

Plan-Based Resource Allocation for Providing Fault
Tolerance in Multi-agent Systems

Alessandro de Luna Almeida1, Samir Aknine1, Jean-Pierre Briot1,2

1 Université Pierre et Marie Curie-Paris6,UMR 7606
4 Place Jussieu, Paris, F-75005 France

2Laboratório de Engenharia de Software (LES), DI, PUC-Rio
Rua Marquês de São Vicente 225, 22451-900, Gávea, Rio de Janeiro, RJ, Brazil
{Alessandro.Luna-Almeida, Samir.Aknine, Jean-Pierre.Briot}@lip6.fr

Abstract. In this article, we propose an original method for providing fault
tolerance in multi-agent systems through replication. Our method focuses on
building an automatic, adaptive and predictive replication policy to solve the
resource allocation problem of determining where agents must be replicated
to minimize the impact of failures. This policy is determined by taking into
account the criticality of the plans of the agents, which contain the collective
and individual behaviors of the agents in the application. Some measurements
assessing the efficiency of our approach and future directions are also
presented.

1. Introduction
The possibility of partial failures is a fundamental characteristic of distributed
applications. In order to prevent that a system stops working properly due to the
occurrence of faults, many fault tolerance approaches have been proposed, some more
curative e.g., based on exception handling and cooperative recovery [Romanovsky et al.
2001], and some more preventive, notably based on the concept of replication, i.e.
creation of copies of a component in distant machines.

As discussed by [Guerraoui and Schiper 1997], software replication in
distributed environments has some advantages over other fault-tolerance solutions: it
provides the groundwork for the shortest recovery delays, it is less intrusive with
respect to execution time, and it scales much better.

Replicating every single component of the application in every machine is not a
feasible approach due to the limit on the resources available per machine. In general, it
is the responsibility of the designer of the application to explicitly identify what critical
components should be made robust and how to parameterize replication. This can be
decided either statically before the application starts [Fedoruk and Deters 2002, Kraus
et al. 2003] or in a non-automatic way during the execution of the system [Cukier et al
1998, Favarim et al. 2003, Kalbarczyk et al. 1999].

However, those works are not suitable for multi-agent systems (MAS)
applications for two main reasons: firstly, MASs can be very dynamic and thus, it is
very difficult, or even impossible, to identify in advance the most critical agents;
secondly, for large-scale applications, a manual control is not realistic, as the

application designer cannot monitor the evolution of a distributed application of a
significant scale.

In this paper, we will introduce our approach to building reliable multi-agent
systems. It is based on the concept of criticality, a value (evolving in time) associated to
each agent in order to reflect the effects of its failure on the overall system.

Previous work [Briot et al. 2006] of our project uses different kinds of
information to calculate the criticality of an agent (e.g., processing time, messages
exchanged between agents). However, those types of information do not necessarily
capture with precision the behavior of the agents and thus are not enough to determine
their criticality. Additionally, neither the problem of optimal allocation of resources nor
the analysis of a long term replication strategy is taken into account in this work.

As presented in [Almeida et al. 2006], our current work goes further by taking
into consideration the plans of the agents (the actions that each agent has planned to
execute in the near future) to determine the criticality in a more precise way. A plan-
based fault-tolerant mechanism acts as a promising preventive method since it takes into
account the prediction of the future behavior of the agents and their influence over the
other agents of the society.

In this paper, we adopt a new representation of plans using Recursive Petri Nets,
we propose the definition of a problem of resource allocation which uses a refined
model of probability of failures to take into account timing aspects and we introduce our
current collaboration with Eurocontrol, which brings in applications in air traffic
management as primary test fields for our approach.

The remainder of this paper is organized as follows. Section 2 introduces the
fault tolerance problem we deal with in this paper. Section 3 explains how the plans of
the agents can be used as an approach to this problem. Section 4 defines the fault
tolerance problem as a resource allocation problem and proposes a heuristic solution to
it. Section 5 describes the general architecture of the experimental platform. Section 6
shows some preliminary results. Finally, in section 7 we present our conclusions and
perspectives for future work.

2. Problem Definition
The fault tolerance problem described in this paper considers a set of na agents S =
{Agent1, Agent2, ..., Agentna} that have to complete a set of tasks. Let us consider an
application of assistance for air traffic control through assistant agents. (This is a
simplified scenario of an ongoing collaborative project with EuroControl, the European
Organisation for the Safety of Air Navigation). The airspace is divided into sectors,
each sector being controlled by a human controller (see Figure 1). Each controller is
assisted by an assistant agent who cooperatively monitors the air traffic to suggest
decisions about traffic control. Agents communicate in order to assist with collaborative
procedures, e.g. hand off procedures, that is when a controller passes the responsibility
of an airplane exiting from its supervision sector to the controller of the sector the plane
is entering.

While trying to accomplish their tasks, agents can be faced to different kinds of
failures. In our work, we initially consider just the crash type of failures, i.e. when a
component stops producing output. In our model of failure, machines can crash due to

internal (operating system crashes, hardware problems) or external factors (malicious
attacks, power failures, environmental disasters), and as a consequence all the agents
executing in it will crash as well. Additionally, the failure of one agent can also impact
on the agents who depend on it.

Figure 1. Example of air traffic control

To minimize the impact of failures, agents can be replicated. The two main types
of replication protocols are: active replication, in which all replicas process
concurrently all input messages; passive replication, in which only one of the replicas
processes all input messages and periodically transmits its current state to the other
replicas in order to maintain consistency. It is important to notice that using replication
also minimizes the impact of network failures.

It is clear that replicating every agent an unlimited number of times is not a
feasible approach since not only the available resources are often limited, but also the
overhead imposed by the replication could degrade performance. The problem consists
in finding a replication scheme which minimizes the probability of failure of the most
critical agents. This scheme must also be revised over time, considering that the multi-
agent execution context of tasks is dynamic and, thus, the criticalities of the agents vary
at runtime.

3. Our Plan-Based Criticality Assessment Method
In our approach to solve the problem defined in the last section, we consider that each
agent of the system knows which sequence of actions (plan) must be executed in order
to accomplish its current goals. The generation and update of plans are out of the scope
of our work. We assume that they are generated either by a central planner or by the
agents themselves in a distributed way.

We represent the plan of an agent as an acyclic Recursive Petri Net (RPN) [Seghrouchni
and Haddad 1996] where each place represents a state of the plan and a transition
models an action. As opposed to classical Petri Nets, RPNs allow the representation not
only of elementary actions (an irreducible task which can be performed without any
decomposition) but also of abstract actions (the execution of which requires its
substitution by a new sub-plan). Actually, using RPNs, one can represent partial plans
which briefly describe the actions of the agents at a certain iteration of the resolution.
These plans can then be refined according to the evolution of the execution of the
agents.

Figure 2. Example of two interacting plans (transitions in black represent
abstract actions)

In the example of Figure 2, we show two plans elaborated by two assistant
agents. After solving the conflict between plane1 and plane2, Assistant1 asks plane3 to
land and hands off plane4 to sector2 (controlled by Assistant2). The action
SolveConflict is an abstract action (transition in black) and, thus, Assistant1 needs to
refine it (by another RPN) during execution. The action HandOff is a joint action which
needs synchronization between the two agents. As a consequence, when Assistant1
proposes to hand off plane4 to sector2, it must ensure that Assistant2 is ready to receive
the details of the transfer. At the implementation level, this is done by a synchronizing
transition.

Definition 1: An external transition is a transition representing an action
belonging to the plan of an agent which will be executed by others.

Definition 2: The set of children of a transition t in a plan p (denoted by
Children (t, p)) is the set of places which are directly connected to the transition t in the
plan p. Similarly, the set of children of a place is the set of transitions which are directly
connected it.

For example, in Figure 2, Children (SolveConflict, Plan1) = {P1, P2} and
Children (P5, Plan2) = {Altitude, Speed}.

3.1. Agent Criticality

The criticality of an agent at any time can be calculated based on the criticalities of the
forthcoming actions which belong to its plan. An agent who executes critical actions
must be considered critical. In a given time t, the criticality of the agent will be given by
the relative criticality of the initial place of its plan (where the token is initially located).

Before defining the relative criticality, let’s first introduce the concept of
absolute criticality. The absolute criticality (AC) of an action (transition) is defined
without taking into account the current plans of the agents. It is given a priori by the
system designer and can be determined in function of a number of factors: number of
agents capable of performing the action, resources required for the execution of the
action, application dependant information.

The relative criticality (RC) of a place in a plan estimates the aggregation of the
criticalities of the children (transitions) of the place in the plan. We assume that the

children transitions of a place have the same probability of being executed. Thus, we
use the mean as the aggregation function for estimating what is, on average, the risk of
not executing the portion of the plan which has the corresponding place as a root. Let s
be one place belonging to a plan p, and f be the aggregation function (MEAN) of the
children of s in p. Then, the relative criticality of s in p (RC (s, p)) is formally defined
by:

 (1)

Finally, the relative criticality of a transition executed by an agent (possibly
jointly with other agents) estimates the impact of its failure to the multi-agent system as
a whole. The RC depends on the absolute criticality of the action and on the usefulness
of its results to all the agents which depend on it to perform their tasks. It is given by:

(2)

In other words, for an external transition, the RC is equal to the sum of the
children relative criticalities. For a non-external transition, the RC is equal to its
absolute criticality plus the sum of the relative criticalities of all of its children in all the
plans to which it belongs.

In dynamic and unreliable environments, actions with a late start time will be
executed less possibly than actions with an early starting time, since the plans can
change or failures can happen. Consequently, we have also refined this strategy by
considering the expected starting time of actions. We compute the estimated starting
time of the actions using a topological sorting in the graph (top-down) considering the
elapsed times of the antecedents and siblings’ actions.

To deal with the dynamicity of multi-agent systems, criticalities need to be
updated along time. We proposed two main types of strategies to revise the criticality:
time-driven strategies and event-driven strategies (action completion, failure). More
details are presented in [Almeida et al. 2006].

4. Resource Allocation Problem
Once estimated the criticality of the agents (using the strategies described in the last
section, for example), one may ask which agents should be replicated and where to
deploy the replicas. It is important to notice that it is not enough to determine the
number of replicas that should be given to each agent. It is also essential to address the
problem of where deploying efficiently the replicas so as to take into consideration the
failure probability of the replicas. In fact, it is better to have only one replica which will
have in the future a probability of failure equals to 0.1 than having five replicas with a
probability of failure equals to 0.9 each.

Hence, we propose the definition of a resource allocation problem which
considers the probability of failures and a mechanism which solves this problem in a
satisfactory way.

The problem of resource allocation considers a set of agents S = {Agent1,
Agent2, ..., Agentna}, a set of machines M = {m1, m2, …, mnm} and a set of resources R =
{r1, r2, …, rnr}, where na, nm and nr are respectively, the total number of agents, of
machines and of replication resources (a resource for us is a place in a machine where
the agent can be deployed for execution).

Definition 3: We define membership function as a total surjection b: R → M,
where the image of a resource under b is the machine to which it belongs.

Definition 4: We define resource allocation function as an allocation of
replication resources to the agents, i.e. a total function g: S → 2R, where 2R is the power
set of R. A same replication resource cannot be allocated to two different agents. In
other words, let Ri = {ri1, ri2, …, rini} be the value of g at Agenti. Then:

 (3)

Since our model of failure considers machine failures, it is useless to deploy
replicas of the same agent using different resources in the same machine. Thus, we add
the following restriction to the resource allocation functions:

 (4)

Finally, since every agent must be deployed somewhere in the system, we add
this last condition:

 (5)

Definition 5: For each machine mi of the system, we define the mean time
between failures (MTBF) as the mean (average) time between two failures produced at
mi. We will denote the MTBF by θi.

The value of each θi can be computed by collecting statistical data on past
failures of each node. Let Ti be the total time when mi has been up and Ni be the number
of failures during Ti. Then the MTBF can be calculated as follows:

(6)

Definition 6: For each machine mi of the system, we define the failure rate
(denoted as λi) as the frequency with which mi fails. One can calculate the failure rate as
the inverse of the MTBF:

(7)

Failure rates are generally modeled by the reliability bathtub curve. In this
model, the life of a product is divided in three phases. The first phase (early life) is
characterized by a decreasing failure rate. As the time passes, the failure rate becomes
nearly constant, and we enter what is considered the useful life period. Finally, as the
product exceeds its design lifetime, failures occur at increasing rates.

In our model, we suppose that the machines used in the system are neither in
their starting phase nor in the wear out period. Hence, we will assume a constant failure
rate for the duration of the execution. It is important to notice that our model remains

sound even if the machines are not in the useful life period, as long as the duration of
the execution is not too long (in those cases failure rates are also almost constant).

Definition 7: Let λi be the constant failure rate of the machine mi, then we can
define its failure density function by the following exponential density function:

 (8)

The failure density function represents the time to failure of the corresponding
machine. Intuitively, the expected value of the failure density function should be the
mean time between failures. In fact, one can prove easily that it is given by:

(9)

Given the failure density function, one can obtain the corresponding probability
distribution of the time to failure:

(10)

Definition 8: We define the reliability of the replication resource rk at the
interval of time [0, t] (denoted by vk(t)), as the probability that it will not crash before
the time t. Let mi = b(rk), then:

 (11)

If we assume that the failures of the resources Ri allocated to an agent Agenti are
independent (which is often the case when they belong to different machines), it is easy
to show that the probability that an agent Agenti will fail is given by the equation:

 (12)

This implies that the probability pi that Agenti will not fail is:

 (13)

Definition 9: Let g be a resource allocation function and ci the criticality of
Agenti, a value aggregating the importance of the actions executed by Agenti (this value
can be calculated using the method described in Section 3). Then, we define the utility
of the multi-agent system (denoted as u(g)) as the total importance of the actions
executed by it:

 (14)

Definition 10: Let g be a resource allocation function, ci the criticality of Agenti
and pi the probability that Agenti will not fail. The expected utility of the MAS deployed
using g is defined as the expected value of the utility function. It can be calculated as
follows:

 (15)

The higher the value of E(u(g)), the more efficient and fault-tolerant the
allocation function g.

Definition 11: We define the resource allocation problem as the optimization
problem of finding the resource allocation function gmax which gives a maximum value
for the expected utility of the MAS (E(u(gmax) is maximum).

4.1. Agent Replication Mechanism

Our agent replication mechanism tries to solve the resource allocation problem
previously defined in a heuristic way. In our mechanism, let V be the sum of the
reliabilities of all the resources of the system. Then, an agent Agenti is allowed to be
deployed using a set of resources Ri whose sum of reliabilities (wi) does not exceed a
certain limit. This limit is proportional to the percentage of its criticality (ci) with
respect to the sum of agents’ criticalities (C), as given by the equation:

(16)

Among the sets of resources Ri which satisfy the equation 16, we look for the
one with the minimal probability of failure. For that, the system of replication will first
sort the machines by decreasing reliability. For each resource available in each machine,
we allocate it to the most critical agent Agenti who can have it (if the agent Agenti has
not yet one resource in this machine and if the sum of reliability of the resources that
have already been allocated to Agenti plus this one does not exceed its limit wi).

One can apply the same possible strategies used as the agent criticality update
policy (time-driven or event-driven) to decide when to re-calculate the values of wi. For
instance, one can use a variable window of time ∆t for each agent Agenti. If the quantity
of resources (whose total value does not exceed wi) that the agent Agenti can acquire
does not change significantly, the window of time ∆t can be increased, otherwise it is
decremented. Another possibility is to recalculate the value of wi whenever the value of
ci is updated.

5. Architecture and Implementation
To implement the agent replication mechanism described in the preceding section, we
have extended the framework DARX [Marin et al. 2003]. We describe in this section
this extension.

5.1. DARX

DARX (Dynamic Agent Replication eXtension) relies on the notion of replication
group (RG). Every agent of the application is associated to an RG, which DARX
handles in a way that renders replication transparent to the application at runtime. Each
RG has exactly one ruler, which communicates with the other agents. Other RG
members, referred to as subjects, are kept consistent with their ruler according to the
replication strategies. Several different strategies, ranging from passive to active, may
be applied within a replication group. The number of subjects and the replication
strategy may be adapted dynamically.

DARX provides atomic and ordered multi-cast for the replication groups’
internal communication. Messages between agents are also logged by each replica, and
sequences of messages can be re-emitted for recovery purposes.

As shown in Figure 3, DARX offers several services. Failure detection enables
to suspect host and process failures based on a hierarchy of adaptive failure detectors.
Naming and localisation provides a means to supply agents and their replicas with
unique identifiers throughout the system, and to retrieve their location whenever the
application requires it.

Figure 3. DARX framework architecture

DARX is coded in Java 1.4 and uses RMI as a means to simplify the coding of
network issues. It can be easily integrated to any agent platform by means of an
interfacing component. We implemented the proposed replication mechanism in an
adaptive replication control module, which we have coupled to the DARX platform.
This module is described in the next section.

5.2. Adaptive Replication Control Architecture

The adaptive replication control module, shown in Figure 4, is completely distributed
and uses the replication service of DARX to provide a suitable replication scheme for
every agent. We associate an agent monitor to each agent of the system and a machine
manager to each machine.

The agent monitor receives the local plans of the monitored agent and is
responsible for the calculation and update of its criticality. As we have seen in the
section 3.1, the computation of the criticality of an agent may rely on the criticality of
other agents (because of possible dependence between their tasks). Thus their respective
monitoring agents need to communicate information.

Each machine manager contains a piece of the global information of the
application, such as:

- The criticalities and reliabilities of the agents deployed in its machine
(obtained from the monitoring agents, as shown by the arrows in Figure 4);

- The number of replication resources available in its machine;

- The failure rate of the machine.

Machine managers exchange messages with their local information in order to
keep their vision about other machines up to date (total number of resources in the
system, sum of the criticalities of all the agents, …) and, consequently, to make it viable
the mechanism of replication described in section 4.1.

Figure 4. Architecture for replication control

6. Experimental Results
We are currently conducting experiments, whose preliminary results we

summarize in this paper. In our experiments, each agent has to accomplish its own
sequence of 5 plans, one at a time, each with 10 actions. The average duration of actions
is of 2 seconds. We repeated ten times each experiment (the results shown are the mean
of those several runs). We maintained the same sequence of plans and actions that each
agent must execute in those runs. Whenever replication is present, the number of
resources available at the machine is half of the number of agents.

In the first place, we ran each experiment considering a completely reliable
environment (no failures) and calculated the CPU time (in milliseconds) required for the
completion of all the plans by all the agents. Figure 5 shows the effect of changing the
number of agents on the CPU time required (y-axis) by our replication mechanism and
by the execution of the multi-agent system with no replication at all. Whenever
replication is present, the number of replicas available at the machine is half of the
number of agents and the strategy used is the passive one. One can notice that using no
replication always outperform our replication mechanism, but the overhead of our
mechanism is negligible (less than 4%).

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Number of agents

C
PU

 ti
m

e
(s

)

With replication Without replication
Figure 5. Quality of the replication mechanism used vs. a failure-free execution

In order to assess the quality of a replication mechanism, we considered the sum
of the absolute criticalities of the actions which were executed with success. During the
execution of each experiment, at each interval of 2s and for each agent, a failure
generator will cause the agent to fail with a probability equal to its probability of failure

given by Equation 12. Whenever an agent fails (because all its resources failed), its
current plan fails, the agent is restarted with its next plan and all the resources which
were allocated to it are made available for use.

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Number of agents

Q
ua

lit
y

of
 th

e
st

ra
te

gy

Random Plan-based Failure-free
Figure 6. Quality of the replication mechanism used vs. a failure-free execution

 Figure 6 shows the maximum quality that could be obtained (in a completely
reliable environment) compared to the quality of our strategy of replication and to a
random one, which allocates randomly each resource available. We varied the failure
rate of the resources, but due to space constraints, only a fixed value of 10 failures per
minute is reported in Figure 6. The results are encouraging in the sense that the quality
of our mechanism is quite close (80% at average) to the maximum value that could be
obtained in a failure-free execution. Additionally, our strategy is more accurate to
determine and replicate the most critical agents as the random one. In fact, the
probability that a critical agent fails with our strategy is lower than with a random
strategy.

7. Conclusion
Large-scale multi-agent systems are often distributed and must run without any
interruption. To make these systems reliable, we proposed an original predictive method
to evaluate dynamically the criticality of agents. Our approach takes profit of the
specificities of multi-agent applications and analyses the agents’ plans to determine
their importance to the system. This approach allows us to obtain a more precise value
of the criticality and it takes into account the future behaviors of the agents. The agent
criticality is then used to replicate agents in order to maximize their reliability and
availability based on available resources.

The proposed mechanism was implemented over the DARX replication
platform. We have tested it and we believe that our current results are promising. In
fact, the algorithms have a negligible overhead and provide a satisfactory reliability.

One of the perspectives of this work is to refine the problem of fault tolerance in
multi-agent systems and its evaluation measures, in order to compare the different
proposed strategies with an optimal one. In that process, we are studying how to define
and classify different variations for the expected global utility function. Additionally,
we are currently adding other constraints to the resource allocation function such as
allowing the definition of the minimum level of reliability required by the agents.

Additionally, we have implemented and we are currently testing other heuristic
solutions to the resource allocation problem, such as branch and bound, greedy, hill
climbing and tabu search algorithms.

Last but not least, we intend to run more large-scale experiments using the air
traffic control application to validate our approach. This work is being co-funded by the
following research programs: CAPES-COFECUB, CNPq, ANR Sécurité &
Informatique and EuroControl CARE INO III.

References
Almeida, A. L., Aknine, S., Briot, J.P. and Malenfant, J. (2006) “A predictive method

for providing fault tolerance in multi-agent systems”, In: Proc. of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT
2006), Hong Kong, p. 226-232.

Briot, J.-P., Guessoum, Z., Aknine, S., Almeida, A. L., Faci, N., Gatti, M., Lucena, C.,
Malenfant, J., Marin, O., Sens, P. (2006) “Experience and Prospects for Various
Control Strategies for Self-Replicating Multi-Agent Systems”, In: Workshop on
Software Engineering for Adaptive and Self-Managing Systems, Shangai, p. 37-43.

Cukier, M. et al (1998) “AQuA: an adaptive architecture that provides dependable
distributed objects”, In: Proc. of the 17th IEEE Symposium on Reliable Distributed
Systems (SRDS'98), West Lafayette, Indiana, p. 245-253.

Favarim, F., Siqueira, F. and Fraga, J. S. (2003) “Adaptive fault-tolerant CORBA
components”, In: Middleware Workshops 2003, p. 144-148.

Fedoruk, A. and Deters, R. (2002) “Improving fault-tolerance by replicating agents”, In:
Proc. AAMAS02, Bologna, Italy, p. 737-744.

Guerraoui, R. and Schiper, A. (1997) “Software-based Replication for Fault Tolerance”,
In: IEEE Computer, vol. 30, no. 4., p. 68-74.

Kalbarczyk, Z., Bagchi, S., Whisnant, K. and Iyer, R.K. (1999) “Chameleon: a software
infrastructure for adaptive fault tolerance”, In: IEEE Transactions on Parallel and
Distributed Systems, p. 560-579.

Kraus, S., Subrahmanian, V.S. and Cihan, N. (2003) “Probabilistically survivable
MASs”, In: IJCAI-03, p. 789-795.

Marin, O., Bertier, M. and Sens, P. (2003) “DARX - a Framework for the Fault-
Tolerant Support of Agent Software”, In: 14th IEEE International Symposium on
Software Reliability Engineering (ISSRE’2003), Denver, USA, p. 406-417.

Romanovsky, A., Dony, C., Knudsen J.L. and Tripathi, A. (eds.) (2001), Advances in
Exception Handling Techniques, LNCS 2022, Springer.

Seghrouchni, A. E. F. and Haddad, S. (1996) “A recursive model for distributed
planning”, In: Proc. Of Second International Conference on Multi-Agent Systems
(ICMAS-96), AAAI Press, p. 307-314.

