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Abstract. The dependability of  open multi-agent systems is a particular 
concern, notably because of their main characteristics as decentralization and no 
single point of control. This paper describes an approach to increase the 
availability of such systems through a technique of fault tolerance known as 
agent replication, and to increase their reliability through a mechanism of agent 
interaction regulation called law enforcement mechanism.  Therefore, we 
combine two frameworks: one for law enforcement, named XMLaw, and 
another for agent adaptive replication, named DimaX, in which the decision of 
replicating an agent is based on a dynamic estimation of its criticality. 
Moreover, we will describe how we can reuse some of the information 
expressed by laws in order to help at the estimation of agent criticality, thus 
providing a better integration of the two frameworks. At the end of the paper, 
we recommend a means to specify criticality monitoring variation through a 
structured argumentation approach that documents the rationale around the 
decisions of the law elements derivation.  
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1   Introduction 

There are many definitions in the literature for agents and, consequently, multi-agent 
systems. And despite their differences, all of them basically characterize a multi-agent 
system (MAS) as a computational environment in which individual software agents 
interact with each other, in a cooperative manner, or in a competitive manner, and 
sometimes autonomously pursuing their individual goals. During this process, they 
access the environment’s resources and services and occasionally produce results for 
the entities that initiated these software agents [1]. As the agents interact in a 



concurrent, asynchronous and decentralized manner, this kind of system can be 
categorized as a complex system [2].  

The absence of centralized coordination data makes it hard to determine the current 
state of the system and/or to predict the effects of actions. Moreover, all of the 
possible situations that may arise in the execution context led us to be uncertain about 
predicting the behavior of agents. However, in critical applications such as business 
environments or government agencies, the behavior of the global system must be 
taken into account and structural characteristics of the domain have to be incorporated 
[10]. 

A particular issue that arises from this kind of software is: how we can ensure their 
dependability (which is the ability of a computer system to deliver service that can 
justifiably be trusted [3]) considering the reliability of critical applications and 
availability of these agents. There are some proposals to address such problem 
([3][4][5][6], for instance, for fault tolerance and [7][8] for reliability) which have 
been proposed in the last few years using different approaches; each one solved a 
restricted problem involving dependability. 

In this paper we propose an approach to increase the availability of multi-agent 
systems through a technique of fault tolerance known as agent replication, and to 
increase its reliability through a mechanism of agent interaction regulation called law 
enforcement mechanism. Therefore, we will combine two frameworks. The first 
framework, named XMLaw, manages law enforcement to increase reliability and 
correctness. The second framework, named DimaX, manages adaptive replication of 
agents in order to increase fault-tolerance. In DimaX, the decision of replicating an 
agent is based on a dynamic estimation of its criticality given by a criticality 
monitoring strategy. The agent criticality defines how important the agent is to the 
organization and consequently to the system. The estimation of the criticality of an 
agent can be based on different information, as the messages it sends or receives, or 
the role it plays, etc. In this paper, we will describe how we can reuse some of the 
information expressed by laws, and supported by XMLaw, in order to further 
contribute to the estimation of agent criticality, thus providing a better integration of 
the two frameworks. The novelty of this contribution is in the proposed combination 
of law-based governance and replication-based fault-tolerance, rather than in specific 
contributions in law-based governance or in fault-tolerance. 

We also propose a means to specify the criticality monitoring strategy through a 
structured argumentation [24] that documents the rationale around the decisions of the 
law elements derivation. However, it will not be detailed in this paper. Moreover, we 
also provide a framework that implements the criticality monitoring variation 
behavior specified. 

The subsequent sections are organized as follows: Section 2 presents an 
introduction to the agent replication-based fault tolerance for multi-agent systems, and 
Section 3 presents the law enforcement approach for increasing the reliability of these 
systems. Section 4 states a scenario for the problem description. Section 5 details the 
proposed solution for the problem as an integrated architecture. This architecture is 
the integration of both approaches presented in Section 2 and 3. Section 6 presents 
one of the case studies implemented to validate the concepts and the architecture. And 
finally, Section 7 concludes this paper and presents future works. 



2   Fault Tolerance in Multi-Agent Systems: Agent Replication 

The multi-agent systems deployed in an open environment, where agents from 
various organizations interact in the same MAS, are distributed over many hosts and 
communicate over public networks, hence more attention must be paid to fault 
tolerance.  

Several approaches ([4][14][15]) address the multi-faced problem of fault tolerance 
in multi-agent systems. Some of them handle the problems of communication, 
interaction and coordination of agents with the other agents of the system. Others 
address the difficulties of making reliable mobile agents, which are more exposed to 
security problems. Some of them are based on replication mechanisms [9], and as 
mentioned before they have solved many problems of ubiquitous systems.  

Agent replication is the act of creating one or more replicas of one or more agents, 
and the number of each agent replica is the replication degree; everything depends on 
how critical the agent is while executing its tasks. Among the significant advantages 
over other fault-tolerance solutions, first and foremost, agent replication provides the 
groundwork for the shortest recovery delays. Also, generally it is less intrusive with 
respect to execution time. And finally, it scales much better [9]. There is a framework, 
named DimaX [6], that allows dynamic replication and dynamic adaptation of the 
replication policy (e.g., passive to active, changing the number of replicas). It was 
designed to easily integrate various agent architectures, and the mechanisms that 
ensure dependability are kept as transparent as possible to the application. Basically, 
DimaX is the integration between a multi-agent system called Dima and the dynamic 
replication architecture for agents called DarX. 

There are two cases that might be distinguished: 1) the agent’s criticality is static 
and 2) the agent’s criticality is dynamic. In the first case, multi-agent systems have 
often static organization structures, static behaviors of agents, and a small number of 
agents. Critical agents, therefore, can be identified by the designer and can be 
replicated by the programmer before run time.  

In the second case, the agent criticality cannot be determined before run time due 
to the fact that the multi-agent systems may have dynamic organization structures, 
dynamic behaviors of agents and a large number of agents. Then it is important to 
determine these structures dynamically in order to evaluate agent criticality. The 
approach detailed in [16] proposes a way of determining it through role analysis. It 
could be done by some prior input from the designer of the application who specifies 
the roles’ weights, or there would be an observation module for each server that 
collects the data through the agent execution and their interactions. In the second 
approach, global information is built and then used to obtain roles and degree of 
activity to compute the agent criticality.  

Another way of dynamically determining these structures to evaluate agent 
criticality is to represent the emergent organizational structure of a multi-agent system 
by a graph [6]. The hypothesis is that the criticality of an agent relies on the 
interdependences of other agents on this agent. First, the interdependence graph is 
initialized by the designer, and then it is dynamically adapted by the system itself. 
Some algorithms to dynamically adapt and describe it are proposed in [6]. 

We will present here an enhancement of these approaches and it will be further 
described in Section 5. Basically, we improved the agent criticality calculation 



through dynamic elements present during interactions with other agents. These 
elements will be described in the next section while the law enforcement approaches, 
especially the one that was chosen, are exposed. 

3   Law-Governed Interaction 

In open multi-agent systems the development takes place without a centralized 
control, thus it is necessary to ensure the reliability of these systems in a way that all 
the interactions between agents will occur according to the specification and that 
these agents will obey the specified scenario. For this, these applications must be built 
upon a law-governed architecture.  

In this kind of architecture, enforcement that is responsible for the interception of 
messages and the interpreting of previously described laws is implemented. The core 
of a law-governed approach is the mechanism used by the mediator to monitor the 
conversations between agents. 

Note that law-governed approaches have some relations with general coordination 
mechanisms (e.g., tuple-space mechanisms  like Tucson [26]) in that they specify and 
control interactions between agents. However, the specificity of law-governed 
mechanisms is about controlling interactions and actions from a social (social norms) 
perspective, whereas general coordination languages and mechanisms focus on means 
for expressing synchronization and coordination of activities and exchange of 
information, at a lower (not social) computational level. 

Among the models and frameworks that were developed to support law-governed 
mechanism (for instance, [7][8][17][18]), XMLaw [7] was chosen for three main 
reasons. First, because it implements a law enforcement approach as an object-
oriented framework, which brings the benefits of reuse and flexibility. Second, it 
allows normative behavior that is more expressive than the others through the 
connection between norms and clocks. And finally, it permits the execution of Java 
code through the concept of actions. Thus, in this section, we explain the XMLaw 
description language [7] and the M-Law framework [19].  

M-Law works by intercepting messages exchanged between agents, verifying the 
compliance of the messages with the laws and subsequently redirecting the message 
to the real addressee, if the laws allow it (Figure 1). If the message is not compliant, 
then the mediator blocks the message and applies the consequences specified in the 
law.  

 
Fig. 1. M-Law Architecture. 

 



This infrastructure, whenever necessary, can be extended to fulfill open system 
requirements or interoperability concerns. M-Law architecture is based on a pool of 
mediators that intercept messages and interpret the previously described laws. 

M-Law was built to support law specification using XMLaw. XMLaw is the 
description language used to configure the M-Law mediator by representing the 
interaction rules of an open system. These rules are interpreted by M-Law that 
analyzes the compliance of software agents with interaction laws at runtime. 
Basically, interactions should be analyzed and subsequently described using the 
concepts proposed in the model during the design phase. After that, the concepts have 
to be mapped to a declarative language based on XML. It is also important to point 
out that agent developers from different open MASs must agree upon interaction 
procedure. In fact, each open MAS should have a clear documentation about the 
interactions’ rules. By doing that, there is no need of agent developers’ interaction. 

Interaction’s definitions are interpreted by a software framework that monitors 
component interaction and enforces the behavior specified by the language. Once 
interaction is specified and enforced, despite the autonomy of the agents, the system’s 
global behavior is better controlled and predicted. Interaction specification of a 
system is also called the laws of a system. This is because besides the idea of 
specification itself, interactions are monitored and enforced. Then, they act as laws in 
the sense that they describe what can be done (permissions), what cannot be done 
(prohibitions) and what must be done (obligations). 

Among the model elements, the outer concept is the LawOrganization. This 
element represents the interaction laws (or normative dimension) of a multi-agent 
organization. A LawOrganization is composed of scenes, clocks, norms and actions. 
Scenes are interaction contexts that can happen in an organization. They allow 
modularizing interaction breaking the interaction of the whole system into smaller 
parts. Clocks introduce global times, which are shared by all scenes. Figure 2 
summarizes the XMLaw conceptual model, its concepts and their relations. 

 
Fig. 2. Partial View of XMLaw Conceptual Model 

  



Norms capture notions of permissions, obligations and prohibitions regarding 
agents’ interaction behavior (as mentioned before). Actions can be viewed as a 
consequence of any interaction condition; for example, if an agent acquires an 
obligation, then action “A” should be executed. 

Scenes define an interaction protocol (from a global point of view), a set of norms 
and clocks that are only valid in the context of the scene. Furthermore, scenes also 
identify which agents are allowed to start or participate in the scene.  

Events are the basis of the communication among law elements; that is, law 
elements dynamically relate with other elements through event notifications. 
Basically, we can understand the dynamic of the elements as a chain of causes and 
consequences, where an event can activate a law element; this law element could 
generate other events and so on. 

Furthermore, laws may be time sensitive, e.g., although an element that is active at 
time t1, it might not be active at time t2 (t1 < t2). XMLaw provides the Clock element 
to take care of the timing aspect. Temporal clocks represent time restrictions or 
controls and they can be used to activate other law elements. Clocks indicate that a 
certain period has elapsed producing clock-tick events. Once activated, a clock can 
generate clock-tick events. Clocks are activated and deactivated by law elements. 
Both are referenced to other law elements. 

Constraints are restrictions over norms or transitions and generally specify filters 
for events, constraining the allowed values for a specific attribute of an event. For in-
stance, messages carry information that is enforced in various ways. Constraints can 
be used for describing the allowed values for specific attributes. Constraints are 
defined inside the Transition or Norm elements. Constraints are implemented using 
Java code. The Constraint element defines the class attribute that indicates the java 
class that implements the filter. This class is called when a transition or a norm is 
supposed to fire, and basically the constraint analyzes if the received values are valid. 
For instance, a constraint can verify if the date expressed in the message is valid; if it 
is not, the message will be blocked. 

The proposal here is not to detail the framework or the language, so further details 
can be found in [7] and [19]. The next sections will address both DimaX and XMLaw 
and how their integration works. 

4   Problem Description 

Our approach is based on the idea that the XMLaw’s elements can be analyzed in 
order to estimate the agent criticality. It means that a norm or constraint, for example, 
could increase the agent criticality according to their semantic. And the law developer 
could specify all the elements that can increase or decrease the agent criticality while 
he/she is developing the laws.  

To further explain our approach, we describe a scenario where two agents 
exchange messages in order to achieve their goals. During the interaction, they are 
regulated by rules that do not allow them to send some types of messages 
(performatives) and some other normative elements. The idea of illustrating this 
scenario is to find out how and which elements (norms, clocks, etc.) of the XMLaw 



could improve the agent criticality analysis that is done by DimaX. And how can it be 
best accomplished, considering coupling, modularity and reuse of the XMLaw 
specification? 

 
4.1 A first example: the Contract Net Protocol 
 
Before starting this scenario description, we will describe a negotiation scene based 

on FIPA-CONTRACT-NET protocol [21]. The goal is to map a FIPA compliant 
protocol into a state machine protocol and discover (through this illustration) the 
rationale around the XMLaw protocol specification. And then, we will present the 
XMLaw final protocol state machine for the scenario that will be soon detailed.  

 

 
Fig. 3. a) FIPA-CONTRACT-NET protocol [21], b) FIPA Protocol State Machine 

 



In the FIPA-CONTRACT-NET protocol, basically, the Initiator requests m 
proposals from other agents by issuing a call for proposals (cfp) act, which specifies 
the task. Participants receiving this message are viewed as potential contractors and 
are able to generate n responses. Of these, j are proposals to perform the task, 
specified as propose acts. The Participant’s proposal includes the preconditions that 
the Participant is setting out for the task, which may be the price; the time when the 
task will be done, etc. Alternatively, the i=n-j Participants may refuse to propose. 
Once the deadline passes, the Initiator evaluates the received j proposals and selects 
agents to perform the task; one, several or no agents may be chosen. The l agents of 
the selected proposals will receive an accept-proposal act and the remaining k agents 
will receive a reject-proposal act. The proposals are associated with the Participant, so 
that once the Initiator accepts the proposal; the Participant acquires a commitment to 
perform the task. Once the Participant has completed the task, it sends a completion 
message to the Initiator in the form of an inform-done or a more explanatory version 
in the form of an inform-result. However, if the Participant fails to complete the task, 
a failure message is sent. 

Now, suppose the protocol state machine shown in figure 3, where si represents the 
protocol’s states during its execution and the clocks’ representation are the clocks 
activation and deactivation for each + or -, respectively. The protocol starts with the 
state s0 when the Initiator solicits m proposals from other agents and it ends with the 
states s4, or s5, or s7, it depends on the protocol’s flow. 

 
4.2 A second example: a negotiation protocol 
 
Considering this rationale for developing the protocol state machine, imagine a 

scenario where there are two agents: the customer and the seller of an institution. 
Suppose that an open multi-agent system exists where the agents that want to buy a 
product may enter or leave at any time, and that there are sellers in this institution that 
want to sell the product for the highest price that they can achieve. Then, we have a 
negotiation scene where each agent wants to succeed and there is a protocol in this 
scene that represents all the messages that can be exchanged and all the rules that rule 
this scene and the participants. 

At any time, any agent can enter into the scene and initiate the protocol. If we 
specify this scene in XMLaw, we have to specify the protocol as a state machine, 
where each transition of the protocol is activated by a message sent by an agent and it 
can activate the other elements of XMLaw, as clocks and norms. 

 
Fig. 4. Protocol State Machine Representation of the Scene Negotiation 

 



Basically, the negotiation proceeds as follows: a customer initiates a negotiation by 
sending a proposal for a book to a seller. It informs the maximum price that he will 
pay for the book. The seller can accept the proposal or can refuse it. If he accepts, it 
can send proposals with lesser or equal price informed by the customer. When the 
customer receives the proposal, it has 2 minutes to decide if he will accept it or not. 
After 2 minutes, if the customer hasn’t answered the seller, it can sell the product to 
another customer. Otherwise the seller is not allowed to sell it to anybody else. If the 
customer accepts it, the seller informs the bank where the payment must be made. 
Then the customer has the obligation of paying for the product and of informing the 
number of the voucher to the seller. The scene ends then when the customer informs 
that he paid it with the proof of payment (figure 4 and table 1). 

If we consider that when an event (such as clock activation/deactivation, norm 
activation/deactivation, etc.) occurs during the scene execution, the agent criticality 
could increase or decrease, since the agent becomes more or less important; thus, each 
element should be taken into account in order to calculate the agent criticality in the 
best way. Moreover, other elements and events that might not be handled by XMLaw 
should be analyzed in order to evaluate how they could influence the agent criticality 
analysis. For instance, when an agent starts playing a role its criticality may increase 
or decrease. 

Table 1.  Protocol State Machine Description.  

State 
Initial Final 

Message Description Event 

s0 s1 Cfp The customer starts a negotiation 
sending a proposal to a seller. 

 

s1 s1 propose The seller accepts the customer’s 
proposal. He sends proposals with 
lesser or equal price informed by the 
customer. 

Clock 
activation 
Norm 
activation 

s1 s6 Refuse The seller refuses the customer’s 
proposal and the protocol ends. 

 

s2 s3 Accept The customer accepts the seller’s 
proposal before 2 minutes. 

Clock 
deactivation 

s2 s7 Refuse The customer refuses the seller’s 
proposal before 2 minutes.  

Clock 
deactivation 

s2 s8 inform The customer doesn’t answer the seller 
and the seller informs him that he can 
offer the book to another customer. 

Norm 
deactivation 

s3 s4 Inform The seller informs the customer the 
bank where he has to pay for the book 
and he has the obligation to pay in 
order to receive the book. 

Norm 
activation 

s4 s5 Inform The customer informs the voucher and 
has the permission to receive the book.  

Norm 
deactivation 

 
In the context of the negotiation scene, when the customer must answer the seller if he 
will accept his proposal or refuse it since the clock activation event will be fired, his 
criticality should increase, since the seller cannot sell the product while the customer 
doesn’t answer him. Thus, the customer is very important to the seller at this time and 
should not crash. Then, when the clock deactivation is fired, the customer criticality 
should decrease. Another situation would be the payment for the product. Since the 



customer has the obligation of paying for the product when he accepts the price, his 
criticality should also increase. Those variations are shown in figure 5. 

 
Fig. 5. Criticality variation for customer role 

We can see the protocol execution on the left side of the picture. Next to it is a 
draft of the main criticality variation. This main result is based on the criticality 
variation that occurs as a result of each event, as previously mentioned. The clock’s 
picture represents the clock activation/deactivation event and the letter N represents 
the norm activation/deactivation event during the protocol execution, according to the 
plus or minus sign that comes before the picture or letter. For instance, in an 
analogous manner, if we analyze the seller criticality during the scene execution, his 
criticality should increase when the customer proposes a price for the product because 
he has the obligation to answer him. 

That said, it is important to highlight that the goal of this work is to combine the 
law-based governance with a replication-based fault-tolerance technique. This 
combination will improve the agent criticality estimation. This, by its turn, improves 
the agent replication technique of open multi-agent systems.  Our proposal is that the 
agent criticality estimation will be done also through the events generated by the law 
elements. Those events may be fired during a protocol execution and can increase or 
decrease the agent criticality according to the type of the event and to its semantic. It 
could be a norm/clock/role/transition activation/deactivation event or even a message 
arrival event.  

In the next section, we will explain how we extended both XMLaw and DimaX to 
attempt both the design strategies of estimating the agent criticality and its execution 
at runtime. We also will describe the integrated architecture developed. 



5   Proposed Solution: The Integration 

In this section we will present the integrated architecture and we will describe the 
proposed solution, first from the XMLaw and M-Law point of view, second from the 
DimaX point of view. At the end, we conclude describing how to use the mechanism 
and instantiate the resultant framework. 

5.1   The Proposed Architecture 

A sample scenario was created in order to illustrate the integrated architecture of 
both M-Law and DimaX framework (figure 6). Considering two agents: Agent A and 
Agent B, each one has its monitor agent called, Agent A's Monitor and Agent B' 
Monitor, respectively. Suppose that both are running in the same machine (host) and 
that each monitor will register itself in a communication port through a socket 
communication channel when it starts its execution. 

 

 
Fig. 6. The Integrated Architecture Mechanism Overview 

The following flow will be executed when the agents are created and, for instance, 
when an interaction scene between both is started: 

0. DimaX Server is started; 
1. M-Law Server is started and the XMLaw file is loaded 
2. DimaX monitors the agent interactions 
3. The Agent B sends a message to the Agent A 
4. M-Law mediator applies the enforcement 



5. The criticality analysis module monitors the events and recalculate the agent’s 
criticality. This module fires an event to be sensed by the ExternalObserver of each 
agent 

6. The ExternalObserver listens to the events and opens a socket to send the 
information to the (DimaX) monitor of the agent. 

Therefore, during the M-Law enforcement, whenever the component of criticality 
of M-Law detects to recalculate the agent criticality, it fires an event of type 
update_criticality in the scene context. The ExternalObserver that is listening for that 
event and for that agent in this scene context will send a message through socket 
communication to the address and port number where the monitor of that agent is 
listening. 

5.1.1   XMLaw Extensions 

 We have extended XMLaw through two ways: first we added more expressivity 
and functionality to the Role element (Figure 7). It defines the organization’s and 
scene’s roles, and is important because the agent behavior is regulated also through 
the role that it plays in an organization or scene. And the second extension is the new 
element: CriticalityAnalysis. With the adapted Role element, when an agent requests 
to enter in an organization, it has to inform the role it wants to play; and when a scene 
is executed, the agent, if accepted, will have to play its role. An organization has one 
or more roles to be played by agents and an agent can play different roles in different 
organizations. The new XMLaw conceptual model is presented in figure 7. 

 

 
Fig. 7. XMLaw Conceptual Model 

 



Considering the new element CriticalityAnalysis, it can be added in the 
organization or scene level. Thus, there would be a criticality analysis module for 
each scene in a way that, for instance, if an agent is interacting with other agents in 
two different scenes, and if those scenes have their criticality analysis module 
specified, the agent resultant criticality will be composed by the criticality variation of 
the scenes currently running. 

The CriticalityAnalysis element has three elements: Weight, Increases and 
Decreases. The first one defines the weight that each event type contributes to the 
monitoring. Those events are the ones that increase or decrease the agents’ criticality 
and will be referenced in the other two elements. The Weight element is optional 
because the system assumes some values to the event types that may occur. It only 
should be specified if the designer wants to give more or less importance to an event 
type than it was defined. For instance, if the law designer doesn’t want to monitor the 
message arrival event, he should specify its value as zero. 

The other two elements (Increase and Decrease) specify the necessary information 
for the detection and handling of the specified event by the monitoring module in 
order to recalculate the criticality of a given agent. The Increases element contains the 
list of events that contribute to increasing the agent criticality. And the Decreases 
element contains the list of events that contribute to decreasing the agent criticality.  

Both Increase and Decrease elements are specified through three attributes and the 
Assignee element. The event-id attribute specifies the identification of the event to be 
sensed, the event-type attribute specifies the event type of the event defined by the 
event-id attribute, and the value attribute represents the associated value that the event 
contributes to the increasing or decreasing of the agent criticality. And, finally, the 
Assignee element contains the agent information: the agent role and a variable with 
the agent instance.  

Table 2: Criticality specification in XMLaw 
<CriticalityAnalysis> 
  <Weight ref="role" value="0.2"/> 
  <Weight ref="message" value="0"/> 
  <Increases> 
    <Increase event-id="customer" event-type="role_activation" 
 value="0.3"> 
 <Assignee role-ref="customer"  
    role-instance="$customer.instance"/> 
    </Increase> 
    <Increase event-id="seller" event-type="role_activation" 
 value="0.7"> 
 <Assignee role-ref="seller"  
    role-instance="$seller.instance"/> 
    </Increase> 
    <Increase event-id="time-to-decide"  
 event-type="clock_activation" value="0.5"> 
 <Assignee role-ref="customer"  
    role-instance="$customer.instance"/> 
    </Increase> 
    <Increase event-id="customer-payment-voucher"  
 event-type="norm_activation" value="0.8"> 
 <Assignee role-ref="customer"  
    role-instance="$customer.instance"/> 
    </Increase> 
    </Increases> 
    … 
  </Decreases> 
</CriticalityAnalysis> 



Considering the sample scenario presented in the problem description section, 
table 2 shows the resultant specification to the criticality monitoring of the specified 
scene as an example of XMLaw specification using the described elements. For 
instance, notice that the message arrival events will not be monitored. On the other 
hand, the role activation/deactivation event will be monitored with a different value 
(0.2). 

Basically, the specification shows that, when an agent starts playing the customer 
role, its criticality has to be recalculated and updated by a weight of 0.3. The same 
happens when an agent starts playing the seller role, its criticality has to be updated 
by a weight of 0.7. Those actions are executed when the role activation event is fired. 

5.1.2 M-Law Framework Extensions 

This section presents the extensions developed in M-Law in order to implement the 
behavior of the criticality's monitoring module added to the XMLaw language. And it 
also presents the mechanism that implements this behavior. 

As the M-Law is an event based framework where the protocol state moves 
forward through event notification, the new element CriticalityAnalysis had to be 
implemented like the other elements. Doing it by this way, it would generate and 
sense the system events and would minimize any overhead to the system. 

That said, the CriticalityAnalysisExecution class implements the IObserver 
interface (figure 8). The IObserver interface defines the behavior of the events 
consumers. The consumers subscribe their interests in some event type using the 
attachObserver method. Thus, when the CriticalityAnalysisExecution class is 
instantiated, it subscribes itself for each specified event in the Increases and 
Decreases lists of the CriticalityAnalysis element, and for the event of message arrival 
if specified. 

When the instance of the CriticalityAnalysisExecution object is executing and 
receives an event, it checks if the event data match with the specified data concerning 
the agent that will have its criticality updated. To this end, the RoleReference received 
is compared to the expected assignee RoleReference. 

Once the event that occurred is the expected one, the updateAgentCriticality 
method is executed. This method receives the agent identification, the event weight 
value, the event value, the operation and the additional information about the event to 
be written by the agent monitor in the log.   

This method doesn’t update the criticality of the agent, it calculates the new value 
based on the collected data and sends to the agent monitor running in DimaX. Then, 
the monitor will apply one of its strategies for updating the agent criticality with the 
received value, combining or not with other strategies, and will set the finally 
criticality value which, by its turn, will be used to calculate the agent number of 
replicas. 



IObserver

Weight

RoleReference

CriticalityAnalisysExecution 0..50..5

EventDescriptor

0..*0..*
1..*1..*

0..*

increaseList

0..*

decreaseList

 
Fig. 8. Partial View of the Criticality Module Class Diagram 

5.1.3 DimaX Framework Extensions 

In this work we rely on the design decisions of DimaX. The model of failure 
considered is crash and the number of replicas depends on the criticality. However, 
DimaX also assumes that resources for replicas may be bounded. Furthermore, the 
mechanism is dynamic. That is resources for replicas may be redistributed 
dynamically depending on the evolution of the relative criticalities of the agents. 
We extended DimaX through the same extension reasoning used to estimate through 
the role analysis [16][23] approach for updating the agents’ criticality.  
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BasicCommunicatingAgent

AgentXMLaw

Agent

XMLawBasedMonitor

SocketCommunication

 
Fig. 9. DimaX Extensions Class Diagram 

 
Figure 9 shows the class diagram of the extensions. The 

BasicCommunicatingAgent and AgentMonitor classes there were already in the 
DimaX framework. And the Agent class there was already in the M-Law framework. 
Finally, the Thread class is a Java class. We created the XMLawBasedMonitor class 
which extends the AgentMonitor class and implements the agent monitor behavior. It 
has a reference to the AgentXMLaw class, which is the class that implements the agent 



behavior and delegates the law-enforcement tasks to the Agent class in a transparent 
way. Moreover, the MonitorTask is a thread that listens for the messages sent through 
the socket communication channel and, when a message arrives, starts the mechanism 
of updating the agent criticality implemented by the agent monitor through the 
computeCriticalityFromXmlaw call method. 

The message received contains the agent identification, the criticality value 
calculated by XMLaw, the operation to be performed and the additional information 
about the event generated. The criticality value is the event type weight value (ae) 
multiplied by the event weight value (ve). Let the wi(t) the agent i’s criticality in the 
instant t, the final criticality value varies according to the following criteria: 
− If it was generated by a Increase element: 

wi (t) = wi (t) + ae*ve .  

 
− If it was generated by a Decrease element: 

wi (t) = wi (t) - ae*ve .  

The result of those expressions would be combined with others results derived 
from criticality estimation and the degree of activity of the agent would be considered 
in this estimation. Finally, the calculation of the number of replicas nbi of Agent i, 
which is used to update the number of replicas of the domain agent, is determined as 
the same as before: 

nbi(t) = rounded(rm + wi(t) ∗ Rm/W) .  

 
Where wi is the agent criticality, W is the sum of the domain agents’ criticality, rm 

is the minimum number of replicas which is introduced by the designer, Rm is the 
available resources that define the maximum number of possible simultaneous 
replicas. 

6   Case Study 

We have chosen the SELIC application to validate our approach and architecture. 
This system was chosen because of its unique characteristic of being an open 
governed distributed system regulated by a set of rules. Thus, it can be easily and 
directed mapped to an open law-governed multi-agent system.  

The SELIC works as a mediator of the security’s negotiation interactions. 
Concerning the negotiations, the system takes the purchase or sale commands in full 
or part, definitive or committed, by the necessaries proceedings to the financial 
movement and of custody related to the settlement of those operations, which are 
done one by one in real time. 

We choose to implement a committed operation. There are several requirements 
that rule the interaction on behalf of all institutions in a committed operation, as the 
several types of messages that could be sent and the several behavioral that should be 
implemented according to the messages specified, including norms and constraints. 



We choose a scenario that encloses all the law elements necessaries to the concepts 
proven. Figure 10 shows this scenarios and below there is an example of interaction. 

 
Fig. 10. SELIC Example 

The financial institution A (FI A) needs to sell securities to the financial institution 
B (FI B) and takes the commitment of repurchasing them in the following day. It 
works like if FI A was taken a loan from FI B for a day. 
− The SELIC notifies the financial institutions that the operations are open for 

negotiations (inform); 
− The FI A requests the securities’ sale to SELIC (request); 
− The FI B request the securities’ purchase to SELIC (request); 
− The SELIC updates the deposit account of both institutions and informs the 

operation status (inform); 
− In the day after, the FI A requests the securities’ purchase to SELIC (request); 
− The FI B requests the securities’ sale to SELIC (request); 
− Once again, the SELIC updates the deposit account of both institutions and in-

forms the operation status (inform). 
While those steps are executed, some constraints are also executed. As it is a 

committed operation, when the securities are sold, the seller acquires the obligation of 
repurchasing the securities in the following day. A fine will be applied to the seller 
every day while it doesn’t repurchase the securities. After 10 days without 
repurchasing the securities, the financial institution is prohibited of repurchasing them 
again. And, concerning the buyer, it is obligated to resale the securities. While it 
doesn’t resale the securities, the buyer will be fined daily. After 10 days, it will be 
prohibit interacting in the system. 

Considering this scenario, we identified the events that would increase or decrease 
the agents’ criticality. Then, the specification of the criticality monitoring was 
generated using the XMLaw language. For instance, we noticed that the main system 
threat is the possibility of the SELIC agent gets so overloaded that it could stop, fail 
or crash. To mitigate this risk, we analyzed the SELIC agent criticality and we 
implemented it through the mechanism proposed in this work.  



 

 
Fig. 11. SELIC Agent Criticality and Number of Replicas Variation 

Figure 11 illustrates the comparing results obtained from this analyze considering 
the criticality variation of the three agents: the seller agent (IF A), the buyer agent (IF 
B), and the SELIC agent (Selic). Focusing on the SELIC agent, which can not fail 
otherwise no securities’ negotiation would be done, its criticality monitoring created 
the replicas accordingly to the specification ensuring its availability when the agent 
became more critical to the system. The same happened to the agents playing the 
financial institutions roles and a particular observation point taken from the graph is 
that the buyer (IF B) had more replicas than SELIC because of its obligations of 
resale the securities. Thus, after some test-beds, the law developer would re-estimate 
the agents’ criticalities in order to achieve the right estimation for each agent. 



7   Conclusions and Future Work 

This work proposed a pragmatic mechanism of estimating agents’ criticality in law-
governed multi-agent systems. We proposed the integration of two frameworks (M-
Law and DimaX) to achieve dependability in open multi-agents system through fault 
tolerance and we evaluated this architecture through a real case study. During the 
development of this work, some initial approaches were proposed [25] and improved 
in order to achieve an efficient one.  

We presented an extension of the XMLaw conceptual model described in Section 3 
and we proposed to use new elements that help specifying the attributes concerning 
the agent criticality during its interaction with other agents. 

We extended XMLaw with the new CriticalityAnalysis element. And we extended 
the M-Law framework to implement the monitoring of the events that should improve 
the criticality analysis done by DimaX. Any event considered important by the 
designer of the application while specifying its law can be taken into account. Finally, 
we extended DimaX and we integrated it with M-Law, providing another algorithm 
for calculating the agent’s criticality.  

Therefore, along these works, an important issue arose: how do we know that the 
criticality analyzes specification implements the real expected monitoring? Thus, we 
proposed the use of Law Cases [24] to help on this task and we used it on the case 
study presented as an evaluation of this proposal in Section 5. The Law Cases 
approach help to derive the law elements through a rationale that could be 
documented. Basically, a Law Case is a structured argument providing evidence that 
an open multi-agent system meets its specified dependability requirements through 
the rationale around the law elements derivation. 

An issue to be considered is about the centralized nature of current XMLaw 
mediator. We are aware that it is a limitation for scalability. Hence, there is currently 
ongoing work to design and implemented a new distributed version. 
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