
Ubiquitous Service Regulation Based on Dynamic Rules

José Viterbo F.
Department of Informatics

PUC-Rio
R. Mq. de S. Vicente, 225

22453-900, Brasil
viterbo@inf.puc-rio.br

Markus Endler
Department of Informatics

PUC-Rio
R. Mq. de S. Vicente, 225

22453-900, Brasil
endler@inf.puc-rio.br

Jean-Pierre Briot
LIP6

Université Paris 6
8 rue du Capitaine Scott

75015 Paris, France
briot@poleia.lip6.fr

Abstract

Ubiquitous computing systems can be regarded as open
systems where heterogeneous and previously unknown en-
tities may spontaneously interact, due to intrinsic mobility
of users and their devices. In this highly dynamic and het-
erogeneous scenario, applications must be capable of ac-
cessing the appropriate instances of the required services
in each visited network or region. Some services, however,
must be made available only to users and applications that
fulfill some conditions. In ubiquitous systems the interac-
tion between client and server applications happens in a
physical space, involving human and artificial agents that
act under social and administrative rules. We propose the
integration of context-awareness with a social regulation
approach to control the interaction of users and their appli-
cations in such environments. This has the advantage that
access policies and rights can be defined and monitored in-
dependently of the applications for the ubiquitous system.

1 Introduction

In the vision of ubiquitous computing, computer sys-
tems will seamlessly be incorporated into our everyday
lives, providing services and information anytime and any-
where [19]. Compared to traditional distributed systems,
ubiquitous computing systems feature increased dynamism
and heterogeneity [14]. The underlying ubiquitous com-
puting infrastructures are more complex and bring into the
foreground issues such as user mobility, device disconnec-
tions, join and leave of devices, heterogeneous networks, as
well as the need to integrate the physical environment with
the computing infrastructure [6].

A fundamental characteristic of a software infrastruc-
ture for ubiquitous applications is context-awareness, i.e.,
the capability of providing services based not only on user

inputs, but also on implicit contextual information probed
(and deduced) from a wide range of distributed and het-
erogeneous sensors. While the standard context-aware ap-
proach to design and implement ubiquitous systems usually
focuses only on two dimensions, the topological space (e.g.,
the modeling of rooms, locations) and on the availability of
resources (e.g., battery charge or network bandwidth), our
approach extends the support for ubiquitous computing so
as to take into account the social context, by representating
and managing social norms [17].

As a sort of open system, a ubiquitous system may con-
tain dynamically interacting entities engaged in complex
coordination protocols. In such kind of systems, entities,
human or artificial ones, interact with each other, either to
cooperate or to compete. Due to the mobility of users and
their devices, previously unknown entities of different sorts,
using specific devices may come to interact spontaneously
in different environments. Some ubiquitous applications
may have as primary purpose to execute a given task using
the support of available resources or services in the user’s
vicinity or in the currently visited network domain [1]. Nev-
ertheless, some services should be made available only to a
restricted set of users, under specific conditions. For ex-
ample, services provided by active spaces such as smart
houses, offices or classrooms, are meant to be used only by
the users that play a specific role inside those spaces, such
as the owner of a house, an employee in a office, etc. Since
there is no prior knowledge of exactly which entities will
enter an environment and interact with the locally available
devices and present users, a regulation enforcement mech-
anism needs to be applied to ensure that some basic inter-
action norms will be obeyed [9], such as, for example, that,
in a smart classroom, only a user that is a instructor is able
to display his mobile device’s screen through the classroom
projector.

In this regulatory mechanism the access conditions may
be defined by rules that establish access policies, which are
a means of dynamically constraining and regulating a sys-

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.22

175

13th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-3139-7/08 $25.00 © 2008 IEEE
DOI 10.1109/ICECCS.2008.22

175

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

tem’s behaviour without changing code or requiring the co-
operation of the components being governed. Policy-based
approaches on service regulation may bring many bene-
fits, including reusability, efficiency, extensibility, context-
sensitivity, verifiability, support for both simple and so-
phisticated components, protection from poorly designed,
buggy, or malicious components, and reasoning about com-
ponent behavior [16].

This work proposes a system that applies regula-
tory mechanisms to coordinate the interaction among
client/server applications in a ubiquitous computing sce-
nario. In our approach, the policies are described by rules
correlating some context variables of an application, and
the regulation service auto-detects the permissions for the
clients to access a service independently from any syn-
chronous query. The next section presents a motivating sce-
nario. Section 3 describes the basic concepts. In Section 4,
we present our approach. In Section 5, we describe a case
study based on the proposed scenario. In Section 6, we dis-
cuss some related works. Finally, Section 7 brings the con-
clusions about the proposed system.

2 Scenarios

As a typical scenario to exemplify our approach, we
consider two universities in two different countries, for in-
stance, PUC-Rio, in Brazil, and LIP6, in France. We as-
sume that these organizations have a positioning/location
service for detecting the symbolic location of a user (i.e.
her mobile device), such as the one developed in the mid-
dleware MoCA [12]. At these two universities there would
be several atomic spaces, which are the smallest symbolic
areas distinguishable by the location service such as class-
rooms, laboratories, seminar rooms, offices, corridors, etc.
Although each of these spaces corresponds to a different ge-
ographical region, some of them have similar uses. People
visiting these spaces are assumed to have a well defined role
in the corresponding organizations, e.g. a lecturer, a student
or an administrative staff member, a temporary visitor from
another institution, or even an unknown visitor.

In the proposed scenario, which involves an active learn-
ing environment, we further assume that some classrooms
and seminar rooms are equipped with several multimedia
and portable devices, as well as several applications that
enable a rich and interactive learning experience among in-
structors and students, such as the Active Classrooms at
PUC-Rio. Each person in this scenario carries a mobile
device with a wireless LAN interface and capable of exe-
cuting applications that access different services, some of
which may be subject to location-based and administrative
regulation. For instance, when a lecturer enters an active
classroom at his university, he can use a specific client ap-
plication running on his mobile device to access a slide pre-

sentation service running on a server executing on a (static)
host within that same place. In this case, the authorization
to use the service would depend on detecting the user’s pres-
ence in the classroom and then checking if she has the role
of a lecturer in the corresponding institution. Conversely,
such authorization would not be granted to a student or vis-
itor.

As another application, we consider a chat application
suitable for experimental classes, where a server executing
on the mobile device of the lecturer makes it possible for the
students to interact with each other (and with the lecturer)
through a chat client for a “silent” exchange of ideas. But
the chat should be available only when they are within the
same classroom, and as soon as a user leaves the room the
service should become unavailable for her. A user identified
as a visiting student from another university would be able
to use the service, but not a user identified as an unknown
visitor. In this case, the service access authorization for the
users would result first from detecting that the user running
the service is in a given room, then that the users are in the
same place and that they play the role of students or visiting
students in that institution.

3 Basic Concepts

We believe that a regulation mechanism shall be useful
for controlling the interactions among entities in a ubiq-
uitous system. While users carrying mobile devices walk
through different spaces of an organization, applications ex-
ecuting on their devices will have to interact with differ-
ent services, each subject to specific restrictions, such as
the ones presented in the scenario of Section 2. In our ap-
proach we use the MoCA architecture [11] for providing the
context information regarding the computing environment
and the device’s location. We created an ontology for de-
scribing context information involving not only aspects of
the topology and the resources but also social aspects, such
as organizational features, roles and personal preferences.
We chose the SWRL ontology [4] for representing the rules
that set the conditions for having access to services. The
main reason was that it uses description logics, then al-
lowing the straightforward definition of new concepts (per-
missions) derived from the concepts and properties already
available in the ontology. Besides, it allows the definition
of variables and has some powerful pre-defined expressions
(built-ins) adequate to describe context conditions.

3.1 The MoCA Architecture

MoCA architecture provides support for developing and
executing distributed context-aware applications, particu-
larly those that comprise mobile devices interconnected
through wireless infrastructured LANs (802.11b/g). The

176176

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

Figure 1. MoCA generic ontology

services provided by MoCA support the collection, distri-
bution and processing of context information acquired di-
rectly from the mobile devices or inferred through context
services. Among then, the Context Information Service
(CIS) is responsible for managing the information about
the availability of resource of the devices involved, such
as free memory or battery charge. The Location Inference
Service (LIS) is responsible for inferring the location of a
mobile device from the information about RF signal pat-
terns collected from reference points [8]. Besides context
management, CIS and LIS also implement context moni-
toring, allowing clients to register their interest in specific
context states (involving one or several context variables)
modeled as logical expressions, and to be asynchronously
notified whenever the corresponding context-expression is
satisfied [12]. This functionality reduces the cost to build
client applications, since they are relieved from managing
the context information delivery.

3.2 The MoCA Ontology

The use of ontologies to represent context information
in a ubiquitous system has not only the advantadge of en-
abling the reuse and sharing of common knowledge among
several applications [13], but also of allowing the use of
logic reasoning mechanisms to deduce high-level contex-
tual information [18]. We based our meta-ontology on the
DynaCROM [3] generic ontology. This ontology considers
three basic concepts: Environment, Organization and Role,
that represent separate contextual scopes. We have extended
this ontology to comprise three new concepts: Device, Per-
son and Application.

In our approach, while the Environment concept has a
topological semantics and Device represents each compu-
tational device with its resources (e.g. battery level, mem-
ory available), Organization, Role, Person and Application
concepts represent the social aspects. The Environment de-
scribes physical spaces, places such as buildings or rooms,
and subclasses of Environment may describe specific kinds
of spaces that are common to different organizations, such
as a classroom, for example. Device describes the charac-
teristcs of the computational devices. Its mandatory sub-
classes are Mobile Device, which may comprise subclasses
such as PDA, Smartphone, etc, and Fixed Device, that may
describe a stationary host. The Organization describes some
social structure or institution, like a university, that may
have as subclass a department, for example. Role describes
some social or professional function attached to a given in-
dividual while Person describes the personal characteristcs
and preferences of an individual. Finally, Application com-
prises the aspects related to the software agents.

In each case, for describing a particular domain, the
generic ontology has to be instantiated, with the definition
of specific individuals for that domain, and may be extended
with the definition of some appropriate suclasses. For ex-
ample, we can think of University and High School as sub-
classes of Organization, and PUC-Rio as an individual that
is an instance of the subclass University. Or Country and
City as subclasses of Environment, and Brazil or France as
instances of the subclass Country. Organization and Envi-
ronment concepts are orthogonal and may be intertwined,
i.e, arbitrary relationships between subclasses and instances
of the basic classes may be defined freely. For example,
we may think of a classroom 511 (Environment instance) at

177177

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

PUC-Rio (Organization instance), in Brazil (Environment
instance), and a classroom 534 (Environment instance) at
LIP6 (Organization instance), in France (Environment in-
stance). A Role may also have subclasses that indicate some
special kind of social role valid across organizations and en-
vironments. Person and Application concepts represent the
human and software agents that interact in a given enviror-
ment. For example, Marie (Person instance), who is a stu-
dent (Role instance) from LIP6, may be visiting PUC-Rio
and attending a meeting at classroom 511. She carries an
HP smartphone (Device instance), running a browser (Ap-
plication instance).

3.3 SWRL

For representing the service access rules, we choose the
Semantic Web Rule Language (SWRL) because, as it uses
description logics, it allows a straightforward description of
information derived from classes and properties of an on-
tology. Besides, it allows the definition of variables and
has some pre-defined expressions (built-ins) that are partic-
ularly useful for describing context conditions [4]. SWRL
allows users to write rules to reason about OWL individu-
als and to infer new knowledge about those individuals. It
extends the set of OWL axioms to include Horn-like rules,
that then can be combined with an OWL knowledge base.
The proposed rules take the form of an implication between
an antecedent (body) and consequent (head). The intended
meaning can be read as: whenever the conditions specified
in the antecedent holds, then the conditions specified in the
consequent must also hold. Both the antecedent (body) and
consequent (head) consist of zero or more atoms. Multiple
atoms are treated as a conjunction. Atoms in these rules
can be of the form C(x), P(x,y), sameAs(x,y) or different-
From(x,y), where C is an OWL description, P is an OWL
property, and x,y are either variables, OWL individuals or
OWL data values. SWRL does not support negated atoms
or disjunction. Using a standard logic notation, in the form
“antecedent”⇒ “consequent”, an example of a rule assert-
ing that the composition of playsRole and isPlayedIn prop-
erties implies the worksIn property would be written as:

Person(?x) ∧ playsRole(?x,?y) ∧ isPlayedIn(?y,?z)⇒ worksIn(?x,?z)

In the above rule, variables were indicated using the stan-
dard convention of prefixing them with a question mark
(e.g., ?x). The execution of this rule would cause the ad-
dition of the worksIn binary property to all OWL individu-
als related by the property playsRole to another individual
which is related by the property isPlayedIn to another in-
dividual. In practice, an XML syntax is used to represent
these rules, which then can be stored in OWL text files.

As a particularly useful feature, SWRL includes a set of
built-in predicates that allow to describe the relation of vari-

ables with concrete domains, such as integers and strings.
Built-ins may occur in the body of a rule and have a prede-
fined logical meaning (a fixed interpretation, such as com-
parison operators <, >,=, 6=, etc) and can be considered as
dynamically evaluated predicates.

Room(?x) ∧ hasTemperature(?x,?y) ∧ lessThan(?y,15)⇒ ColdRoom(?x)

As an example, the execution of the above rule would cause
the addition of the ColdRoom unary property to all OWL in-
dividuals with a given individual as temperature which has
value less than 15 degrees.

4 Proposed Approach

This work proposes a regulation mechanism to be used
to control the interactions among entities in ubiquitous sys-
tems, where client applications running on mobile devices
interact with different entities, each responsible for a given
set of services constrained to a given environment. For that
sake, it is necessary to formalize the description of rules
and that provides a flexible and easy-to-operate mechanism
to support the regulation of interacting applications. That
mechanism should also permit that rules be created, deleted
and modified at runtime [2]. By making explicit the service
access rules in a ubiquitous environment and keeping them
separate from the implementation of the service itself, we
obtain several advantages. First, we make simpler both the
rules and the service implementations. Second, we facilitate
the rule management independent of services. Third, when
visiting different domains, that is, environments where the
type of information probed from from sensors may be dif-
ferent, or in an evolutionary scenario [10], where new types
of context are added, or the underlying context model is
changed, rules may be more easily adapted to the new situ-
ation.

In general, regulation can take two forms. In the first
approach, applications use the information about current
norms (norms may dynamically change depending on the
location, role, etc.) as an additional criterium to trigger their
own events. In the second approach, applications are con-
sidered black boxes and an external mediation mechanism
enforces that all the interactions with the services follow the
norms. We chose the second approach, associating access
rules to each service available in a ubiquitous system and
providing a regulatory service that monitors the context in-
formation of each entity in that system, granting access to
services only for those clients that meet the necessary con-
ditions.

We propose then the implementation of a specific service
to regulate the interaction between client and server appli-
cations by collecting context data from sensors, reasoning
about the service access rules and enforcing that the inter-
acting entities stick to the rule’s outcomes. This is done

178178

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

by the Domain Regulation Service (DRS), which is imple-
mented by a server that can receive the subscription of each
application server available at a given organization domain
and each application client that is interested in accessing
the services in this domain. The application servers must
inform the conditions under which they will provide access
to their services, i.e. when a service becomes available in
the domain, it must send to the DRS the rules that describe
the context conditions that the clients must satisfy to gain
access to the service.

Figure 2. Architecture for the regulation ser-
vice

Application clients subscribe to DRS informing on
which device they are running, and from this moment on
the device’s context data will be monitored by the regulation
service based on the data ontology available in the organi-
zation and the data provided by sensors, particularly by the
MoCA core services. Whenever a given application client
comes to satisfy the necessary condition to have access to a
specific application server, the DRS issues a temporary to-
ken and sends it to both applications. Then the client must
include the token in each message that it sends to the server.
When the condition is not satisfied by the client anymore,
the DRS notifies both application server and client again
and the token becomes invalid.

Figure 2 shows the architecture for the proposed service.
The Ontology Manager module is responsible for loading
the Ontology Data Base from a data storage and interpret-
ing it, creating a runtime data representation of the instances
and properties described in the ontology (i.e. those data
that are not dynamic), which consists in the Knowledge
Base. Context information collected from sensors is also
interpreted according to the ontology by the Situation In-
ference module and the respective changes in the properties

are added to the Knowledge Base. Server aplications will
susbcribe the service informing an access rule, and client
applications will subscribe to be notified about an appro-
priate service. The Context Monitoring module will check
when a client’s context description satisfies a given rule, and
then application server and client are notified by the Event-
based Communication Interface module.

We discuss, in the next subsections, some important con-
ceptual aspects that have to be considered in the description
and implementation of the regulation service.

4.1 Access Rules

The service access rules are comprised of a set of con-
ditions which a client application context description must
fulfill in order to be allowed to interact with the service.
As those rules are defined using SWRL, they may com-
bine variables with classes, properties or instances defined
in the ontology, which results in a great expressive power.
For example, assuming a presentation server running on a
static host somewhere but that controls a datashow device
in a given classroom at PUC (Room 511), then, an applica-
tion (class), in order to be allowed to connect to that server
(class), should be executing (property) on mobile device
(class) that is located (property) inside room 511 (instance),
and operated by (property) a person (class) who should play
the (property) role of a lecturer (instance). This condition
may be defined as the antecedent of the following rule:

Client(?c) ∧ Server(?s) ∧ isRunningOn(?c,?d) ∧ isLocatedIn(?d,“Room511”)

∧ isCarriedBy(?d,?p) ∧ playsRole(?p,“Lecturer”)⇒

hasPermissionToAccess(?c,?s)

The consequent of the rule asserts a new property “hasPer-
missionToAccess” relating the instances of Client and
Server — which are two subclasses of Application, as
shown in Figure 1. This property is added dynamically to
the knowledge base when the Situation Inference and the
Context Monitoring modules identify that a client satifies
the proper conditions.

4.2 Dynamic Properties and Event-
triggered Reasoning

The reasoning process to verify if a given permission
must be granted to a client involves not only the monitor-
ing of context variables that are obtained from some on-
tology that describes an institution, such as the properties
“isCarriedBy” and “playsRole”, but also those that are col-
lected from different distributed sensors and vary dynami-
cally, such as the property “isLocatedIn”. We name these
properties that are not pre-defined in the ontology data base
as “dynamic properties”, because they are effective only af-
ter a sensor produces the proper context values related to

179179

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

them, and are valid only while not replaced by some new
context information. As such, they are first defined and
change dynamically. Therefore, reasoning operations are
event-triggered, because they need to occur only when there
is some context data change, that is, when some sensor no-
tifies a different value for the corresponding context type.

Considering the example rule presented before, a new
reasoning operation happens only at the event of a change
of the property “isLocatedIn” for a monitored device. Since
each application client executes on a unique mobile device
and the MoCA services also provide context information
about devices (location, CPU usage, available memory, etc),
we have a device-centric inference process.

To allow a more efficient monitoring of the entities in
a system by the Context Monitoring module, the infer-
ence service internally defines some intermediary proper-
ties, which are equivalent to inferred values for some iden-
tifiable subparts of a proposed rule. For example, for a client
application being monitored under the rule predented above,
we define two intermediary properties that apply to the de-
vice being monitored. The first is “isLocatedIn” (prop-
erty001) and the second is the combination of the prop-
erties “isCarriedBy” and “playsRole” (property002). For
example, if a client application is running on a given de-
vice, it will be monitored to check if the device has “prop-
erty001=Room511 and property002=Lecturer”. This ex-
pression needs to be reevaluated only if any of the con-
stituent properties change.

4.3 Ephemeral Properties and Latency of
a Rule

We define the “hasPermissionToAccess” property relat-
ing instances of Client and Server as an “ephemeral prop-
erty”, because it is valid only if and while the condition is
true. If the condition becomes false, the property has to be
deleted from the knowledge base. As such, the Situation
Inference and the Context Monitoring modules that were
responsible for setting this rule when a client came to satify
the conditions, then start to monitor when the conditions be-
come false, for removing the property from the knowledge
base when it happens.

As some context information used to infere the access
permission comes from sensors that may be unstable, the
permission to access a service could also become unstable
and bounce in some circunstances. To prevent this from
happening we added a latency to be associated with each
rule. In practice, we extended the SWRL ontology used
to describe rules, defining the latency as a property for the
“rule” concept. The application servers that present their
access rules, must define this latency time. When the DRS
will identify a permission as not valid anymore only if the
access conditions leave to be satisfied for a period longer

than the latency.

5 Case Study

This case study highlights the great expressive power of
our approach. It describes a specific situation to show the
regulation of services using permisson rules based on com-
plex expressions that comprise dynamic context data pro-
vided by the MoCA services. We will consider the follow-
ing permission rule:

Server(?s) ∧ isRunningOn(?s,?d1) ∧ isLocatedIn(?d1,?r) ∧

isCarriedBy(?d1,?p1) ∧ playsRole(?p1,“Lecturer”) ∧ Client(?c) ∧

isRunningOn(?c,?d2) ∧ isLocatedIn(?d2,?r) ∧ hasFreeMemory(?d2,?x) ∧

greaterThan(?x, 200) ∧ isCarriedBy(?d2,?p) ∧ playsRole(?p,“Student”)⇒

hasPermission(?c,?s)

In this example we assume a service which must be run-
ning on the mobile device of a lecturer. The application is
a collaborative chat server that allows the teacher and stu-
dents in the same classroom to exchange messages and files,
including .JPG images. The students have to be in the same
classroom with their mobile devices for the client applica-
tions that they are executing be able to connect to the server.
Besides, the students’s mobile device must have the amount
of free memory greater than 200kB to be allowed to con-
nect.

In practice, when a server application S with the afore-
mentioned characteristics, subcribes the DRS, supposing
that this application is executing on Device D1 which is
located in the Room X and is operated by Person P1 that
is a Lecturer, DRS starts to monitor the respective ap-
plication clients checking for those running on devices
that have “property001=RoomX and property002>200 and
property003=Student”. Figure3a exemplifies the situation
of this application server. While this expression is reeval-
uated whenever any of the constituent properties of the
client’s device change, if the location of the server changes,
the expression being monitored also changes. For example,
in Figure3b, supposing that Client 1 is evaluated as hav-
ing “property001=RoomY and property002=300 and prop-
erty003=Student”, if Person A enters Room X the expres-
sion will be reevaluated as true and both client and server
will be notified. On the other hand, if instead Person P1
moves to Room Y , the new expression being checked now
is “property001=RoomY and property002>200 and prop-
erty003=Student”, and again the expression will be evalu-
ated as true for Client 1, but also for Client 2 and Client
3.

6 Related Work

The use of policies which constrain the behavior of sys-
tem components, is becoming an increasingly popular ap-

180180

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

Figure 3. (a) Context information of Server S. (b) Context information of Clients 1, 2 e 3.

proach to dynamic adaptability of applications in academia
and industry [16]. Multiple approaches for policy specifi-
cation have been proposed that range from formal policy
languages that can be processed and interpreted directly by
a computer, to rule-based policy notations using an if-then-
else format, and to the representation of policies as entries
of a table consisting of multiple attributes [7].

KAoS [16] consists of a set of platform-independent ser-
vices that allow the definition of policies to ensure the ade-
quate control over distributed systems. It is one of the first
systems to use OWL , i.e., description logic, to describe and
specify policies and context conditions. Therefore, KAoS
is able to classify and reason about both domain and policy
specification basing on ontological subsumption, and to de-
tect policy conflicts statically, i.e., at policy definition time.
However, a pure OWL approach bears some problems with
regard to the definition of some kinds of policies — partic-
ularly those requiring the definition of variables. Relying
purely on OWL, it is not possible to define policies that re-
fer to statically unknown values [15].

Rei [5] is a flexible and expressive policy language that
is based on deontic concepts, i.e. logic programs, and which
can be used to describe several kinds of policies. It al-
lows the description of individual policies as well as group-
and role-based policies. Differently from KAoS, Rei’s rule-
based approach enables the definition of policies that refer
to dynamically determined values, i.e. context variables,
thus providing greater expressiveness and flexibility to pol-
icy specification [15]. On the other hand, the possibility of
expressing Rei rules similarly to declarative logic programs
prevents it from exploiting the full potential of the OWL
language.

In comparison with other rule-based regulation systems,

our approach has the advantage of fully exploiting the ca-
pabilities of the OWL language to describe rules. Besides
that, it also allows the definition of access rules that refer
not to static values (or instances) but to dynamically deter-
mined values, as discussed in the cases study presented in
Section 5. Furthermore, our regulation service is based on
the monitoring of the context values to check them against
the rules proposed by the services available in a domain.
Our approach is proactive, since DRS auto-detects the per-
missions for the clients, independently of any synchronous
query. This feature is particularly suitable for ubiquitous
spaces, where applications must interact seamlessly.

7 Conclusion

This work proposes a system that applies regulatory
mechanisms to coordinate the interaction among applica-
tions in a ubiquitous computing scenario. In our approach,
explicit rules are used to describe which applications have
access to a service. These rules are comprised by a set
of conditions which a client application context description
must fulfill in order to be allowed to interact with the ser-
vice. This service regulates the interaction between client
and server applications collecting context data from sensors,
reasoning about the permission rules and and enforcing that
the interacting applications stick to the rule.

In comparison to other rule-based regulation systems,
our approach has the advantages of fully exploiting the ca-
pabilities of the OWL language to describe rules, while also
enabling the definition of access rules that refer to dynam-
ically determined values, instead of pre-defined and fixed
values. In our approach the access rules do not need to be
previously described for each service. Instead, our regula-

181181

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

tion service allows that when services become available in
a given domain, they present their own access rules. This
allows that services running on mobile devices that travel
through different domains may use this regulation service.

As its main feature, the proposed system is proactive,
that is, by monitoring the context information available, our
service auto-detects when any client has permission to ac-
cess a service independently from any synchronous query,
and informs both the client and the server. This character-
istic is what makes our system the most suitable for ubiq-
uitous spaces, where applications must interact seamlessly
with each other, in a transparent way for the users. As the
monitoring associated with the reasoning process may be
computationally intensive, our system still tries to achieve
a more efficient operation by executing the reasoning oper-
ation only when there are changes in context data collected
from sensors. As future work we will implement different
services with their appropriate set of rules to collect perfor-
mance results and evaluate the efficiency of the proposed
approach with different sets of rules and a growing number
of entities involved.

References

[1] D. Chakraborty, A. Joshi, and Y. Y. amd T. Finin. Toward
distributed service discovery in pervasive computing envi-
ronments. IEEE Transactions on Mobile Computing, 2006.

[2] C. Felicı́ssimo, R. Choren, J.-P. Briot, and C. Lucena. Sup-
porting regulatory dynamics in open MAS. In Proceedings
of AAMAS06 - Workshop on Coordination, Organization, In-
stitutions and Norms in Agent Systems (COIN-06), 2006.

[3] C. Felicı́ssimo and C. Lucena. An approach to regulate open
multi-agent systems based on a generic normative ontology.
In Proceedings of the 1st Workshop on Software Engineering
for Agent-oriented Systems (SEAS 2005), 2005.

[4] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A semantic web rule lan-
guage combining owl and ruleml. W3C member submission,
2004.

[5] L. Kagal, T. Finin, and A. Joshi. A policy language for a
pervasive computing environment. In Proceedings of the
IEEE 4th International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003), pages 63–74, June
2003.

[6] T. Kindberg and A. Fox. System software for ubiquitous
computing. Pervasive Computing Magazine, 2002.

[7] R. Montanari, A. Toninelli, and J. Bradshaw. Context-based
security management for multi-agent systems. In Proceed-
ings of the IEEE 2nd Symposium on Multi-Agent Security
and Survivability, pages 75–84, August 2005.

[8] F. N. Nascimento, V. Sacramento, G. Baptista, H. K. Ru-
binsztejn, and M. Endler. Development and evaluation of a
positining service based in ieee 802.11 (in Portuguese). In
Proceedings of the XXIV Brazilian Symposium on Computer
Networks (SBRC 2006), 2006.

[9] R. Paes, G. Carvalho, H. Almeida, C. Lucena, and P. Alen-
car. A conceptual architecture for law-governed open multi-
agent systems. In Proceedings of Argentine Symposium on
Software Engineering (ASSE2004), 2004.

[10] R. Rocha and M. Endler. Context management in heteroge-
neous, evolving ubiquitous environments. IEEE Distributed
Systems Online, 7(4), April 2006.

[11] H. K. Rubinsztejn, M. Endler, V. Sacramento, K. Gonçalves,
and F. N. Nascimento. Support for context-aware collab-
oration. First International Workshop on Mobility Aware
Technologies and Applications (MATA 2004), 5(10):34–47,
2004.

[12] V. Sacramento, M. Endler, H. K. Rubinsztejn, L. S. Lima,
K. Gonçalves, F. N. Nascimento, and G. A. Bueno. MoCA:
A middleware for developing collaborative applications for
mobile users. IEEE Distributed Systems Online, 5(10),
2004.

[13] A. Shehzad, H. Q. Ngo, K. A. Pham, and S. Y. Lee. Formal
modeling in context aware systems. In Proceedings of the
First International Workshop on Modeling and Retrieval of
Context, September 2004.

[14] J. Soldatos, I. Pandis, K. Stamatis, L. Polymenakos, and
J. L. Crowley. Agent based middleware infrastructure for
autonomous context-aware ubiquitous computing services.
Journal of Computer Communications, 2006.

[15] A. Toninelli, L. Kagal, J. M. Bradshaw, and R. Monta-
nari. Rule-based and ontology-based policies: Toward a hy-
brid approach to control agents in pervasive environments.
In Proceedings of the Semantic Web and Policy Workshop
(SWPW), November 2005.

[16] A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate,
J. Dalton, and S. Aitken. Kaos policy management for se-
mantic web services. IEEE Intelligent Systems, pages 32–
41, July/August 2004.

[17] J. Viterbo, C. Felicı́ssimo, J.-P. Briot, M. Endler, and C. Lu-
cena. Applying regulation to ubiquitous computing envi-
ronments. In Proceedings of the 2nd Workshop on Software
Engineering for Agent-oriented Systems (SEAS 06), pages
107–118, Outubro 2006.

[18] X. Wang, D. Zhang, T. Gu, and H. Pung. Ontology based
context modeling and reasoning using OWL. In Proceed-
ings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops, pages 18–22,
March 2004.

[19] M. Weiser. The computer for the twenty-first century. Sci-
entific American, 265(3):94–104, September 1991.

182182

Authorized licensed use limited to: Trial User - Centre National de la Recherche Scientifique CNRS. Downloaded on November 20,2023 at 15:14:29 UTC from IEEE Xplore. Restrictions apply.

