Guest Editors’ Introduction

24 1063-6552/98/$10.00 © 1998 IEEE IEEE Concurrency
Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifigue CNRS. Downloaded on November 20,2023 at 15:13:14 UTC from IEEE Xplore. Restrictions apply.

While distinct, the concepts of actors and agents have
both technical and historical connections. In 1977, Carl
Hewitt defined an actor as “a computational agent.”!
More recently, Les Gasser and Jean-Pierre Briot con-
ducted an initial study to explore the relations between
actors and agents.’

What is an actor?

The actor model, defined originally by Hewitt! and Gul
Agha,? is most often described in terms of an actor’s
structure and operation (see Figure 1). An actor is a mes-
sage-processing entity that receives incoming messages
ata mailbox whose “address” names the actor. An actor’s
reaction to a message is determined by the actor’s behav-
ior when the message is processed. A script defines the
behavior. In processing a message, an actor can

* send messages to other actors whose addresses it
knows,

* create new actors, and

® determine its own subsequent, or replacement,
behavior that will process the next message from the
actor’s mailbox.

Message passing is asynchronous, nonblocking, reliable,
and subject to unbounded delay. Additional constructs
or implementation mechanisms can, and often do, intro-
duce ordering and synchrony.

Concurrency arises in the actor model in two ways:

® inter-actor concuwemy—each actor processes its own
messages concurrently with other actors’ message
processing, or

* intra-actor concurrency—in a single actor, the behav-
ior processing one message creates its replacement
to concurrently process another message.

"The actor model has made essential contributions to
the general study of concurrent object-oriented pro-
gramming.* Various object-oriented languages (rang-
ing from Smalltalk®S to C++7) have interpreted and
implemented the model, and it has played a funda-
mental role in the design of several experimental lan-
guages (for example, ABCL, An object-Based Concur-
rent Language®). Developers have created actor-based
applications and systems for concurrent, parallel, and
distributed programming on distributed-memory par-
allel processors, single workstations, and networks of
workstations.

Mail queue \

Message /

\
i

\

|
| |
i i
R 1
R 1
1 1
R ‘

Replacement !
behavior /

v

| Behavior

Become

/Another \
' 1
\ actor /

. e

/Another
\ actor

Figure 1. An actor’s structure and operation.

Smart
agents

Collaborative
learning agents

Cooperation

Collaborative agents Interface agents

Figure 2. An agent taxonomy.

What is an agent?

The wide use of the term agent defies a simple or uni-
versally accepted definition or a comprehensive taxon-
omy. Attempts to characterize agents”!? have con-
tributed to this list of agent attributes:

* autonomy (acts independently),

® continuity (persists over time),

¢ intelligence (can reason),

* mobility (across machine boundaries),

* personality (possesses a human-like persona),

* adaptability (can learn),

* knowledge (about some domain),

® conversation (is directed at a high level),

¢ authority (has the rights of its human sponsor), and
* collaboration (interacts with other agents and people).

Figure 2 shows one agent taxonomy,” proposed by

April-June 1998

25

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifigue CNRS. Downloaded on November 20,2023 at 15:13:14 UTC from IEEE Xplore. Restrictions apply.

Hyacinth Nwana, that involves some of these attributes.

Agent mobility is particularly relevant to concurrency.
Java’s distributed-programming features have spawned
numerous Java-based mobile-agent systems such as
Aglets, Concordia, Odyssey, and Voyager.'! Java’s seri-
alization, introspection, platform independence, and
remote method invocation have accelerated the devel-
opment and positioning of these systems as middleware
in future systems development.

Agents that appear in a user interface are often termed
assistants. An assistant is an agent to which a user can
delegate a specific task. Such assistants can

® screen electronic mail,

® learn how to perform repetitive tasks,

® arrange meetings,

* gather information, and

* make recommendations based on
inferred user preferences or by
relating a current user’s request to
similar requests made by other
users.

Trustworthiness and control are
two deep issues surrounding the use
of agents as assistants. In employing
an autonomous assistant, the user
must trust the agent to act properly on
his or her behalf. For example, to what
extent will a user trust a mail-screening agent that can
delete messages that it believes to be of no interest to
the user? Can an agent be trusted to make the correct
inferences? What will cause the user to gain confidence
in the agent’s abilities? Some argue that agent technol-
ogy is too ill-defined to warrant complete agent control
and that direct manipulation of passive resources is safer
and more productive.!?

Common characteristics

Despite their differences, actors and agents share cer-
tain characteristics: identity, autonomy, communica-
tion, and coordination. Although these characteristics
manifest themselves in different ways, they convey a
sense of how agent-oriented or actor-oriented systems
differ from systems built on other principles. Systems
composed of actors or agents resemble a loose con-
federation of peer entities more than a rigidly struc-
tured configuration of fixed relationships. These sys-
tems can be

Systems composed of
actors or agents

0 resemble a loose con-
federation of peer
entities more than a
rigidly structured
configuration of
fixed relationships.

¢ flexible, where a system can bring different actor
or agent groups into contact without requiring
reprogramming;

* adaptable, where a system can dynamically create
new actors or agents in response to changing con-
ditions; or

* open, where a standard communication protocol
enables interaction among actors and agents that are
implemented in different languages or are executing
on different systems.

IDENTITY

Each actor or agent is assigned or assigns to itself an
identity, a means of distinguishing itself from others. An
identity allows the actor or agent to communicate and
coordinate. The identity of an agent
designed to interact with human
users is particularly important—the
user must have a meaningful way of
referring to the agent. With actors,
the actor’s mail-queue address serves
as the identity, or name, of the actor.
The actor’s identity is determined
by the fact that it is the entity that
processes messages at a given mail
destination. As with actors, an
agent’s identity can be determined
by a name, but a set of the agent’s
abilities can also specify the identity.
Thus, an agent advertises that it can perform a collec-
tion of operations or services. Other agents seeking
these services would be directed to that agent.

AuTONOMY

Autonomy consists of at least three self-centered prop-
erties: actors and agents are self-contained, self-regulating,
and self-directed. Self-contained implies that the actor or
agent has all the machinery needed to fulfill its respon-
sibilities. Although it might interact with others, its capa-
bility is essentially complete.

Self-regulating means that the actor or agent can con-
trol how and when it reacts to requests. In some cases, it
might defer a request—for example, when the state of the
actor or agent does not let it safely attempt the requested
action. Or, it might completely reject the request if it lacks
the required capability or the requester lacks the required
authority.

Self-directed implies an ability to react to changing
conditions, perhaps simply the passing of time, even
without a specific request. In a mechanical sense, this

26

IEEE Concurrency

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifigue CNRS. Downloaded on November 20,2023 at 15:13:14 UTC from IEEE Xplore. Restrictions apply.

concurrency

Appearing in 1998

Actors & Agents

g
to Armtillos

and technologies.

Engineering of Complex Distributed Systems
Presenting requirements for complex distributed systems, recent research results, and
technological developments apt to be transferred into mature applications and products.

Representing a cross section of current work involving actors and agents—autonomy,
identity, interaction, communication, coordination, mobility, persistence, protocols,
distribution, and parallelism.

Object-Oriented Systems
Showecasing traditional and innovative uses of object-oriented languages, systems,

Also, regular columns on mobile computing, distributed multimedia applications, distributed
databases, and high-performance computing trends from around the world.

IEEE Concurrency chronicles the latest advances in high-performance computing, distributed
systems, parallel processing, mobile computing, embedded systems, multimedia
applications, and the Internet.

Check us out at http://computer.org/concurrency

means that an actor or agent has an independent thread
of control. In a logical sense, it has a programmed behav-
ior that allows it to know or discover what action to take
in the prevailing circumstances.

In practice, actors tend to rely more on prepro-
grammed, deterministic behavior, while agents factor
in reasoning, learning, or planning as part of their self-
direction. An actor’s autonomy is often described as
“reactive,” while an agent is often described as “pro-
active.” These terms seem to reflect the views that an
actor only responds to a given stimulus (for example,
an arriving message), while an agent has an agenda that
it actively pursues independent of outside stimuli. In
reality, the agent community often uses reactive to de-
scribe a class of agents that simply reacts to stimuli
(thus, close to actors), as opposed to intentional or delib-
erative agents, which model and reason about them-
selves, each other, and their environment. There are
also ideas on how to build intentional agents from reac-
tive actors.!+15

COMMUNICATION
Communication enables a large-scale computation to
arise from a collection of independent, autonomous

entities. Consistent with the autonomy of actors and
agents, their communication is most frequently asyn-
chronous and message-based. Asynchrony naturally pro-
motes concurrency, and messaging naturally conforms
to the communication structure of distributed-memory
parallel processors and to networks of workstations
(including the Internet). Standard distributed-systems
techniques let actors and agents operate in heteroge-
neous computing environments. The interaction among
actors and agents need not be, and is often not, pre-
determined. Messages can contain identities—of the
sender or of any other parties known to the sender. The
receivers of such messages dynamically discover previ-
ously unknown partners with which they may thereafter
communicate. In this way, systems of actors and agents
more intuitively model human organizations and behav-
ior, which establish and use new acquaintances as a nat-
ural part of their operations.

An interesting difference between actors and agents
is that the recipient of a message sent by an actor is iden-
tity-based while the recipient of an agent’s message can
also be content-based. 1dentity-based means that the re-
ceiver’s identity is specified when the sender emits the
message. In this scheme, the message’s content is mean-

April-June 1998

27

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifigue CNRS. Downloaded on November 20,2023 at 15:13:14 UTC from IEEE Xplore. Restrictions apply.

ingful only to the receiver; no other intermediaries will
attempt to parse the message or interpret its content.
Content-based agent communication indicates that
the message’s structure, and possibly the values in the
message, determines the receiver. An intermediary (a
facilitator in the Knowledge Query and Manipulation
Language!®) can use the structure or content to locate
a receiver that can process and respond to the message.
Historically, actor systems have concentrated on
communicating data (the parameters to and results from
operations), while agents have dealt with communicat-
ing through a set of “speech acts” higher-level concepts
such as arbitrary descriptions and explicit intentions (for
example, request and inform). In the KQML proposal
for agent interoperability, in addition to the actual mes-
sage contents, communication between agents would
also specify the intention, the language used for the con-
tent description, and the concept hierarchy (ontology).!¢

COORDINATION
While communication exchanges information (basic
data or higher-level descriptions) between actors or
agents, coordination lets a set of actors or agents work
together by synchronizing their actions, ensuring co-
herency, and reconciling disparate viewpoints and con-
flicting intentions.!” In the actor community, coordi-
nation has focused on programming-language issues,
and the addressed problems have been closely related
to traditional operating-systems synchronization prob-
lems (for example, exclusion and resource allocation).
A significantissue is transparency—inducing the desired
coordination among actors without changing, or with
minimal changes to, individual actors’ programming. A
transparent coordination scheme lets the same set of
actors interact in different ways, by dynamically chang-
ing their coordination milieu. An individual actor can
change from one coordination domain to another, or
the entire group can adopt a new coordination scheme.
Agent coordination focuses on forming an organiza-
tion defined by individual agents’ roles and proto-
cols.'®1? An agent

* can rely on the organization to help achieve its own
goals and plans,

¢ might have to help other agents complete their own
plans, and

* must respect the organization’s interaction rules.

T'o coordinate agents, the agents might have to articu-
late their own beliefs and plans and reason about other

agents’ beliefs or plans. Thus, agent coordination em-
phasizes knowledge sharing and reasoning, while coor-
dination among actors focuses on synchronization and
performance.

his introduction has provided a brief
survey of basic actor and agent princi-
ples. Articles in the series will highlight
more specific details and application
domains of actors and agents. In the first
article (see page 30), “T'unnel Agents for Enhanced
Internet QoS,” Hermann de Meer, Antonio Puliafito,
Jan-Peter Richter, and Orazio Tomarchio discuss a
growing application domain for actor- and agent-based
technology: distributed and adaptive network control.

%

v

REFERENCES

1. L. Gasser and J.-P. Briot, “Object-Based Concurrent Program-
ming and Distributed Artificial Intelligence,” Distributed Artifi-
cial Intelligence: Theory and Praxis, N.M. Avouris and L. Gasser,
eds., Kluwer Academic Publishers, Dordrecht, The Netherlands,
1992, pp. 81-107.

2. C. Hewitt, “Viewing Control Structures as Patterns of Passing
Messages,” Artificial Intelligence, Vol. 8, No. 3, June 1977, pp.
323-364.

3. G. Agha, “Actors: A Model of Concurrent Computation in Dis-
tributed Systems,” MIT Press, Cambridge, Mass., 1986.

4. D. Kafura and G. Lavender, “Concurrent Object-Oriented Lan-
guages and the Inheritance Anomaly,” Parallel Computers: Theory
and Practice, T L. Cassavant, ed., IEEE Press, Piscataway, N.J.,
1994, pp. 165-198.

5. J.-P. Briot, “Actalk: a Testbed for Classifying and Designing
Actor Languages in the Smalltalk-80 Environment,” Proc. Euro-
pean Conf. Object-Oriented Programming (Ecoop ’89), Cambridge
University Press, Cambridge, UK, 1989, pp. 109-129.

6. J.-P. Briot, “An Experiment in Classification and Specialization
of Synchronization Schemes,” Object Technologies for Advanced
Software ISOTAS *96), Lecture Notes in Computer Science, No.
1049, Springer-Verlag, Berlin, 1996, pp. 227-249.

7. D. Kafura, M. Mukherji, and G. Lavender, “ACT++2.0: A Class
Library for Concurrent Programming in C++ Using Actors,” 7.
Object-Oriented Programming, Vol. 6, No. 6, Oct. 1993, pp. 47-55.

8. A. Yonezawa, ABCL: An Object-Oriented Concurrent Systen, MIT
Press, 1990.

9. H.S. Nwana, “Software Agents: An Overview,” Knowledge Engi-
neering Rev., Vol. 11, No. 3, Sept. 1996, pp. 205-244; http://www.
cs.umbe.edu/agents/introduction/ao/.

28

IEEE Concurrency

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifigue CNRS. Downloaded on November 20,2023 at 15:13:14 UTC from IEEE Xplore. Restrictions apply.

I
[}

July/August Issue

Autonomous Space Systems

To enable more frequent and more intensive space exploration missions at lower cost, NASA’s
new era of solar system exploration is being designed around the concept of sustained intelligent
presence on the space platforms themselves. Al, spacecraft engineering, mission design, software
engineering, and system engineering all have a role to play in these developments.

"b

AT 1-||1 SITE
1998

Al IN HeaLTH CARE
o INTELLIGENT AGENTS
ELF-ADApT)
VE Sormwy,
DATA-M,N, /ARE

Guest edited by JPL's Richard Doyle, this issue will feature articles on spacecraft planning,
scheduling & resource management; spacecraft executives; onboard science data analysis and
knowledge discovery; software architectures for spacecraft autonomy; and testing and validation
of autonomy software — and more!

Also appearing in 1998

o Self-Adaptive Software

» Knowledge Representation: Ontologies

« Intelligent Agents: The Crossroads between Al and Information Technology
 Intelligent Vehicles

 Intelligent Information Retrieval

IEEE Intelligent Systems (formerly IEEE Expert) covers the full range of intelligent system develop-
ments for the Al practitioner, researcher, educator, and user.

I[EEE Intelligent Systems

10. M.J. Wooldridge and N.R. Jennings, “Agent Theories, Archi-
tectures, and Languages: A Survey,” Intelligent Agents: ECAI-94
Workshop on Agent Theories, Architectures and Languages, Springer-
Verlag, 1995, pp. 1-39.

11. J. White, “Mobile Agents,” Software Agents,].M. Bradshaw, ed.,
AAAT Press/MIT Press, Cambridge, Mass., 1997, pp. 437-472.

12. P. Maes, “Agents that Reduce Work and Information Overload,”
Comm. ACM, Vol. 37, No. 7, 1994, pp. 30-40.

13. G. Schneiderman, “Direct Manipulation vs. Agents: Paths to Pre-
dictable, Controllable, and Comprehensible Interfaces,” Sof-
ware Agents,].M. Bradshaw, ed., AAAT Press/MIT Press, 1997,
pp- 97-106.

14. Y. Shoham, “Agent-Oriented Programming,” Artificial Intelli-
gence, Vol. 60, No. 1, 1993, pp. 51-92.

15. Z. Guessoum and J.-P. Briot, From Active Objects to Autonomous
Agents, LIP6 Research Report 1998/015, Laboratoire d’Infor-
matique de Paris 6, Paris 6 Univ.-CNRS, Paris, 1998; ftp://ftp.
lip6.fr/lip6/reports/1998/1ip6.1998.015.ps.gz.

16. T. Finin, Y. Labrou, and J. Mayfield, “KQML as an Agent Com-
munication Language,” Software Agents,].M. Bradshaw, ed.,
AAAT Press/MIT Press, 1997, pp. 291-316.

17. L. Gasser and R.W. Hill, “Engineering Coordinated Problem
Solvers,” Ann. Rev. Computer Science, Vol. 4, 1990.

18. L. Gasser et al., “Representing and Using Organizational Knowl-
edge in DAI Systems,” Distributed Artificial Intelligence, Volume
1I, L. Gasser and M.N. Huhns, eds., Pitman Publishers, London,
1989, pp. vii—xv.

19. A. Drogoul and A. Collinot, “Applying an Agent-Oriented
Methodology to the Design of Artificial Organisation: A Case
Study in Robotic Soccer,” to appear in 7. Autonomous Agents and
Multi-Agent Systems, Vol. 1, No. 1, 1998.

Dennis Kafura is a professor of computer science at the Virginia
Polytechnic Institute and State University. His research interests
include concurrent, distributed, and parallel systems; object-oriented
languages; and Java technologies. He received his MS and PhD in
computer science from Purdue University. He is the author of Object-
Oriented Software Design and Construction with C++ (Prentice-Hall,
1998). He is a member of the ACM and IEEE Computer Society.
Contact him at the Dept. of Computer Science, Virginia Tech, Blacks-
burg, VA 24061; kafura@cs.vt.edu; http://www.cs.vt.edu/~kafura/.

Jean-Pierre Briot is a senior researcher at the Centre National de la
Recherche Scientifique (CNRS), France. He is also a member of the
Laboratoire d’Informatique de Paris 6 (LIP6), where he heads the
Objects and Agents for Simulation and Information Systems research
team. His research interests include object-based and agent-based
models, and architectures and techniques for high-level and adaptive
concurrent and distributed computing. He designed Actalk, a frame-
work for various models of actor-based languages and programs, based
on Smalltalk. He received his doctorate and his babilitation i diriger des
recherches, in computer science from the Pierre and Marie Curie Uni-
versity (Paris 6), France. He coedited Object-Based Parallel and Dis-
tributed Computation (LNCS, No. 1107, Springer-Verlag, 1996). He
is a member of the ACM. Contact him at LIP6, Paris 6-Case 169, 4
place Jussieu, 75252 Paris Cedex 05, France; jean-pierre.briot@lip6.fr;
http://www.lip6.fr/oasis/~briot.

April-June 1998

29

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifigue CNRS. Downloaded on November 20,2023 at 15:13:14 UTC from IEEE Xplore. Restrictions apply.

