready to
provide any other agent (e.g. a monitoring agent or an

assistant agent) with services which allow this latter
agent to connect to software components. Special
wrappers are then built by extending the generic one.
They need to be hosted on the same machine as the
components they “wrap”.

Based on the agent model discussed in 4.2, as a first
step we install two monitoring agents and two wrapper
agents for each of software tools:

1 XXX_DataSentinel, XXX_ComputationSentinel:
observes the XXX1 component’s input/output data
and communicates with other agents in order to
discover faults;

2 XXX_ObservationWrapper,
XXX_GeneralWrapper: special wrappers which re-
spectively provide XXX observation and general-
purpose services to the two other XXX_agents;

Additionally, we endow the CWP with a
CWP_Assistant which communicates with other agents
in order to determine the automated tools’ availability,
and shows this availability in its user interface. The
following figure illustrates the CWP_Assistant’s user
interface. It uses green/yellow/red flags to show tools’
status.

Figure 3. CWP_Assistant’s user interface.

6 Testing Scenario

6.1 Objective
The first tests of our agents on the ABS use several
experimental scenarios one of which corresponds to
the example presented in Section 3. In this section, we
will describe in detail this scenario which will illus-
trate the reaction of our MAS to the possible unavail-
ability of a tool due to a network failure. This experi-
ment also aims to demonstrate the usefulness of our
MAS to the air traffic controllers.

6.2 Experimental setup
The experiment runs on the following connected ma-
chines:

1 Two client machines hosting two CWPs for two
controllers belonging to two different control cen-
ters (named centers A and B);

2 Two tool servers hosting two MTCD instances for
the two control centers;

3 A data server placed in the common flight data-
processing center (see 5.4).

1 XXX stands for the tool name, e.g. MTCD or STCA.

6.2 Agent behavior
We are in a handover situation (as described in Sec-

tion 3). At first, all machines run smoothly and are
fully connected in a handover situation (e.g. there are
aircraft flying from the control center B to the control
center A). Each controller has unlimited access to the
tool server on his LAN and can freely obtain the flight
data he needs. The assistant agents display green la-
bels indicating that the software tools are working at
full capacity.

Figure 4. All machines run smoothly and are fully

connected in a handover situation.

The controller in center B (called CB) then makes a
flight data change request (e.g. a demand for exit flight
level change for an outgoing aircraft). However, due to
some accident, control center B has been disconnected
from the flight data-processing center. Due to the dis-
connection, this request is not sent to the data center.

Now, CB’s assistant agent detects that a data change
request was issued by CB. It notifies the data sentinel
agent of MTCD in B of this request. This agent in its
turn informs the monitoring and assistant agents in
control center A through their simulated WAN connec-
tion.

Figure 5. Control center B is disconnected from

the flight data-processing center (1st phase).

The data sentinel agent of MTCD in A discovers that
no such flight data change was received from the data-
processing center. This also means that the flight data
concerning an aircraft which is controlled by center B
are no longer accessible from A and therefore unusable
for conflict detection.

In consequence, the assistant agent of the controller
in center A displays a yellow flag, informing his con-
troller that the software tool is only available locally,
i.e. it only gives correct results for aircraft under con-
trol of center A.

Knowing this, the data sentinel agent of MTCD in
control centre A signals back to the monitoring agents
in B that there was on its side a flight data change
request which was not taken into account. This agent
notifies the CB’s assistant agent of this incident.

Figure 6. Control center B is disconnected from

the flight data-processing center (2nd phase).

Finally, the CB’s assistant agent then displays a red
flag, informing his controller that the software tool is
now unavailable. This is what we intended as ex-
plained in 1.3.

7 Related Work
Researchers often take into account human factors in
critical socio-technical systems either by specifying
users’ working procedures or by applying system de-
sign methods that help to prevent human errors. Little
work has dealt with the daily relation between human
operators and their powerful equipments, particularly
in situations where technical incidents happen. On the
other hand, fault-tolerant methods applied to this kind
of system have mainly solved purely technical reliabil-
ity problem. Then they could not build total confi-
dence for human operators while using automated
tools.

Concerning the use of so-called “sentinels” in fault-
tolerant component-based systems, as well as in cer-
tain MAS, the work of Klein, Dellarocas and col-
leagues [2003] is also related to the monitoring of a
complex critical system. However, they do not use
simple communicating sentinel agents but complicated
“sentinel components” to detect and deal with excep-
tions occurring inside application components. These
“big” sentinels hence have their own reliability prob-
lem. Besides, Hägg [1996] employs BDI sentinel
agents to detect and recover errors in negotiation proc-
esses between other BDI agents. Nevertheless, these
application agents have to be sufficiently “small” that
the sentinel agents can fully inspect their code. This
condition does not hold in a system having compli-
cated equipments like ATC.

8 Conclusion and Future Work
This paper describes the way in which a MAS can help
in mitigating the effects of software malfunction in a
complex critical system and building confidence for its
users, i.e. air traffic controllers. Because of safety
restrictions, experiments on real traffic control are not
allowed. Therefore, we have developed an ABS, by

using eDEP, an ATC simulation platform, and DimaX,
a multi-agent platform, following the FIPA specifica-
tions [FIPA 2001].

We ran several typical applicative scenarios that
showed the reaction of our MAS to the instant un-
availability of a software tool due to a network failure.
The next step will be to perform human-in-the-loop
experiments with controllers in order to validate the
conformity of the information provided to them with
what they require in situations where some software
tools are not available.

However, the agents themselves, like any supple-
mentary layer added to a system, bring their own li-
ability to fault. A natural extension of the present work
will be to set up mechanism for ensuring a degree of
fault-tolerance at the agent level, which would be of a
computational, domain independent nature. The possi-
ble techniques would include adaptive replication and
exception handling [Marin et al. 2003].

References
[Cristian et al. 1996] F. Cristian, B. Dancey, and J.

Dehn. Fault-tolerance in air traffic control systems.
In ACM Transactions Computer Systems, 14(3):265-
286.

[DimaX 2007] DimaX project team. http://www-
poleia.lip6.fr/~guessoum/DimaX/index.html.

[eDEP 2007] eDEP project team. http://www. eurocon-
trol.fr/projects/edep/. September 2007.

[ESP 2007] European Safety Programme. Draft of the
Guidance Material for Contingency Planning. Tech-
nical report, EUROCONTROL.

[FIPA 2001] FIPA. FIPA Agent Software Integration
Specification.

[Guessoum et al. 2006] Z. Guessoum, N. Faci and J.-P.
Briot. Adaptive Replication of Large-Scale Multi-
Agent Systems - Towards a Fault-Tolerant Multi-
Agent Platform. In Software Engineering for Multi-
Agent Systems IV, LNCS, 3914: 238-253.

[Hägg 1996] S. Hägg. A Sentinel Approach to Fault
Handling in Multi-Agent Systems. In Distributed AI,
LNCS, 1286:181–195.

[Klein et al. 2003] M. Klein, J. A. Rodriguez-Aguilar
and C. Dellarocas. Using domain-independent ex-
ception handling services to enable robust open mul-
tiagent systems: The case of agent death. In
Autonomous Agents and Multi-Agent Systems, 7(1-
2):179–189.

[Marin et al. 2003] O. Marin, M. Bertier and P. Sens.
DARX - A Framework for the Fault-Tolerant Sup-
port of Agent Software. ISSRE’03, Denver.

[Petricel and Costelloe 2007] B. Petricel and C.
Costelloe. First ATC Support Tools Implementation
(FASTI) Operational Concept. Technical report,
EUROCONTROL.

