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Abstract   
Air Traffic Control (ATC) is going to be a 
typical critical socio-technical system in 
which controllers use a large number of dis-
tributed software tools to provide safety ATC 
services. The reliability of these services re-
lies on the availability of the various tools. In 
the process of integrating more and more so-
phisticated tools in their daily work, control-
lers need to feel confident in the reliability of 
their tool set. This paper presents a multi-
agent approach to this reliability problem. We 
propose an agent-based decision-aided system 
that helps controllers in using their multiple 
software tools in situations where some tools 
are not available due to technical incidents. 
As it is critical to conduct experiments on real 
air traffic, we build and test our Multi-Agent 
System (MAS) in a simulation environment, 
thus develop an Agent-Based Simulation 
(ABS). Experimental work on this ABS has 
demonstrated the significance of our system to 
air traffic controllers. 

1 Introduction 
Air Traffic Control (ATC) provides services whose 
objective is to direct aircraft on the ground and in the 
air. Its tasks are to separate aircraft, to ensure safe 
orderly and expeditious flow of traffic, and to give 
information to pilots, such as weather and navigation 
information. 

1.1 Reliabil ity problem 
According to the First ATC Support Tools Implemen-
tation (FASTI) program [Petricel and Costelloe 2007], 
the need for support tools for air traffic controllers has 
never been greater. The forecast growth in air traffic 
requires the adoption of new technologies and related 
procedures enabling the safe and efficient provision of 
ATC services to a larger number of aircraft. Our work 
is concerned with the next generation of software sys-
tems for ATC, which will include software tools. 
These tools will increase the controllers’ capacity at 
the expense of a complexification of their task. Archi-

tecturally, they will be distributed over local area net-
works (LANs) in each control center and the wide area 
network (WAN) between centers (see Section 2 for 
more details).  

The reliability of ATC services relies on the avail-
ability of the various tools. Indeed, the failure of a tool 
or of the connection of a tool with a Controller Work-
ing Position may cause delays or even, in some cases, 
crashes. To avoid such incidents, mechanisms for fault 
tolerance must be built into the support system.  

Moreover, like in any critical socio-technical sys-
tem, the integration of sophisticated tools in the con-
trollers’ daily work currently faces difficulties. On the 
one hand, controllers have to change their usual, 
trusted working procedures. The safety and power that 
the tools are expected to provide will only become 
effective if the controllers are able to make the most of 
the tools’ functionalities. And that strongly depends on 
their familiarity with the tools. On the other hand, the 
controllers need to feel confident in the reliability of 
their software tools. 

1.2 Fault tolerance 
Tools can encounter partial or total failures as a result 
of internal or external events. Fault tolerance is in-
tended to preserve the delivery of correct service in the 
presence of active faults [Cristian et al. 1996]. It is 
generally implemented by error detection and subse-
quent system recovery, and possibly by error contain-
ment. There are mainly two types of approaches to 
improving the fault tolerance of services: replication 
(or preventive approaches) and diagnostic (or correc-
tive approaches).  

At the heart of all fault tolerance techniques is some 
form of redundancy. This means that components that 
are prone to defects are replicated in such a way that if 
a component fails, one or more of the non-failed repli-
cas will continue to provide services with no apprecia-
ble disruption.  

Diagnosis informs the user of the damage and of the 
recovery possibilities. The diagnostic can be relying 
on organization of agents in the environment, excep-
tion handling, monitoring, etc.  

Actually, preventive and corrective approaches are 
complementary [Guessoum et al. 2006] (see also 5.3). 
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This is our longer term objective, but will not be ad-
dressed in this paper. 

1.3 Our approach 
We adopt a corrective approach, especially applied 
when faults occur. We argue that the best way to prove 
the reliability of a support system is to show that the 
ATC system, as a whole, can still provide full traffic 
control services when errors suddenly appear. Indeed, 
if the controllers are timely and adequately informed 
of the incidents, they can accordingly adjust their cur-
rent control tasks and the following tasks. They can 
often manage without some of their tools. According 
to the Guidance Material for Contingency Planning 
[ESP 2007], this kind of working mode can be seen as 
a type of Degraded Mode of Operation.  

Therefore, there exists a need for a decision-aided 
system that helps the controllers in using their multiple 
software tools, particularly in situations where some 
tools are not available, or in other words when techni-
cal incidents happen. Our aim is to show that a suit-
able use of multi-agent technology can help in this 
respect. To develop such a system, we propose a solu-
tion based on software agents (see Section 4). 

1.4 Outline of the paper 
The paper is organized as follows. Section 2 presents 
the ATC system and its basic future architecture. Sec-
tion 3 analyzes a typical example of technical incident. 
Section 4 proposes our MAS solution. Section 5 de-
scribes the development of our ABS for experiments. 
Then in Section 6, an experiment clearly shows how 
our agents react to a typical network failure. Section 7 
discusses related work. Finally, Section 8 draws a 
conclusion. 

2 Air Traffic Control 
 

 
Figure 1. Basic future ATC system architecture. 

 
The current ATC system is airspace-based. The air-

space is divided into many sectors whose size depends 
on the average traffic volume and the geometry of air 
routes. There are usually two air traffic controllers to 
handle the traffic in each air sector: an executive con-
troller who communicates with pilots, and a planning 
controller who plans his colleague’s work. Also, the 
sectors are regrouped into regions each of which is 
under control of a control center. For example, the 
Athis-Mons center is responsible for air traffic control 
in the Parisian region. 

The general structure of the ATC system sketched 
above would not be expected to change. But a new 
architecture would have to support the introduction of 
distributed software tools, as discussed above. Figure 
1 illustrates a typical application context where two 
different control centers are connected with a common 
flight data-processing center through the inter-center 
network (a WAN). In each control center one (or sev-
eral) application server(s) host(s) the various software 
tools in use. These application servers are connected 
with the Controller Working Positions (CWP) by 
means of a local network (LAN).  The LANs of the 
control centers are connected via the inter-center 
WAN. 

A typical example of support tool is the Medium-
Term Conflict Detection (MTCD) [Petricel and Costel-
loe 2007]. Once aircraft trajectories have been pre-
dicted, they can be employed to detect medium-term 
conflicts. There also exist many other tools such as 
Short-Term Conflict Alert (STCA), MONitoring Aid 
(MONA), Airspace Penetration Warning (APW), and 
Minimum Safe Altitude Warning (MSAW). 

3  Typical Example 
In this section, we would like to analyze a typical 
situation in which a technical incident occurs. It can 
help with understanding the influence of the incident 
on the controllers’ work and what they need in such 
situation. 
 

 
 

    
 

Figure 2. Typical example of a handover situation: the 
two controller’s screens on both sides of the border. 
 
We hence consider two (executive) controllers 

(named Co1 and Co2) responsible for two neighboring 
sectors (named S10 and S12), at the border of two con-
trol centers (named A and B). They are often in hand-
over situations, i.e. they have to transfer the control of 
aircraft flying from one sector to the other. We sup-
pose that at a moment there are several potential con-
flicts among which a particular one concerns two air-
craft: TH003 flying from S10 to S12, and TH004 flying 



in the opposite direction. Moreover, all the conflicts 
are going to happen in S10. 

These conflicts can be automatically detected by 
Co1’s MTCD or “manually” by Co1 himself. He does 
or does not perform control operations to resolve a 
detected conflict, depending on the real aircraft trajec-
tories which probably evolve before the conflict hap-
pens. Since Co1 can only resolve conflicts one by one, 
he has to sequence all the detected conflicts to be re-
solved. Therefore, he needs to decide to (or not to) 
resolve a conflict at least T minutes before it happens. 
Indeed, T is common to all the detected conflicts, and 
it has to be sufficiently large that the controller can 
perform good conflict sequencing. 

We suppose that a network failure occurs at the time 
when the potential conflicts appear: center B is dis-
connected from the flight data-processing center (see 
the basic ATC system architected illustrated by Figure 
1). Consequently, a demand for exit flight level change 
for TH004 sent by Co2 to the data-processing center is 
lost. Accordingly, the flight data of TH004 are no 
longer accessible from center A and therefore unusable 
for Co1’s MTCD.  

This failure makes Co1’s MTCD unable to detect 
conflicts not only for TH004, but also for all the air-
craft flying from center B. However, it still correctly 
detects the “local conflicts” that only concern the air-
craft flying in S10. So we can see it as “locally avail-
able”. 

We now consider the controller’s (Co1’s) reaction to 
the unavailability of his MTCD. It is supposed that 
there exists a fault detection equipment which will 
give him some warning. We are thus interested in 
when he is informed of the tool unavailability and in 
which additional information he gets. We would like 
to underline the two following cases. 

In the first case, Co1 is only aware of the unavail-
ability of his MTCD when some potential conflicts are 
closely going to happen (in less than T minutes). As 
discussed above, this will embarrass his conflict se-
quencing, and can then make him nervous.  

In the second case, Co1 is already aware of the un-
availability of his MTCD but does not know its “local 
availability”. He has to detect himself all the potential 
conflicts. To do that, he verifies and follows all the 
aircraft he suspects. However in reality, MTCD is not 
totally unavailable, and still locally available. Such an 
exhaustive verification will unnecessarily increase 
Co1’s workload because, in fact, he can still rely on the 
results given by MTCD for the local conflicts.  

In conclusion, we notice that, in situations where 
some tools are not available, the controllers need not 
only to be timely informed of the unavailability of the 
tools, but also to obtain adequate information about 
their state, e.g. the “local availability” of MTCD. One 
could see that if the controllers are guaranteed to be 
provided what they require to manage without the 
unavailable tools, they will feel more confident on the 
reliability of the support system. 

4 Our Multi-Agent System Solution 
To solve the problem presented in the previous sec-
tion, a decision-aided system for the air traffic control-
lers is needed. Its missions are to communicate with 
the controllers, to inform them of the environment 
state and to show them information of tools’ availabil-
ity. More ambitiously, the decision-aided system 
would be endowed with the capacity to propose cor-
rective actions to be performed following technical 
incidents. 

Besides, this system helps with mitigating the ef-
fects of software faults in a distributed environment. It 
monitors software components which run on different 
machines, and keeps an eye on the interactions be-
tween the users (i.e. the controllers) and these compo-
nents. To this end, it also has to be distributed. It ob-
serves complex data (e.g. air traffic data) at the input 
and output of each computation module of any soft-
ware tool. 

Also, this system builds up confidence for users of a 
safety-critical software system. In consequence, it has 
to guarantee a safety level with respect to the services 
it offers. All its monitoring services have to run in 
real-time so that it can inform the users of some 
change of the software system’s state as soon as it 
happens. Moreover, information it provides need to be 
not only concise but also adequate, in such a way that 
the users can determine exactly what to do in response 
to this change.  

In view of these requirements of the decision-aided 
system to be developed, we propose a Multi-Agent 
System (MAS) solution. Our MAS communicates with 
the controllers through assistant agents and monitor 
the software tools through monitor agents. The capac-
ity of the agents to exchange data with each other will 
allow acquiring in real-time information to be pre-
sented to the controllers. 

4.1 Agents 
Since our agents have to take care of the monitoring of 
software tools and of the communication with the 
controllers, we design different kinds of agent aiming 
to perform these two common tasks. We currently use 
two monitoring agents for each tool, i.e. a data sentinel 
and a computation sentinel, and assign an assistant 
agent to each controller. 

1 Data sentinel agent: observes the input and output 
data of a specific software tool and communicates 
with other agents in order to discover data losses 
(see Section 6 for more details).  

2 Computation sentinel agent: observes the input and 
output data of a specific software tool and commu-
nicates with other agents in order to discover com-
putation faults (e.g. a computation sentinel checks 
timeout errors). 

3 Assistant agent: communicates with other agents in 
order to determine the automated tools’ availabil-
ity, and informs a controller of this availability; an 
assistant agent can observe the controller’s actions 



in such a way that it can notify the monitoring 
agents of relevant events. 

At the individual level, these agents need not to be 
complicated. A monitoring agent simply reacts to 
technical incidents that it discovers itself or of which it 
is notified by other monitoring agents. An assistant 
agent would only be endowed with some limited rea-
soning capacity to be able to propose corrective ac-
tions to perform (which are predefined) following 
incidents. The agents’ simplicity would bring not only 
more reactivity, but also more robustness to the MAS. 

4.2 Organization of our MAS 
On each LAN in a control center we install a group of 
coordinated agents that are distributed over the whole 
local network. Each local group of agents is composed 
of assistant agents and of monitoring agents. We asso-
ciate with each Controller Working Position (CWP) an 
assistant agent. Each tool instance is observed by 
monitoring agents. Please note that monitoring and 
assistant agents may be hosted on any of the machines, 
or even on additional independent network nodes, as 
long as they retain the capacity to display information 
on the controller’s screen. 

When an incident occurs, the related tool’s monitor-
ing agent first discovers the critical situation by using 
the data it gathers from the tool’s input/output, as well 
as the information it receives from other monitoring or 
assistant agents. Then, it transmits information about 
the tool’s state to the assistant agents of the CWPs that 
use this tool. These assistants display green/yellow/red 
flags on their controller's screen, thereby indicating the 
tool’s total/partial availability, together with the rele-
vant information. 

By communicating about observed tools’ data and 
controllers’ actions with each other, the agents can 
notify the controllers of what they should consider 
following their actions perturbed by the incident. For 
instance, in the scenario presented in Section 6, the 
monitoring agents exchange events of request for data 
change so that they can find out lost data due to net-
work failures. Then, when the controllers see this in-
formation shown by their assistants, they know that the 
related aircraft’s flight plan is inconsistent and that 
they cannot use MTCD anymore to detect conflicts for 
it. 

5 Agent-Based Simulation 

5.1 Objective 
Of course the future ATC system we have described 
above has not yet been implemented. Moreover, any 
novel application to a critical system like ATC has to 
be tested in simulations before its real world imple-
mentation. We embed our agents into the eDEP plat-
form (Early Demonstration & Evaluation Platform) 
[eDEP 2007], which provides a distributed simulated 
ATC environment with realistic air traffic. In this way, 
we obtain an Agent-based Simulation. Our agents are 

built with the DimaX platform [DimaX 2007], which 
helps with developing reliable multi-agent systems. 

5.2 ATC simulation platform - eDEP 
eDEP [2007] is a Java platform developed by Euro-
control that uses RMI (Remote Method Invocation) to 
distribute its components over a LAN. It gives a set of 
standard ATC elements, e.g. “airspace” (a database of 
static airspace information); “integrated air surveil-
lance” (a database of surveillance radar tracks); “initial 
flight plan” (an initial plan that defines route con-
straint points and altitude limits); “trajectory predic-
tor” (a trajectory prediction algorithm which uses air-
crafts’ kinematic models to predict the real motion of a 
particular aircraft); and Controller Working Position 
(the main graphical interface to the system based on a 
plan view display of the control sector). The support 
tools for air traffic controllers, e.g. STCA and MTCD, 
are implemented in eDEP as independent components 
which can run on different machines. 

5.3 Multi-agent platform - DimaX 
DimaX is a Java multi-agent platform which gives a 
generic and modular agent architecture, and allows 
high heterogeneity in agent types (reactive, delibera-
tive and hybrid). It is in fact based on the extension of 
modeling and implementation facilities offered by 
object-oriented languages. In DimaX, an agent at the 
smallest granularity is simply a single-threaded object, 
and a complicated agent can be constituted by smaller 
agents. Also, this platform allows adding new behav-
iors to any agent by using programming libraries.  

Since we would like our MAS to be used in a criti-
cal socio-technical system like ATC, the MAS itself 
has to be reliable. DimaX can help with developing 
such MAS. This multi-agent platform is in fact the 
result of the integration of its previous generation 
(named DIMA – Development and Implementation of 
MAs) and a fault-tolerance framework (named DarX 
[Marin et al. 2003]), which brings in services, e.g. 
Fault Detection Service and Replication Service, 
which provides transparent support for making MAS 
fault-tolerant through adaptive replication. 

5.4 Overview of our ABS 
We manage at least two Controller Working Positions 
(implemented by the CWP component in eDEP), be-
longing to two different control centers. The LAN of 
each control center is realized on at least two com-
puters (one for the CWP and the other for the applica-
tion server). The data-processing center is realized as a 
separate machine. This machine together with the two 
LANs make up our image of the inter-center WAN. 
Each application server runs a copy of each of five 
tools, i.e. MTCD, STCA, MONA, APW, MSAW (also 
provided as eDEP components). 

The integration of our DimaX agents and eDEP 
components follows the FIPA Agent Software Integra-
tion Specification [FIPA 2001]. The DimaX platform 
already includes a generic wrapper agent ready to 
provide any other agent (e.g. a monitoring agent or an 



assistant agent) with services which allow this latter 
agent to connect to software components. Special 
wrappers are then built by extending the generic one. 
They need to be hosted on the same machine as the 
components they “wrap”. 

Based on the agent model discussed in 4.2, as a first 
step we install two monitoring agents and two wrapper 
agents for each of software tools: 

1 XXX_DataSentinel, XXX_ComputationSentinel: 
observes the XXX1 component’s input/output data 
and communicates with other agents in order to 
discover faults;  

2 XXX_ObservationWrapper, 
XXX_GeneralWrapper: special wrappers which re-
spectively provide XXX observation and general-
purpose services to the two other XXX_agents; 

Additionally, we endow the CWP with a 
CWP_Assistant which communicates with other agents 
in order to determine the automated tools’ availability, 
and shows this availability in its user interface. The 
following figure illustrates the CWP_Assistant’s user 
interface. It uses green/yellow/red flags to show tools’ 
status. 

 

 
 

Figure 3. CWP_Assistant’s user interface. 

6 Testing Scenario 

6.1 Objective 
The first tests of our agents on the ABS use several 
experimental scenarios one of which corresponds to 
the example presented in Section 3. In this section, we 
will describe in detail this scenario which will illus-
trate the reaction of our MAS to the possible unavail-
ability of a tool due to a network failure. This experi-
ment also aims to demonstrate the usefulness of our 
MAS to the air traffic controllers. 

6.2 Experimental setup 
The experiment runs on the following connected ma-
chines: 

1 Two client machines hosting two CWPs for two 
controllers belonging to two different control cen-
ters (named centers A and B);  

2 Two tool servers hosting two MTCD instances for 
the two control centers;  

3 A data server placed in the common flight data-
processing center (see 5.4). 

                                                 
1 XXX stands for the tool name, e.g. MTCD or STCA. 

6.2 Agent behavior 
We are in a handover situation (as described in Sec-

tion 3). At first, all machines run smoothly and are 
fully connected in a handover situation (e.g. there are 
aircraft flying from the control center B to the control 
center A). Each controller has unlimited access to the 
tool server on his LAN and can freely obtain the flight 
data he needs. The assistant agents display green la-
bels indicating that the software tools are working at 
full capacity. 

 

 
Figure 4. All machines run smoothly and are fully  

connected in a handover situation. 
 

The controller in center B (called CB) then makes a 
flight data change request (e.g. a demand for exit flight 
level change for an outgoing aircraft). However, due to 
some accident, control center B has been disconnected 
from the flight data-processing center. Due to the dis-
connection, this request is not sent to the data center.  

Now, CB’s assistant agent detects that a data change 
request was issued by CB. It notifies the data sentinel 
agent of MTCD in B of this request. This agent in its 
turn informs the monitoring and assistant agents in 
control center A through their simulated WAN connec-
tion.  

 

 
Figure 5. Control center B is disconnected from  

the flight data-processing center (1st phase). 
 

The data sentinel agent of MTCD in A discovers that 
no such flight data change was received from the data-
processing center. This also means that the flight data 
concerning an aircraft which is controlled by center B 
are no longer accessible from A and therefore unusable 
for conflict detection.  

In consequence, the assistant agent of the controller 
in center A displays a yellow flag, informing his con-
troller that the software tool is only available locally, 
i.e. it only gives correct results for aircraft under con-
trol of center A. 



Knowing this, the data sentinel agent of MTCD in 
control centre A signals back to the monitoring agents 
in B that there was on its side a flight data change 
request which was not taken into account. This agent 
notifies the CB’s assistant agent of this incident. 

 

 
Figure 6. Control center B is disconnected from  

the flight data-processing center (2nd phase). 
 

Finally, the CB’s assistant agent then displays a red 
flag, informing his controller that the software tool is 
now unavailable. This is what we intended as ex-
plained in 1.3.  

7 Related Work 
Researchers often take into account human factors in 
critical socio-technical systems either by specifying 
users’ working procedures or by applying system de-
sign methods that help to prevent human errors. Little 
work has dealt with the daily relation between human 
operators and their powerful equipments, particularly 
in situations where technical incidents happen. On the 
other hand, fault-tolerant methods applied to this kind 
of system have mainly solved purely technical reliabil-
ity problem. Then they could not build total confi-
dence for human operators while using automated 
tools.  

Concerning the use of so-called “sentinels” in fault-
tolerant component-based systems, as well as in cer-
tain MAS, the work of Klein, Dellarocas and col-
leagues [2003] is also related to the monitoring of a 
complex critical system. However, they do not use 
simple communicating sentinel agents but complicated 
“sentinel components” to detect and deal with excep-
tions occurring inside application components. These 
“big” sentinels hence have their own reliability prob-
lem. Besides, Hägg [1996] employs BDI sentinel 
agents to detect and recover errors in negotiation proc-
esses between other BDI agents. Nevertheless, these 
application agents have to be sufficiently “small” that 
the sentinel agents can fully inspect their code. This 
condition does not hold in a system having compli-
cated equipments like ATC. 

8 Conclusion and Future Work 
This paper describes the way in which a MAS can help 
in mitigating the effects of software malfunction in a 
complex critical system and building confidence for its 
users, i.e. air traffic controllers. Because of safety 
restrictions, experiments on real traffic control are not 
allowed. Therefore, we have developed an ABS, by 

using eDEP, an ATC simulation platform, and DimaX, 
a multi-agent platform, following the FIPA specifica-
tions [FIPA 2001]. 

We ran several typical applicative scenarios that 
showed the reaction of our MAS to the instant un-
availability of a software tool due to a network failure. 
The next step will be to perform human-in-the-loop 
experiments with controllers in order to validate the 
conformity of the information provided to them with 
what they require in situations where some software 
tools are not available. 

However, the agents themselves, like any supple-
mentary layer added to a system, bring their own li-
ability to fault. A natural extension of the present work 
will be to set up mechanism for ensuring a degree of 
fault-tolerance at the agent level, which would be of a 
computational, domain independent nature. The possi-
ble techniques would include adaptive replication and 
exception handling [Marin et al. 2003]. 
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