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Abstract. In this article, we propose an original method for providing fault 
tolerance in multi-agent systems through replication. Our method focuses on 
building an automatic, adaptive and predictive replication policy to solve the 
resource allocation problem of determining where agents must be replicated 
to minimize the impact of failures. This policy is determined by taking into 
account the criticality of the plans of the agents, which contain the collective 
and individual behaviors of the agents in the application. Some measurements 
assessing the efficiency of our approach and future directions are also 
presented. 

1. Introduction 
The possibility of partial failures is a fundamental characteristic of distributed 
applications. In order to prevent that a system stops working properly due to the 
occurrence of faults, many fault tolerance approaches have been proposed, some more 
curative e.g., based on exception handling and cooperative recovery [Romanovsky et al. 
2001], and some more preventive, notably based on the concept of replication, i.e. 
creation of copies of a component in distant machines. 

As discussed by [Guerraoui and Schiper 1997], software replication in 
distributed environments has some advantages over other fault-tolerance solutions: it 
provides the groundwork for the shortest recovery delays, it is less intrusive with 
respect to execution time, and it scales much better. 

Replicating every single component of the application in every machine is not a 
feasible approach due to the limit on the resources available per machine. In general, it 
is the responsibility of the designer of the application to explicitly identify what critical 
components should be made robust and how to parameterize replication. This can be 
decided either statically before the application starts [Fedoruk and Deters 2002, Kraus 
et al. 2003] or in a non-automatic way during the execution of the system [Cukier et al 
1998, Favarim et al. 2003, Kalbarczyk et al. 1999]. 

However, those works are not suitable for multi-agent systems (MAS) 
applications for two main reasons: firstly, MASs can be very dynamic and thus, it is 
very difficult, or even impossible, to identify in advance the most critical agents; 
secondly, for large-scale applications, a manual control is not realistic, as the 



  

application designer cannot monitor the evolution of a distributed application of a 
significant scale. 

In this paper, we will introduce our approach to building reliable multi-agent 
systems. It is based on the concept of criticality, a value (evolving in time) associated to 
each agent in order to reflect the effects of its failure on the overall system. 

Previous work [Briot et al. 2006] of our project uses different kinds of 
information to calculate the criticality of an agent (e.g., processing time, messages 
exchanged between agents). However, those types of information do not necessarily 
capture with precision the behavior of the agents and thus are not enough to determine 
their criticality. Additionally, neither the problem of optimal allocation of resources nor 
the analysis of a long term replication strategy is taken into account in this work. 

As presented in [Almeida et al. 2006], our current work goes further by taking 
into consideration the plans of the agents (the actions that each agent has planned to 
execute in the near future) to determine the criticality in a more precise way. A plan-
based fault-tolerant mechanism acts as a promising preventive method since it takes into 
account the prediction of the future behavior of the agents and their influence over the 
other agents of the society.  

In this paper, we adopt a new representation of plans using Recursive Petri Nets, 
we propose the definition of a problem of resource allocation which uses a refined 
model of probability of failures to take into account timing aspects and we introduce our 
current collaboration with Eurocontrol, which brings in applications in air traffic 
management as primary test fields for our approach. 

The remainder of this paper is organized as follows. Section 2 introduces the 
fault tolerance problem we deal with in this paper. Section 3 explains how the plans of 
the agents can be used as an approach to this problem. Section 4 defines the fault 
tolerance problem as a resource allocation problem and proposes a heuristic solution to 
it. Section 5 describes the general architecture of the experimental platform. Section 6 
shows some preliminary results. Finally, in section 7 we present our conclusions and 
perspectives for future work. 

2. Problem Definition 
The fault tolerance problem described in this paper considers a set of na agents S = 
{Agent1, Agent2, ..., Agentna} that have to complete a set of tasks. Let us consider an 
application of assistance for air traffic control through assistant agents. (This is a 
simplified scenario of an ongoing collaborative project with EuroControl, the European 
Organisation for the Safety of Air Navigation). The airspace is divided into sectors, 
each sector being controlled by a human controller (see Figure 1). Each controller is 
assisted by an assistant agent who cooperatively monitors the air traffic to suggest 
decisions about traffic control. Agents communicate in order to assist with collaborative 
procedures, e.g. hand off procedures, that is when a controller passes the responsibility 
of an airplane exiting from its supervision sector to the controller of the sector the plane 
is entering. 

While trying to accomplish their tasks, agents can be faced to different kinds of 
failures. In our work, we initially consider just the crash type of failures, i.e. when a 
component stops producing output. In our model of failure, machines can crash due to 



  

internal (operating system crashes, hardware problems) or external factors (malicious 
attacks, power failures, environmental disasters), and as a consequence all the agents 
executing in it will crash as well. Additionally, the failure of one agent can also impact 
on the agents who depend on it. 

 
Figure 1. Example of air traffic control 

To minimize the impact of failures, agents can be replicated. The two main types 
of replication protocols are: active replication, in which all replicas process 
concurrently all input messages; passive replication, in which only one of the replicas 
processes all input messages and periodically transmits its current state to the other 
replicas in order to maintain consistency. It is important to notice that using replication 
also minimizes the impact of network failures. 

It is clear that replicating every agent an unlimited number of times is not a 
feasible approach since not only the available resources are often limited, but also the 
overhead imposed by the replication could degrade performance. The problem consists 
in finding a replication scheme which minimizes the probability of failure of the most 
critical agents. This scheme must also be revised over time, considering that the multi-
agent execution context of tasks is dynamic and, thus, the criticalities of the agents vary 
at runtime. 

3. Our Plan-Based Criticality Assessment Method 
In our approach to solve the problem defined in the last section, we consider that each 
agent of the system knows which sequence of actions (plan) must be executed in order 
to accomplish its current goals. The generation and update of plans are out of the scope 
of our work. We assume that they are generated either by a central planner or by the 
agents themselves in a distributed way. 

We represent the plan of an agent as an acyclic Recursive Petri Net (RPN) [Seghrouchni 
and Haddad 1996] where each place represents a state of the plan and a transition 
models an action. As opposed to classical Petri Nets, RPNs allow the representation not 
only of elementary actions (an irreducible task which can be performed without any 
decomposition) but also of abstract actions (the execution of which requires its 
substitution by a new sub-plan). Actually, using RPNs, one can represent partial plans 
which briefly describe the actions of the agents at a certain iteration of the resolution. 
These plans can then be refined according to the evolution of the execution of the 
agents. 



  

 
Figure 2. Example of two interacting plans (transitions in black represent 
abstract actions) 

In the example of Figure 2, we show two plans elaborated by two assistant 
agents. After solving the conflict between plane1 and plane2, Assistant1 asks plane3 to 
land and hands off plane4 to sector2 (controlled by Assistant2). The action 
SolveConflict is an abstract action (transition in black) and, thus, Assistant1 needs to 
refine it (by another RPN) during execution. The action HandOff is a joint action which 
needs synchronization between the two agents. As a consequence, when Assistant1 
proposes to hand off plane4 to sector2, it must ensure that Assistant2 is ready to receive 
the details of the transfer. At the implementation level, this is done by a synchronizing 
transition. 

Definition 1: An external transition is a transition representing an action 
belonging to the plan of an agent which will be executed by others. 

Definition 2: The set of children of a transition t in a plan p (denoted by 
Children (t, p)) is the set of places which are directly connected to the transition t in the 
plan p. Similarly, the set of children of a place is the set of transitions which are directly 
connected it. 

For example, in Figure 2, Children (SolveConflict, Plan1) = {P1, P2} and 
Children (P5, Plan2) = {Altitude, Speed}. 

3.1. Agent Criticality 

The criticality of an agent at any time can be calculated based on the criticalities of the 
forthcoming actions which belong to its plan. An agent who executes critical actions 
must be considered critical. In a given time t, the criticality of the agent will be given by 
the relative criticality of the initial place of its plan (where the token is initially located). 

Before defining the relative criticality, let’s first introduce the concept of 
absolute criticality. The absolute criticality (AC) of an action (transition) is defined 
without taking into account the current plans of the agents. It is given a priori by the 
system designer and can be determined in function of a number of factors: number of 
agents capable of performing the action, resources required for the execution of the 
action, application dependant information. 

The relative criticality (RC) of a place in a plan estimates the aggregation of the 
criticalities of the children (transitions) of the place in the plan. We assume that the 



  

children transitions of a place have the same probability of being executed. Thus, we 
use the mean as the aggregation function for estimating what is, on average, the risk of 
not executing the portion of the plan which has the corresponding place as a root. Let s 
be one place belonging to a plan p, and f be the aggregation function (MEAN) of the 
children of s in p. Then, the relative criticality of s in p (RC (s, p)) is formally defined 
by: 

 (1) 

Finally, the relative criticality of a transition executed by an agent (possibly 
jointly with other agents) estimates the impact of its failure to the multi-agent system as 
a whole. The RC depends on the absolute criticality of the action and on the usefulness 
of its results to all the agents which depend on it to perform their tasks. It is given by: 

 

(2)

In other words, for an external transition, the RC is equal to the sum of the 
children relative criticalities. For a non-external transition, the RC is equal to its 
absolute criticality plus the sum of the relative criticalities of all of its children in all the 
plans to which it belongs. 

In dynamic and unreliable environments, actions with a late start time will be 
executed less possibly than actions with an early starting time, since the plans can 
change or failures can happen. Consequently, we have also refined this strategy by 
considering the expected starting time of actions. We compute the estimated starting 
time of the actions using a topological sorting in the graph (top-down) considering the 
elapsed times of the antecedents and siblings’ actions. 

To deal with the dynamicity of multi-agent systems, criticalities need to be 
updated along time. We proposed two main types of strategies to revise the criticality: 
time-driven strategies and event-driven strategies (action completion, failure). More 
details are presented in [Almeida et al. 2006]. 

4. Resource Allocation Problem 
Once estimated the criticality of the agents (using the strategies described in the last 
section, for example), one may ask which agents should be replicated and where to 
deploy the replicas. It is important to notice that it is not enough to determine the 
number of replicas that should be given to each agent. It is also essential to address the 
problem of where deploying efficiently the replicas so as to take into consideration the 
failure probability of the replicas. In fact, it is better to have only one replica which will 
have in the future a probability of failure equals to 0.1 than having five replicas with a 
probability of failure equals to 0.9 each. 

Hence, we propose the definition of a resource allocation problem which 
considers the probability of failures and a mechanism which solves this problem in a 
satisfactory way. 



  

The problem of resource allocation considers a set of agents S = {Agent1, 
Agent2, ..., Agentna}, a set of machines M = {m1, m2, …, mnm} and a set of resources R = 
{r1, r2, …, rnr}, where na, nm and nr are respectively, the total number of agents, of 
machines and of replication resources (a resource for us is a place in a machine where 
the agent can be deployed for execution). 

Definition 3: We define membership function as a total surjection b: R → M, 
where the image of a resource under b is the machine to which it belongs. 

Definition 4: We define resource allocation function as an allocation of 
replication resources to the agents, i.e. a total function g: S → 2R, where 2R is the power 
set of R. A same replication resource cannot be allocated to two different agents. In 
other words, let Ri = {ri1, ri2, …, rini} be the value of g at Agenti. Then: 

 (3) 

Since our model of failure considers machine failures, it is useless to deploy 
replicas of the same agent using different resources in the same machine. Thus, we add 
the following restriction to the resource allocation functions: 

 (4) 

Finally, since every agent must be deployed somewhere in the system, we add 
this last condition: 

 (5) 

Definition 5: For each machine mi of the system, we define the mean time 
between failures (MTBF) as the mean (average) time between two failures produced at 
mi. We will denote the MTBF by θi. 

The value of each θi can be computed by collecting statistical data on past 
failures of each node. Let Ti be the total time when mi has been up and Ni be the number 
of failures during Ti. Then the MTBF can be calculated as follows: 

 
(6) 

Definition 6: For each machine mi of the system, we define the failure rate 
(denoted as λi) as the frequency with which mi fails. One can calculate the failure rate as 
the inverse of the MTBF: 

 
(7) 

Failure rates are generally modeled by the reliability bathtub curve. In this 
model, the life of a product is divided in three phases. The first phase (early life) is 
characterized by a decreasing failure rate. As the time passes, the failure rate becomes 
nearly constant, and we enter what is considered the useful life period. Finally, as the 
product exceeds its design lifetime, failures occur at increasing rates. 

In our model, we suppose that the machines used in the system are neither in 
their starting phase nor in the wear out period. Hence, we will assume a constant failure 
rate for the duration of the execution. It is important to notice that our model remains 



  

sound even if the machines are not in the useful life period, as long as the duration of 
the execution is not too long (in those cases failure rates are also almost constant). 

Definition 7: Let λi be the constant failure rate of the machine mi, then we can 
define its failure density function by the following exponential density function: 

 (8) 

The failure density function represents the time to failure of the corresponding 
machine. Intuitively, the expected value of the failure density function should be the 
mean time between failures. In fact, one can prove easily that it is given by: 

 
(9) 

Given the failure density function, one can obtain the corresponding probability 
distribution of the time to failure: 

(10) 

Definition 8: We define the reliability of the replication resource rk at the 
interval of time [0, t] (denoted by vk(t)), as the probability that it will not crash before 
the time t. Let mi = b(rk), then: 

 (11) 

If we assume that the failures of the resources Ri allocated to an agent Agenti are 
independent (which is often the case when they belong to different machines), it is easy 
to show that the probability that an agent Agenti will fail is given by the equation: 

 (12) 

This implies that the probability pi that Agenti will not fail is: 

 (13) 

Definition 9: Let g be a resource allocation function and ci the criticality of 
Agenti, a value aggregating the importance of the actions executed by Agenti (this value 
can be calculated using the method described in Section 3). Then, we define the utility 
of the multi-agent system (denoted as u(g)) as the total importance of the actions 
executed by it: 

 (14) 

Definition 10: Let g be a resource allocation function, ci the criticality of Agenti 
and pi the probability that Agenti will not fail. The expected utility of the MAS deployed 
using g is defined as the expected value of the utility function. It can be calculated as 
follows: 

 (15) 

The higher the value of E(u(g)), the more efficient and fault-tolerant the 
allocation function g. 



  

Definition 11: We define the resource allocation problem as the optimization 
problem of finding the resource allocation function gmax which gives a maximum value 
for the expected utility of the MAS (E(u(gmax) is maximum). 

4.1. Agent Replication Mechanism 

Our agent replication mechanism tries to solve the resource allocation problem 
previously defined in a heuristic way. In our mechanism, let V be the sum of the 
reliabilities of all the resources of the system. Then, an agent Agenti is allowed to be 
deployed using a set of resources Ri whose sum of reliabilities (wi) does not exceed a 
certain limit. This limit is proportional to the percentage of its criticality (ci) with 
respect to the sum of agents’ criticalities (C), as given by the equation: 

 

(16) 

Among the sets of resources Ri which satisfy the equation 16, we look for the 
one with the minimal probability of failure. For that, the system of replication will first 
sort the machines by decreasing reliability. For each resource available in each machine, 
we allocate it to the most critical agent Agenti who can have it (if the agent Agenti has 
not yet one resource in this machine and if the sum of reliability of the resources that 
have already been allocated to Agenti plus this one does not exceed its limit wi). 

One can apply the same possible strategies used as the agent criticality update 
policy (time-driven or event-driven) to decide when to re-calculate the values of wi. For 
instance, one can use a variable window of time ∆t for each agent Agenti. If the quantity 
of resources (whose total value does not exceed wi) that the agent Agenti can acquire 
does not change significantly, the window of time ∆t can be increased, otherwise it is 
decremented. Another possibility is to recalculate the value of wi whenever the value of 
ci is updated. 

5. Architecture and Implementation 
To implement the agent replication mechanism described in the preceding section, we 
have extended the framework DARX [Marin et al. 2003]. We describe in this section 
this extension. 

5.1. DARX 

DARX (Dynamic Agent Replication eXtension) relies on the notion of replication 
group (RG). Every agent of the application is associated to an RG, which DARX 
handles in a way that renders replication transparent to the application at runtime. Each 
RG has exactly one ruler, which communicates with the other agents. Other RG 
members, referred to as subjects, are kept consistent with their ruler according to the 
replication strategies. Several different strategies, ranging from passive to active, may 
be applied within a replication group. The number of subjects and the replication 
strategy may be adapted dynamically. 

DARX provides atomic and ordered multi-cast for the replication groups’ 
internal communication. Messages between agents are also logged by each replica, and 
sequences of messages can be re-emitted for recovery purposes. 



  

As shown in Figure 3, DARX offers several services. Failure detection enables 
to suspect host and process failures based on a hierarchy of adaptive failure detectors. 
Naming and localisation provides a means to supply agents and their replicas with 
unique identifiers throughout the system, and to retrieve their location whenever the 
application requires it. 

 

 
Figure 3. DARX framework architecture 

DARX is coded in Java 1.4 and uses RMI as a means to simplify the coding of 
network issues. It can be easily integrated to any agent platform by means of an 
interfacing component. We implemented the proposed replication mechanism in an 
adaptive replication control module, which we have coupled to the DARX platform. 
This module is described in the next section. 

5.2. Adaptive Replication Control Architecture 

The adaptive replication control module, shown in Figure 4, is completely distributed 
and uses the replication service of DARX to provide a suitable replication scheme for 
every agent. We associate an agent monitor to each agent of the system and a machine 
manager to each machine. 

The agent monitor receives the local plans of the monitored agent and is 
responsible for the calculation and update of its criticality. As we have seen in the 
section 3.1, the computation of the criticality of an agent may rely on the criticality of 
other agents (because of possible dependence between their tasks). Thus their respective 
monitoring agents need to communicate information. 

Each machine manager contains a piece of the global information of the 
application, such as: 

- The criticalities and reliabilities of the agents deployed in its machine 
(obtained from the monitoring agents, as shown by the arrows in Figure 4); 

- The number of replication resources available in its machine; 

- The failure rate of the machine. 

Machine managers exchange messages with their local information in order to 
keep their vision about other machines up to date (total number of resources in the 
system, sum of the criticalities of all the agents, …) and, consequently, to make it viable 
the mechanism of replication described in section 4.1. 



  

 
Figure 4. Architecture for replication control 

6. Experimental Results 
We are currently conducting experiments, whose preliminary results we 

summarize in this paper. In our experiments, each agent has to accomplish its own 
sequence of 5 plans, one at a time, each with 10 actions. The average duration of actions 
is of 2 seconds. We repeated ten times each experiment (the results shown are the mean 
of those several runs). We maintained the same sequence of plans and actions that each 
agent must execute in those runs. Whenever replication is present, the number of 
resources available at the machine is half of the number of agents. 

In the first place, we ran each experiment considering a completely reliable 
environment (no failures) and calculated the CPU time (in milliseconds) required for the 
completion of all the plans by all the agents. Figure 5 shows the effect of changing the 
number of agents on the CPU time required (y-axis) by our replication mechanism and 
by the execution of the multi-agent system with no replication at all. Whenever 
replication is present, the number of replicas available at the machine is half of the 
number of agents and the strategy used is the passive one. One can notice that using no 
replication always outperform our replication mechanism, but the overhead of our 
mechanism is negligible (less than 4%). 

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Number of agents

C
PU

 ti
m

e 
(s

)

With replication Without replication  
Figure 5. Quality of the replication mechanism used vs. a failure-free execution 

In order to assess the quality of a replication mechanism, we considered the sum 
of the absolute criticalities of the actions which were executed with success. During the 
execution of each experiment, at each interval of 2s and for each agent, a failure 
generator will cause the agent to fail with a probability equal to its probability of failure 



  

given by Equation 12. Whenever an agent fails (because all its resources failed), its 
current plan fails, the agent is restarted with its next plan and all the resources which 
were allocated to it are made available for use. 
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Figure 6. Quality of the replication mechanism used vs. a failure-free execution 

 Figure 6 shows the maximum quality that could be obtained (in a completely 
reliable environment) compared to the quality of our strategy of replication and to a 
random one, which allocates randomly each resource available. We varied the failure 
rate of the resources, but due to space constraints, only a fixed value of 10 failures per 
minute is reported in Figure 6. The results are encouraging in the sense that the quality 
of our mechanism is quite close (80% at average) to the maximum value that could be 
obtained in a failure-free execution. Additionally, our strategy is more accurate to 
determine and replicate the most critical agents as the random one. In fact, the 
probability that a critical agent fails with our strategy is lower than with a random 
strategy. 

7. Conclusion 
Large-scale multi-agent systems are often distributed and must run without any 
interruption. To make these systems reliable, we proposed an original predictive method 
to evaluate dynamically the criticality of agents. Our approach takes profit of the 
specificities of multi-agent applications and analyses the agents’ plans to determine 
their importance to the system. This approach allows us to obtain a more precise value 
of the criticality and it takes into account the future behaviors of the agents. The agent 
criticality is then used to replicate agents in order to maximize their reliability and 
availability based on available resources. 

The proposed mechanism was implemented over the DARX replication 
platform. We have tested it and we believe that our current results are promising. In 
fact, the algorithms have a negligible overhead and provide a satisfactory reliability.  

One of the perspectives of this work is to refine the problem of fault tolerance in 
multi-agent systems and its evaluation measures, in order to compare the different 
proposed strategies with an optimal one. In that process, we are studying how to define 
and classify different variations for the expected global utility function. Additionally, 
we are currently adding other constraints to the resource allocation function such as 
allowing the definition of the minimum level of reliability required by the agents. 



  

Additionally, we have implemented and we are currently testing other heuristic 
solutions to the resource allocation problem, such as branch and bound, greedy, hill 
climbing and tabu search algorithms. 

Last but not least, we intend to run more large-scale experiments using the air 
traffic control application to validate our approach. This work is being co-funded by the 
following research programs: CAPES-COFECUB, CNPq, ANR Sécurité & 
Informatique and EuroControl CARE INO III. 
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