
How could object-oriented concepts and parallelism cohabit?

moderator : J.P. Bahsoun
panelists : J.P.Briot, D. Caromel, L.Firaud, 0. Nierstrasz, P. Wegner

1 Introduction

In recent years, a lot of new languages and new con-
cepts have been conceived in order to promote paral-
lelism in the object-oriented framework. These pro-
posals could be investigated using different concepts
related to parallelism and object orientation. Among
these concepts, we can find shared variables/message
passing, inheritance/delegation, reflection ... The de-
grees of a good cohabitation may be appreciated by
combining the above concepts. In order to have sig-
nificant criteria we have to determine how languages
fit some requierments. These requirements should
cover the different phases of programs development
i.e. specification, design and implementation.

To structure the discussion, we may focuss on some
formalisms and languages, in order to specify and to
implement concurrent objects. The benefits of the dif-
ferent classes of these formalisms and languages should
be discussed from a methodological point of view.

The issues to be addressed in this context could
include the following questions: What are the main
characteristic design principles and methodologies of
concurrent object-oriented programming? How could
the current object-oriented methodologies handle con-
current and distributed objects?

2 A Foundation for formalizing Con-
current Objects: Jean Paul Bahsoun
- Universite‘ Paul Sabatier

The underlying metaphor of object orientation is
that of largely autonomous objects with encapsulated
state interacting by message passing. This has led
many researchers to design concurrent object-oriented
programming models. It is well known that concur-
rent programs require a much more careful analysis
to prove them to be correct. We propose to adapt
formal methods used for the specification and ver-
ification of conventional concurrent programs to an
object-oriented framework. The usual definition of an
object consists of an identity, a state, and methods

which modify the state. A software system is com-
posed of several objects which interact by means of
messages. Methods are usually partial, i.e. they may
be safely executed only if certain preconditions hold.
In a distributed environment, the caller usually cannot
guarantee that the precondition of the called method
is met. Hence, preconditions are made explicit as con-
ditions of enabledness, and messages may be blocked
if the corresponding method is disabled. Our aim is to
define a formalism for proving properties of agents and
agent systems, reflecting their structural definition by
inheritance and parallel composition. It therefore has
to be compositional w.r.t. both of these means of soft-
ware construction. To make the model intuitive and
avoid unecessary complexity, parallelism occurs only
between different agents, whereas each agent alone
executes its methods strictly sequentially. All com-
munication among the agents as well as between the
environment and the agents occurs by explicit mes-
sage passing. Therefore, we propose to distinguish
between three levels of reasoning about systems built
from concurrently executing agents, each focusing on
one particular aspect or view of agent systems.

The action level is concerned with the local effects
of single methods or actions offered by an agent. The
execution of a method or action transforms the agent’s
local state. Therefore, a simple formalism based on
pre- and postconditions of methods and actions is suf-
ficient at this level.

At the agent level, we reason about behaviors of
individual agents of a given class, dealing with both
safety and liveness properties. Proof rules take advan-
tage of the encapsulation of an agent’s private state
which may only change by executing methods or ac-
tions defined for the agent. In contrast to the action
level, initialization and fairness conditions are taken
into account. Aspects of communication and interac-
tion with other agents are not dealt with except in the
form of environment assumptions.

Finally, the system level models the top-level view
of the entire system by an external observer. In partic-
ular, it cannot refer to the internal state of any object.
Only the execution of actions by agents and the trans-

195
1074-8970/94 $3.00 0 1994 IEEE

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:15:01 UTC from IEEE Xplore. Restrictions apply.

mission of messages are visible. Typical properties of
interest include synchronization and liveness involving
several agents.

We will define three different formal languages and
proof rules, one for each aspect of reasoning. These
languages will be related by “interface rules”. Care
will be taken to obtain simple and intuitive transi-
tions from one level to the next.The conflict between
inheritance and synchronization constraints is nothing
else than a particular case of the more general prob-
lem that is raised when method constraints and in-
heritance are put together. Indeed, a synchronisation
constraint is a method constraint with a different se-
mantics. Whereas a non-satisfied precondition raises
an exception in the sequential case, it requires waiting
in the parallel case.

In our approach [l], the problems of synchroniza-
tion constraints caused by parallelism between meth-
ods disappears, since the agent itself executes the
methods. Inheritance is treated at the sequential level,
and all the aspects related to parallelism are treated
at the composition level. The three levels of logic pro-
posed correspond well to our intuition. The properties
expressed with the logic of actions are automatically
inherited (if, of course, the concerned method is not
redefined or extended in the subclass). Therefore, only
the proofs of agent properties have to be checked. But,
under some conditions, we can reuse the existing proof
of a property in a subclass.

[l] Jean Paul Bahsoun, Stephan Merz, Corinne
Servieres. A Framework for Formalizing Concurrent
Objects Technical Report-IRIT November 1993

3 Abstract Control Types for Concur-
rency: Denis Caromel- Universite‘ de
Nice

After the initial breakthrough of concurrent
Object-Oriented Languages (OOL) -the paradigm of
active objects or agents, the unification between rou-
tine call and inter-process communication- we are
forced to admit that none of them has succeeded in
addressing all the issues of parallel programming.

First of all, even the underlying basic model of
concurrency of OOL differs in several fundamental
features. Regarding the definition of parallel activi-
ties, we still discern at least the three categories of
processes (sequential, quasi-concurrent, concurrent),
and regarding the semantics of communication, the
variety is even more important (asynchronous, semi-
synchronous, asynchronous with interruption and ren-

dezvous, synchronous, . . .). We believe that successful
languages will offer several kinds of communication:
because specific properties can be proved for each com-
munication type, and within one application domain,
and even one system, there are heterogeneous require-
ments. As to the nature of processes, we conceive
of no other choice but sequential processes for OOL
with some Software Engineering concerns. Probably
OOL featuring concurrent processes will be restricted
to languages dedicated to object-oriented operating
systems.

While objects have succeeded in bringing some
reuse in concurrent programming, so far they have
failed to give a comprehensive answer to a complex
problem we would like to focus on: the reuse of syn-
chronization constraints. Researchers have been try-
ing to design a universal framework for expressing con-
currency control (path expressions, synchronization
counters, activation conditions, enabled-sets, behav-
ior abstractions, pre-post ambles, synchronizers, ...),
but we believe there is no such absolute abstraction;
indeed, most of them present interesting properties
and are useful in specific contexts. Therefore, at the
programming level, we must focus on designing lan-
guages which permit to program and reuse abstrac-
tions: to build Abstract Control Types (ACT) as we
once recognized the need to build user-defined Ab-
stract Data Types, not only to use a few predefined
d at a-s t r u c t u res.

In order to achieve this goal, some characteristics
are needed at the language level. Regarding the con-
current aspects, in our view, the critical features are:
explicit control, routines and requests as first class ob-
jects, access to the list of pending requests. But there
are some other language issues which are not specific
to concurrency. One of them is syntactical: many ab-
stractions use specialized notation and if we want an
ACT approach to be successful, we should be able to
keep at least some flavor of the original syntax. Other
application domains of OOL face the same problem,
namely expressing the syntactic constructs of one lan-
guage within another. We believe we will have to de-
velop better solutions than just overloading and infix
functions. Another issue concerns static type check-
ing: since ACT are programmed and no longer built-in
within a language, static controls are sometimes diffi-
cult to establish. However, since concurrent applica-
tions are shifting towards Open Distributed Systems,
the way we enforce type coherence in software systems
will have to be reconsidered anyway.

Finally, and beyond the language aspects, ACT
need to be made widely available into structured li-

196

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:15:01 UTC from IEEE Xplore. Restrictions apply.

braries of components. We ought to define criteria for
their classification, to formally study the complexity
of their implementation, to precisely document their
properties regarding expressiveness and reuse of syn-
chronization in different application domains. In the
long term, some ACT should be enhanced with their
specific formal system in order to prove properties and
to achieve formal derivations within each particular
framework.

[l] Caromel, D. “Programming Abstractions for
Concurrent Programming”, Technology of Object-
Oriented Languages and Systems (TOOLS Pacific’SO),
November 1990, Sydney, Australia, pp. 245-253.

[2] Caromel, D. “Towards a Method of Object-
Oriented Concurrent Programming”, Communica-
tions of the ACM, September 1993, Volume 36, Num-
ber 9.

4 Reuse and concurrency: Louis
Fdraud-Universiti Paul Sabatier

Object oriented programming is a traditional way
to achieve reuse,however putting it in practice leads
to peculiar questions induced by the existence of con-
current activities: parallelism adds supplementary re-
quirements to solve the potential conflicts occuring
when an object is used.The inclusion of concurrency in
object oriented programming can be reached through
various approaches. Among them,we find object ori-
ented concepts aimed to program parallelism.Here,
synchronization plays an important part in the af-
fair.As a matter of fact, a request to parallel objects
is usually confronted to constraints due to concur-
rency before serviced. Several answers to address this
problem have been proposed through programming
language constructs.Some approaches include explicit
code in each object to treat the requests. Because
of the possibility of scattering this code in meth-
ods,reusability of parallel objects is difficult to achieve.
In other proposale,[l] synchronization is defined as
sets of constraints bound to objects, not as primi-
tives appearing within parallel activities. It seems
more workable to organize reuse by considering the
latter approach, i.e. encapsulating synchronization.
Another way to cope with concurrency is to extend
a sequential object oriented language such as C++
with new mechanisms devoted to implement paral-
lelism . An extension mode makes it possible to build
a parallel program using two class hierarchies [2] .The
first one is devoted to traditional objects features such
as attributes and methods while the second one con-

cerns the behaviour of objects running concurrently.
Then parallel objects can be obtained using a multi-
inheritance mechanism with two lines of ancestors.The
major benefit of this approach is to make it possible to
reuse separately pieces of both hierarchies, the one in-
duced by the sequential classes maintains the reusabil-
ity potentialities of the extended language.In this ap-
proach, parallel programming is mainly viewed as the
hierarchical composition of reusable software compo-
nents [3].In contrast with some other models, we think
that behaviour classes are not to be predefined be-
cause it appears difficult to give an exhaustive taxi-
nomy of concurrent behaviours.The behaviours are to
be built up by developers according to the require-
ments of the parallel applications that they are deal-
ing with.Note that the above extension mechanism is
rather related to a family of sequential languages than
to a particular one,behaviour classes can be viewed as
a kind of coordination language for sequential soft-
ware components. Let us now consider the activity of
software production for a distributed environmentlf
we assume that the developers are aware of the en-
vironment they use, they may want to control how
the objects implementing their application are dis-
tributed.In such a case, they have to program explicit
distribution.To solve this point, several approaches[4]
make it possible to split objects into distribution frag-
ments. If we again look into the strategy of extend-
ing a sequential language to distribution, we have
now to define object oriented concepts suiting these
new requirements. Considering that objects can be
broken down into distributed pieces, it appears now
pertinent to provide the programmer with concepts
describing how the objects are decomposed in frag-
ments and how these fragments are evolving during
the execution of the program.Denoting the constitu-
tion and the evolution of fragments, may be reached
by the means of the concept of a virtual configura-
tion. Configurations can be specialized and reused
as usual software components. Generally, distributed
objects communicate using protocols.Defining proto-
cols in communication classes, outside the implemen-
tation of the features and the configuration descrip-
tion allows to reuse them.From that viewpoint,it ap-
pears that communication supports can also be consid-
ered as reusable software pieces. Software components
reuse in a distributed environment can be obtained by
extending sequential object oriented concepts to new
specificities. In addition to traditional constructs im-
plementing the objects features, new mechanisms are
needed,configuration classes or communication classes
appear as relevant tools. The major advantage of

197

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:15:01 UTC from IEEE Xplore. Restrictions apply.

this approach seems to rest in the preservation of
the reusability power of the sequential underlying lan-
guage.

[l] S. Frolund,G.Agha ”A language framework for
multi-object coordination”. Proc. ECOOP’93 pp 346-
360.

[2] J .P.Bahsoun,L.Fkraud,C.Betournk A two de-
grees of freedom approach for parallel programming
Proc. IEEE ICCL’90 March 1990 New Orleans.pp261-
270.

[3] J.P. Bahsoun, L.Fe‘raud A model to de-
sign reusable ‘parallel software components Proc.
PARLE’92 LNCS Springer Verlag 605 pp 245-260.

[4] G. Kaiser, B.Hailpern” An object based pro-
gramming model for shared data” ACM TOPLAS
April 1992 Vo1.14 no2 pp 201-264

5 A Foundation for Composing Con-
current Objects : Oscar Nierstrasz-
Universite‘ de Genive

Modern software applications can best be described
as Open Distributed Systems (ODS). These applica-
tions are often not only reactive systems - that is,
inherently concurrent and long-lived - but they are
typically susceptible to constantly changing require-
ments. For these reasons, traditional software develop-
ment methods and programming languages are poorly
equipped to address these needs.

Robustness with respect to changing requirements
can be achieved through strong encapsulation (i.e., by
localizing the effects of changes), by raising the level
of abstraction (i.e., achieving a high degree of con-
figurability), and by systematic software reuse (i.e.,
developing generic solutions that can be applied to a
class of problems).

Object-oriented languages go a long way to address-
ing the needs of ODS (1) by providing objects as an or-
ganizing principle for applications, and (2) by provid-
ing various mechanisms (such as inheritance) to sup-
port systematic software reuse. But object-oriented
languages suffer from both computational and com-
positional weaknesses: First, there is no generally ac-
cepted model of concurrent communicating objects.
Second, the notion of a ”software component” is typ-
ically supported in a strictly limited and ad hoc fash-
ion, and may be poorly integrated with other, compu-
tational features of the language.

Many of these problems can be traced to an overem-
phasis on inheritance as not only a mechanism for clas-
sifying objects, but as the principle mechanism sup-

porting systematic code reuse. Though classes, viewed
as software components, actually have two different
kinds of clients - client objects and subclasses - the
compositional interface to subclasses is typically de-
fined using ad hoc rules rather than through the type
system. As a consequence, inheritance can violate en-
capsulation in a variety of ways (as has been well docu-
mented). Furthermore, inheritance of synchronisation
constraints for concurrent and communicating objects
has been shown to be a difficult problem. Finally,
classes provide a strictly limited granularity of soft-
ware component, and are often extended with other
concepts (mixins, generics, modules, etc.) to truly
support systematic software reuse.

Attempts to consider concurrency as an ”add-on”
to sequential languages have yielded numerous anoma-
lies in addition to the problems of inheritance. We
propose to adopt an approach in which objects are
certain kinds of (well-behaved) communicating agents,
and software components are simply abstractions (i.e.,
functions) over the object space. In this view a class
is just a first-order abstraction over objects. A ”wrap-
per” is a higher order abstraction that yields classes or
subclasses. Semantically, an integration of functions,
objects and agents is needed at the lowest level. We
propose that recent progress in the study of process
calculi can provide us with many of the need ingre-
dients for an abstract machine, and that we should
build concurrent object-based languages on top of such
a foundation. The test of this approach will lie in
whether we can succeed in specifying frameworks of
software components for constructing flexible ODs.

6 Interaction Power, Persistence, and
Concurrency: Peter Wegner-Brown
University

The observable behavior of objects cannot be ex-
pressed by computable functions because objects in
software systems have a physical existence in time,
called persistence, that causes them to have time-
dependent physical properties. Functions capture the
transformation power of obejcts at an instant of time
but not their interaction power over a period of time.
Objects determine a continuing marriage contract for
interactive services over time that cannot be captured
by a pattern of one-time sales contracts.

The recognition that functions are too weak to ex-
press the observable behavior of objects over time
has far-reaching consequences. The gulf between al-
gorithmic programming in the small and interactive

198

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:15:01 UTC from IEEE Xplore. Restrictions apply.

programming in the large becomes one of expressive
power rather than merely of scale. Functional and
logic programming languages are seen to express the
observable behavior of functions but not of objects.
The Turing Test is interpreted as an attempt to ex-
press intelligence in terms of the computing power of
objects rather than of computable functions. Church’s
Thesis that Turing machines capture the intuitive no-
tion of effectively computable functions loses its force
because functions do not model software systems.

Abstractions simplify concepts by focusing on their
relevant properties and ignoring irrelevant ones. Ob-
ject abstractions focus on observable attributes of ob-
jects and ignore unobservable attributes. Because
functions ignore time-dependent observable attributes
of objects they do not capture their “fully-abstract”
observable behavior. Functional semantics views in-
terface procedures as instantaneous events in the life-
time of an object and cannot capture noninstanta-
neous procedures with real-time constraints or non-
serializable concurrent execution.

Software objects exist in the same time dimension
as physical objects and can capture the passage of
physical time merely by their existence. The richer
expressive power of objects does not provide greater
transformation power, such as the ability to solve the
halting problem. It provides greater interaction power
in an orthogonal temporal dimension. The orthogo-
nality between transformation power and interaction
power facilitates the independent study of transforma-
tional and interactive properties of objects.

Intractable abstractions are a key to extending
modeling power in both software engineering and non-
constructive mathematics, because useful behavior
can be recovered by further abstraction just as one
dimensional distances can be recovered from a two di-
mensional map. Physicists find no problem in creating
useful abstract theories about an inherently unobserv-
able world of “real” (Platonic) objects, while math-
ematicians create integers and rational numbers by
abstration from the inherently unrepresentable “real”
numbers. Software engineers likewise capture useful
properties of “real” interactive objects in software sys-
tems by focusing on purely functional properties. By
embedding algorithmic computation in an interactive
modeling framework, software engineers can realize
greater modeling power without giving up effective-
ness.

We agree with Milner (CACM, January 1993) that
concurrency is a necessary element of interaction.
However, the breakdown of functional semantics in
concurrent systems is a consequence of their persis-

tence. Sequential software systems constrain concur-
rent activity but cannot eliminate concurrent ex is
tence or nondeterministic interaction with their en-
vironment. Even shared variables of a Von Neumann
computer, though protected against explicit concur-
rency, must handle nondeterministic access by con-
currently existing persistent clients. Concurrent func-
tional and logic languages that capture parallelism
without persistence have a more tractable notion of
time and a more tractable semantics than imperative
objects.

Concurrency is needed to handle extreme situations
in continuously operating software utilities even when
normal system operation is sequential. This situation
is somewhat similar to the need for non Newtonian
physics in extreme situations of very high speed or
very small size. Noncomputable behavior is thus a
necessary extreme feature of most interactive systems
that must be properly handled if misbehavior in ex-
treme situations can cause unacceptable harm (hard
real time constraints). Noncomputability is a form of
computational turbulence that mimics the turbulence
of physical phenomena. The expressive power of in-
teraction is examined in greater detail in [l].

[l] Peter Wegner, The Expressive Power of Inter-
action, Brown Technical Report, Dept of Computer
Science, December 1993.

199

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:15:01 UTC from IEEE Xplore. Restrictions apply.

