
 1

 Using Components for Modeling

 Intelligent and Collaborative Mobile Agents

Min-Jung YOO(1), Jean-Pierre BRIOT(1) and Jacques FERBER (2)

1. LIP6 : Laboratoire d'Informatique de Paris 6, UPMC. Tour 46/0, 2ème étage, Case 169, 4 place Jussieu,
 75252 Paris Cedex 05, France. Tel. +33.1.44.27.73.89, Fax. +33.1.44.27.70.00

E-mail : {Min.Yoo, Jean-Pierre.Briot}@lip6.fr

2. LIRMM : Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5, France
E-mail : ferber@lirmm.fr

Keywords
software agent, mobile agent, collaboration, intelligence, componential approach, Java, Voyager

Abstract
Intelligence, collaboration and mobility are the main important features in designing agents for electronic
commercial systems. But very few systems permit to implement agents which have all these
characteristics. In this paper, we address the problems of designing intelligent collaborative mobile
agents. We propose a componential approach for designing and implementing such agents. Our
framework architecture for agents decouples components expressing the internal behavior of an agent
from components expressing coordination between agents in order to enhance modularity and reusability.
Our agent design and implementation environment consists in three distinct phases : modeling, validation
and implementation. We have developed a component description language for easy modeling of
componential agent architecture. The component specification is automatically translated into Java source
code by our compiler, and then integrated into a mobile agent platform. We have integrated our agent
implementation environment into two different mobile agent platforms, namely JNA (JavaNet Agent) and
Voyager. We have tested our agent development system with the Travel Agency scenario, one of the
standard electronic commercial service examples.

1. INTRODUCTION
The recent rapid growth of information networks (e.g. Internet) enabled end-users to get more easily the
various informations they want. This promoted the development of new electronic commercial products
for the end users and the amount of such information providers is ever increasing. Such applications are
not standalone but are expected to communicate with each other (even though they may have been
initially developed independently). As described in [Genesereth 97], agentification process hides
heterogeneity by wrapping different applications into agents. We call these inter-operable heterogeneous
applications ‘software agents’ which can communicate and work together in collaboration.
For example in our test example ‘Travel Agency service system’, the applications for the ‘Travel Agency’
and ‘Travel Services’ (e.g., Air France, United Airlines, hotels, rent-a-car, etc.) are connected through
Internet. For the ‘Travel Agency’ application to provide travel planning and reservation service, these
service providers have to cooperate so as to: (1) find compatible schedules for services (i.e. selecting
appropriate flight company, hotel for the user’s schedule), and (2) adapt these schedules in case of a
modification occurring to one service (e.g. a flight is delayed or canceled). We would like to develop each
applications as appropriate software agents so as to construct collaborative electronic commercial
services.

 2

1.1 Characteristics of software agents
When we talk about agents in general, the commonly accepted nature in the literature [ATAL
96][Bradshow 97] can be categorized by three points of views : intelligence, collaboration, and mobility.

1.1.1 Intelligence
The Agents’ ability concerning reasoning, planning, and learning capability can be regarded as various
degrees of intelligence. From the view-points of the DAI (Distributed Artificial Intelligence) community
[Demazeau Müller 91], there are two representative types of intelligent agents: reactive and intentional
agents. A reactive agent reacts to changes in its environment or to messages from other agents. An
intentional agent is able to reason on its intentions and beliefs, to create plans and actions, and to execute
those plans.

1.1.2 Collaboration
One of the important issues in multiple software agents system is the agent collaboration which provides
a more elaborated service through the agents’ cooperation. The agent cooperation can be achieved by two
means: common agent communication language and high-level agent conversation protocols.

The purpose of common ‘Agent Communication Language (ACL)’ is to provide inter-operability to
different types of applications. The agents which are capable of understanding an ACL are distinguished
from other kinds of software by their ability to communicate using a shared message semantic. The
message semantics are typed and independent of the applications. The most well-known ACL standards
are the KQML [Finin et al. 97] and the FIPA specification for standard ACL [FIPA 97].

However an agent can hardly achieve an expected goal only by sending a simple ACL. Sometimes the
agents are expected to exchange continually appropriate ACLs until the goal satisfaction. In some cases,
these conversations between agents follow some expected message sequences. This typical patterns of
message exchange are called ‘conversation protocol’ or ‘agent cooperation protocol’ [Von Martial 93],
[Burmeister et al.93] [Demazeau 95]. If agents in collaboration can communicate through such a pre-
defined protocol, they can cooperate more efficiently to achieve more complex goals.

1.1.3 Mobility
Very recently, agent mobility has been introduced as a good solution for overcoming the limitations of
networks - for example, communication bottle-necks, communication faults, etc. This is because mobile
computation can reduce the communication band-width, and help a fault-tolerant execution against
unpredictable communication failures. Therefore the agent’s mobility is especially important in systems
composed of multiple agents which are physically connected through networks (ex. Internet) and work
together by exchanging messages at distance.

1.2 Issues in designing software agents with mobility
So we would all agree that the agent technology is a pertinent solution for developing collaborative
software, and that the agent mobility is a good technical evolution which can be applied to efficient
electronic commercial systems. And then what difficulties do we find? The main problems can be shown
as follows :

1. In mobile agent platform oriented researches, the relation between the agent mobility and the
intelligent agent behavior has been hardly considered, nor the relation between the agent mobility
with its collaboration and conversation protocols.

2. In agent design and implementation oriented researches, the agent mobility has not yet been
effectively integrated with an intelligent behavior or cooperative multi-agents paradigm.

That is, there are few systems which permit us to develop both intelligent and collaborative mobile agent.
Well-known mobile agent platforms, for example Aglet, Odyssey, Voyager, provide just a technical base
concerning mobile computation. Constructing an intelligent agent or providing multiple agents’
collaboration is absolutely up to the designer’s responsibility. Some other agent systems which addressed
an intelligent agent implementation [Rao Georgeff 95] [Lalo 96] have not yet addressed agent mobility.

 3

There are a few researches which have addressed jointly these issues; intelligence within a mobile agent
or collaboration between mobile agents. We would like to explain them briefly in section 2, and then
present our approach. Section 3 is devoted to our componential approach for agent modeling. In section 4,
we will show some examples of designing agent conversation protocols using our component description
language. Section 5 presents our compiling and implementing technique related with two mobile agent
platforms. And then in section 6 we will conclude by summarizing our approach and future direction.

2. MOBILITY WITH INTELLIGENCE AND COLLABORATION
There are some approaches which try to incorporate intelligence and collaboration within a mobile agent
architecture, namely [Plangent 97] and [Concordia 97]. Figure 1 summarizes these different approaches.

Figure 1 . Different levels of integration of intelligence, collaboration and mobility

2.1 Mobility with intelligence
In Plangent [Oshuga et al. 97], the agent’s intelligence is represented as the ability to generate flexible
plans. For that reason, the mobile agents must be able to: 1) plan actions that will satisfy the user
requirements, 2) act according to the plan, and 3) modify the plan according to actual conditions. The
agent’s mobility is mainly used to gathering informations which cannot be obtained from the agent’s site
but possibly supplied by other site’s domain knowledge. The agent mobility helps at an intelligent and
flexible planning mechanism, by allowing the agent to generate a local plan and move to other sites for
completing insufficient information.
We may remark that in Plangent, KIF (Knowledge Interchange Format) [Finin et al. 97] is used for the
knowledge representation of each site. KIF is indeed one of the main proposals considered by the various
committees involved in the ‘Knowledge sharing effort’ [Finin et al. 97][Genesereth 97]. Nevertheless KIF
is just an inner language of the ACL and agents need an « outer » language like KQML in order to
communicate through ACL semantics. Plangent has successfully extended the originally conceived
planning mechanism towards ‘planning mobile agent’, but in terms of inter-operable agents, the Plangent
lacks cooperative aspects.

2.2 Mobility with collaboration
What distinguishes Concordia from other mobile agent platforms - like Telescript or Aglet - is the
included collaboration framework mechanism. Concordia’s collaboration framework provided by
AgentGroup and Collaborator agents facilitates some kind of agent coordination to solve complex
problems. Within an agent application, a complex task is divided into smaller pieces (sub-tasks) and
delegated to agents that migrate to other sites to accomplish them. These agents perform distributed
computations and synchronize at the ‘Collaboration point’ to share their results. Then the AgentGroup
analyzes the global result after all Collaborator agents have arrived at their synchronization point.
But as we have mentioned, the system does not provide much facilities for the design of an intelligent
agent with the capability of reasoning, planning, etc.

Intelligence Collaboration

 Mobility

Classical DAI,
Multi-Agents system

One of Concordia’s features
Our goal

Plangent’s
approach

 4

2.3 Our solution : Componential architecture for integration of intelligence with
collaboration
With Plangent and Concordia, or with any other mobile agent platforms, it is not easy to implement both
intelligent and collaborative agent’s behavior. Even though some kind of integration is partially solved, -
for example ‘intelligence with mobility’ in Plangent, or ‘collaboration with mobility’ in Concordia - the
integration of remained features is not so easy. In this context, what we want is to provide the model of an
intelligent collaborative agent being integrated with mobility.

In order to achieve integration of these three perspectives, our approach is:

1. to decompose an agent into two distinctive components - a) an intelligent behavior component, and
b) a collaborative component,

2. to encapsulate this componential agent into a structure of mobile agent.

Figure 2. Simplified componential agent architecture

Figure 2 shows our agent architecture which contains the two important agent’s features. But rather than
mixing up them all within an agent’s structure, we separate the different parts as a connectable
component. More details about the componential agent architecture will be described in section 3.

2.4 An environment for developing collaborative intelligent mobile agents
We have developed a mobile agent modeling and implementation environment with which the designer
models agents using different types of software components which can be easily connectable and
replaceable.

Figure 3. Agents system design and implementation environment

In this environment the agent modeling and implementation phase can be divided into three different
phase:

1. In the agent modeling phase, the intelligent behavior and the collaborative aspect may be
differently designed as distinctive components of the agent architecture concerning the mobility.
This phase concerns only the abstract high-level agent model, that is to say, the designer does not
need to directly manipulate the agent migration method which is specific to a mobile agent
platform. We use a special description language which will be presented in section 3.2.

2. The compilation into Java source code and implementation phase makes it possible to generate
automatically the operational Java code and implement the agent into a mobile agent platform,
which corresponds exactly to the model specified in the ‘modeling phase’. One benefit of our
approach is to minimize the dependency of agent modeling and implementation environment from
the mobile agent platform itself. This is shown by our experimentation with two different types of

Modeling

Validation Implementation

Componential
Design

Validation of
cooperation
model

Java code
generation and
integration

Transformation

Model
correction

compilation

1a
 1b

Intelligent
behavior
component

Collaborative
component

Mobile agent
structure

2

 5

Intelligent behavior component

mobile agent platforms; one for JNA (JavaNet Agent) mobile agent platform [Merlat et al. 97] and
the other with Voyager [Voyager 97].

3. The validation of multi-agents’ collaboration model. In our system we also address the validation
of conversation protocols before executing the agents in real world. After designing an agent
model, the validation phase verifies certain basic properties of the conversation protocol (no
deadlock, no livelock, etc.) through the translation of the protocol specification into a Petri net
formalism [Yoo et al. 98].

Now we would like to detail our componential approach for integrating agent mobility within
collaborative intelligent agent architecture.

3. COMPONENTIAL APPROACH FOR AGENT MODELING
As we have mentioned in [Yoo et al. 98], the componential approach for the modeling and
implementation of open systems - like software agents over Internet - gives flexibility during the
modeling phase and for system maintenance. In the course of new model designing, the designer can
combine the reusable parts which have been developed for other applications. One can also easily modify
the old model by disconnecting and replacing the respective parts. So we have chosen such a
componential approach for agent modeling.

3.1 Agent architecture constructed with components
The following figure shows an example of agent architecture. An agent can be viewed as a compound
component composed of various sub-components. Each sub-component may be recursively decomposed
into further sub-components.

Figure 4. Componential agent architecture

The ACL module is responsible for agent communications using a standard ACL. The mental state
component keeps track of the agent’s knowledge about itself and its environment. The agent’s specific
task components represent the agent’s computational behavior. And more, there are two distinct parts
within the agent architecture: the intelligent behavior component and the collaborative component. In this
paper, we will discuss more about the collaborative component, its sub-components for conversation
protocols. The other components will not be further detailed.

ACL module

Deliberative
component

Task
controller

 Mental state

Collaborative component

communications between agents

agent specific tasks

conversation
protocol
components

 6

3.2 SoftComponent Description (SCD)
We have developed the Soft-Component Description (SCD) language in order to describe different agent
parts as connectable components. The agent designer uses this language to model an agent behavior by
defining component classes and then composing component instances.
The essential characteristics of SCD are that:

1. it is appropriate to describe the agent conversation protocols or the Task Controller components.
SCD semantic is mainly based on the state/transition mechanisms. In case of ‘Conversation
protocol’ components, it is pertinent to represent the conversation states and transition conditions to
the next conversation state.

 For example, a general framework of conversation protocol is:

 if an agent is in conversation state A and if it receives an agent message M(arg1, arg2)
 Then the agent is in conversation state B and it send a message N(arg3).

 This feature can be described using SCD syntax as follows:

 any_action_name {
 INPUT M(arg1, arg2) ONSTATE (A)
 THEN {SEND N(arg3) NEXTSTATE (B) }

 END}

 The same representation scheme for conversation protocol - i.e., conversation states and transitions
- can be shown in [VonMartial 93] or COOL [Barbuceanu Fox 95]. In case of the ‘Task controller’
component (in figure 4), SCD is capable of describing pre-conditions satisfied to start some tasks
and post-actions (e.g., for re-initialization) which must be achieved after each tasks.

2. for modeling agent specific tasks the designer can encapsulate any Java programs into a
connectable component using SCD syntax. This means that any Java application or Applet can be
encapsulated and then composed within an agent architecture. For example, if we want to
encapsulate a Java object as a connectable component;

3. SCD is able to describe a compound component which can be obtained by the composition of

different types of component, i.e., the type 1 or 2 of components listed above, or the compound
component itself.

In this paper, we omit the full syntax of SCD but we will give a simple example in section 4.

4. EXAMPLE
With our componential approach we are developing the Travel Agency service scenario, one of the well-
known examples of collaborative electronic commerce examples. We have chosen the message semantics
of FIPA ACL [FIPA 97] for common agent communication language.

4.1 Agents configuration
In considering the Travel Agency scenario, we have selected three types of agents: ‘User Assistant’ agent,
‘Travel Agency’ agent, and different types of travel service agents (‘United Airlines’, ‘Air France’, Hilton
hotel, etc.). Figure 4 shows the agent configuration in that each agent is located on different sites.

msg1 (int, char)

msg2 ()

 jo.class
(any class)

VAR {INTEGER i, CHARACTER c}
MSGIN {compo_msg1 (i, c), compo_msg2()}
ENCAPSULATE jo INTO my-component
BIND { compo_msg1 TO msg1,
 compo_msg2 TO msg2}

United
Air lines

 7

 Legend :

Figure 5. Travel Agency service example.

The User Agent asks the Travel Agency for a trip-planning service: a travel from Paris to San Francisco
during 5 days. To start this conversation;

1. the User Agent first moves to the site of the Travel Agency agent.
2. Then the User agent starts the FIPA-request [FIPA 97] conversation protocol to request the Travel

Agency’s service ‘Trip-Planning’.
3. When the ‘Travel Agency’ agent receives the request concerning the trip-planning service,
4. The Travel agency agent decomposes the trip summary (for example, ‘flight from Paris to San

Francisco’ and ‘hotel during 5 days’). It uses its acquaintance table to retrieve appropriate agent
addresses which satisfy the decomposed service items (for example, addresses of service agents for
‘flight service’ and ‘hotel’).

5. And then the ‘Travel Agency’ agent starts the ‘Contract Net’ protocols with flight service agents
and hotel reservation agents, in order to find a ticket of minimum cost and a hotel room of
minimum cost within the maximum satisfaction of user’s need respectively.

6. After selecting an appropriate flight company and hotel, the travel agency agent migrates to the
travel service agent’s site to resume conversations. For example, for reserving a room the hotel
agent might need more detailed informations about the customer’s preferences. To respond more
efficiently to these questions, the Travel Agency moves to the selected service agent’s site.

The figure 5 shows the agent migration and conversation protocols used. In the following sub-section we
would like to discuss only about conversation protocols (2, 5)

4.2 Designing conversation protocol components
The agent conversation protocol contains two types of participants: invoker and invokee. For example in
the ‘Contract net’ protocol [Smith 80], there are manager and bidder as participants. The manager is a
protocol invoker and the bidder is an invokee of the ‘Contract net’ protocol. This brings us to design two
separated components for each participant. The example of Contract net protocol and FIPA-request
protocols are shown in figure 6. The invoker and invokee parts are represented as dashed line boxes.

The conversation protocol components have been described using SoftComponent Description (SCD)
language. For example the SCD specification of Contract net protocol components for manager and
bidder parts are shown in figure 7a and 7b. For the moment the agent specific tasks are directly
programmed in Java. But ultimately travel service agents may be developed with JDBC. The ‘User
Agent’ may be developed as a Java Applet and we compose these with our conversation protocol
component.

User
Agent

Travel
Agency

Air
France

Hilton
hotel

Hotel
Plaza

Contract net
protocol

Contract net
protocol =>

=> FIPA-request

: Different agents => protocol name : move, then start conversation protocol (local conversation)
 protocol name

: conversation at distance

Protocol name => : terminate conversation protocol (at distance), and then move

: migration

Contract net protocol FIPA-request protocol

:communication

(1)

(2)

(5)

(5)

(6)

 8

Figure 6a.Example of contract net protocols Figure 6b. Example of FIPA-request protocol

4.3 Specification of mobility within conversation protocols
Within the description of action3 in ‘Contr_Manager’ component (figure 7a), there is a ‘moveTo’ field
(SCD syntax) which indicates that the agent migrates to the site indicated by ‘dest’ variable. We have
modeled a Contract net protocol and FIPA-request protocol with the agent mobility.
For almost all conversation protocols, unless the conversation is successfully carried until the end of
protocol, the agents cannot obtain the expected current results. Therefore if we imagine that two agents
communicate with each other only by the message passing at distance and the communication failure
arrives during the agents’ conversation, this might lead to an unexpected result, i.e., incoherent internal
states of each agents which had participated to this conversation. Such an incoherent knowledge about
other agents or its environment would make an agent to take a bad decision. Or the agents must restart the
entire conversation protocol once again. By using a mobile agent, we can prevent the conversation failure
due to a sudden communication fault and bring to both an economic and safe collaboration. Thus we want
to integrate the mobility within the model of conversation protocols.
For FIPA-request, we modeled the protocol component which starts with ‘moveTo (dest)’, i.e., the
migration to the site of the requested agent (the invokee of FIPA-request protocol). After requesting a
service, there are different responses possible (refuse, agree, inform). Getting safely a correct response is
an important fact in deciding next behavior of the invoker (in our case, Travel Agency) agent. In case of

(Manager) (Bidders) Call-for_proposal

Propose (from multiple bidders)

Accept-proposal

refuse

agree

inform

request

DEFCOMPO Contr_Bidder { // Bidder part of the
 // Contract net protocol

SUPER SoftComponent
VAR {Condition condt, Bid bid, Award award}

MSGIN {Call-for-proposal (condt), Accept-proposal (award)}
MSGOUT {propose (bid), beginService (award)}

STATE {BidCondition {TYPE condition}}
OPERATION {
 action1 { INPUT {Call-for-proposal (condt)}
 THEN NEXTSTATE {BidCondition (condt)}
 END}
 action2 { ONSTATE {BidCondition (condt) }
 IFEXT hasService
 THEN ASK makeBid FOR bid
 SEND {Propose (bid)} END}
 action3 { INPUT {inform (Accept-proposal)}
 THEN SEND {beginService (award)} END}
}}

DEFCOMPO Contr_Manager { // Manager part of
 // the Contract net protocol

SUPER SoftComponent
VAR {Condition condt, Vector bidList, Award award,
AgentAddress dest}
MSGIN {beginContract (condt), Propose (bidList), migrate
(dest)}
MSGOUT {Call-for-proposal (condt), Accept-proposal (award)}
REQUEST {selectService (bidList) WITHTYPE Award}

STATE {offered, migrated}
OPERATION {
 action1 { INPUT {beginContract (condt)}
 THEN SEND {Call-for-proposal (condt)}
 END}
 action2 { INPUT {propose (bidList) }
 IF (bidList.size() > 0)
 THEN ASK selectService
 FOR award
 SEND {Accept-offer (award)}
 NEXTSTATE {offered ()} END}
 action3 { ONSTATE {offered ()}
 INPUT {migrate (dest)}
 THEN {moveTO (dest)} END}
}}

Figure 7a. Component description for Manager
part of Contract net protocol

Figure 7b. Component description for Bidder part of
Contract net Protocol.

Invoker of
FIPA-
request

Invokee of
FIPA-
request

 9

Contract Net protocol, some conditions such that the manager must receive bid proposal from all bidders,
or that the bidder to which was addressed the Call-for-proposal message must always receive this message
and participate in the contract, etc. is not so important. In contrast, what is more important is that, after
selecting a bidder, the manager must resume the conversation in a safe state with the chosen bidder (now
called contractor). So we have modeled a Contract net protocol which leads to the agent migration to the
site of a selected contractor.

5. COMPILATION AND IMPLEMENTATION INTO MOBILE AGENT PLATFORMS
The translation from a componential model to a mobile agent is achieved automatically. Once the
designer describes the component specification using SCD (SoftComponent Description), it is compiled
into Java code which is then encapsulated within a mobile agent’s execution body.

5.1 Compilation of component descriptions
We have implemented a compiler which produces Java source code from the component model specified
using SCD. From one component class description, the compiler produces a component class definition in
Java. For example, the SCD description presented in figure 7a has been compiled into Java code in figure
8. The figure 9 shows the SCD compiling environment.

<...> //descriptions of included packages

public class Contr_Manager extends SoftComponent {
 Award award ;
 Place announced = new Place (“announced”) ;
 Place offered = new Place (“offered”) ;
 Place migrate = new Place (“migrate”) ;

 public Contr_Manager (String name, String msgin, String
msgout) {
 super (name, msgin, msgout) ;

 void beginContract (Condition condt) {
 if (plDistance.isCurrentState()) {
 plDistance.consumeToken () ;
 sendMessage (“callForProposal”, loadArgument (new
Vector(), condt)) ;
 }

 public void propose (Vector bidList) {
 if (bidList.size() > 0) {
 award = (Award) require (“selectService” ,

loadArgument (<...>) ;
 sendMessage (“accept-proposal”, <......>) ; }}
 offered.nextState() ;
 }}
 public void move (AgentAddress dest) {
 if (offered.isCurrentState()) {
 self.moveTo (dest) ;
 }}
 public void _after_move () {
 migrated.setCurrentState() ;
 }

<.....>
} // end of class definition Contr_Manager

Figure 8. Generated Java code for the manager part’s component of the ‘Contract net’ protocol

 10

Figure 9. SoftComponent editing and compiling environment

Finally the generated components’ code in Java is encapsulated into a mobile agent structure so as to be
integrated into a mobile agent platform as an executable agent. The agents’ collaborative aspects can be
visualized by messages sent and received. The figure 10 shows the example of JNA screen which
visualizes the different messages of the agent in conversation through the ‘Contract Net’ protocol.

Figure 10. JNA screen example of a site information

 11

5.2 Integration with a mobile agent platform
One of the best benefits of our approach is that the agent modeling and code generation system is weakly
dependent upon a given (Java-based) mobile agent platform. This is possible by the compilation of SCD
into Java source code. There are some other agent platforms which compile their specification language
in order to generate agents, namely SodaBot [Coen 94], LALO [Gauvin et al. 97]. In these cases, the
compiled or interpreted information has been directly transformed into a specific agent platform. Thus it
is difficult to adapt such systems to another type of environment. But in our case, the compiler generates
Java source code which can be integrated into some Java-based agent platform. This has made easy the
integration of our componential modeling and code generating system with two different mobile agent
platforms.

The first version has been implemented into the JNA (JavaNet Agent) platform [Merlat et al. 97].
JavaNetAgents (JNA) is a mobile agent platform, developed in Java through the collaboration of ONERA
(Office National d’Etudes et de Recherches Aérospatiales) and the laboratory LIP6. Like most of such
platforms, its architecture is based on places (sites) and agents [Telescript 95]. Local and distant agents
(i.e. agents hosted on the same or distant places) can communicate through agent messages. Security
features prevents malicious agents from making unauthorized access to local resources (files, sockets,
threads, etc.). The physical agent structure of JNA is close to that of Aglet.

The second version has been integrated with the Voyager mobile agent platform (Object Space, [Voyager
97]). Being based upon our experience with previous mobile agent platform, we have easily achieved the
integration with Voyager. Compared to JNA or other mobile agent platforms, Voyager has some
interesting features especially for our modeling method.
1. In JNA, it is difficult to trace the mobile agent’s current address. Thus the message sending is always

invoked from a mobile agent to a stable agent. But the Voyager platform contains a distributed naming
service that allows to connect to a mobile agent based on some alias. So sending a message to a mobile
agent is transparently achieved as if between residing agents.

2. In JNA there are graphical user interfaces provided by the platform, for observing and managing the
current states of the agents on that site. This may give some facilities to whom wants to develop
mobile agents directly into the platform. In case of Voyager, such an user-friendly interfaces are
weakly provided. The developing environment is rather simple but provides more elaborated technical
bases, as ‘distributed naming facility’ or ‘communication using agent method call with agent name’,
etc., which are more preferable for us. That is why we have chosen Voyager as the second platform of
experimentation.

Although the JNA and the Voyager have distinctive features in terms of agent types (agent as a thread,
and an object, respectively) and communication way (by a class of Message and by agent’s method call,
respectively), we have succeeded in integrating agent modeling and implementation system into these two
different platforms.

6. CONCLUSION
Our aim is to provide a software agent developing environment for the designer who wants to implement
collaborative intelligent mobile agents. We attempted at integrating classical collaborative intelligent
agent paradigms into mobile agent technology. We also addressed the modeling facility by choosing
reusable components and composition techniques.

The componential agent design is achieved by describing each component using our component
description language (SCD). For the purpose of specifying agent mobility the designer can indicate when
mobility is triggered within the component description. Afterwards, the model description is translated
into Java source code. The generated code is automatically integrated into a mobile agent platform to
execute the modeled behavior of the mobile agent. The componential approach for collaborative agent is
especially appropriate to design generic conversation protocols and their reuse.

 12

We have already modeled, validated and executed the simple scenario of ‘Travel Agency’ as described in
section 4. We are currently exploring variations and extensions of this initial scenario (for example, using
variants of ‘Contract net’ protocol, adding agents, etc.) in order to further test the reusability of our
componential architecture.

Acknowledgment
This work is supported by France Telecom/CNET under grant # 95 1B 176.

References

[Aglet 96] available on http://www.trl.ibm.co.jp/aglets/
[ATAL 96] J.P.Müller, M.J.Wooldridge (eds.), Intelligent Agents III, ATAL ‘96, LNAI 1193, Springer-
Verlag, 1997.
[BarbuceanuFox95] Mihai BARBUCEANU and Mark FOX, COOL: A Language for Describing
Coordination in Multi Agent Systems, ICMAS 95
[Bradshow 97] Jeffrey Bradshaw, ed. Software Agents, AAAI Press/MIT Press, 1997
[Burmeister et al.93] Birgit Burmeister, Afsaneh Haddadi, Kurt Sundermeyer, Generic, Configurable,
Cooperation Protocols for Multi-Agent Systems, LNAI 957, 5th European Workshop on Modelling
Autonomous Agents in a Multi-Agent Sorld, MAAMAW ‘93.
[Coen 94] Michael H. COEN, SodaBot : A Software Agent Environment and Construction System,
A.I.Technical Report 1993, Messachusettes Institute of Technology, 1994.
[Concordia 97] Mitsubishi Electric ITA, Concordia: An Infrastructure for Collaborating Mobile
Agents, available on http://www.meitca.com:HSL/Projetcs/Concordia/
[Demazeau 95] Yves Demazeau, From interactions to collective behavior in agent-based systems. In
Proceedings of the 1st European Conference on Cognitive Science, St.Malo, France, March 1995.
[Demazeau Müller 91] Yves Demazeau and Jean-Pierre Müller, editors, Decentralized A.I. II, Elsevier
Science Publishers B.V., Amsterdam, NL, 1991.
[Finin et al. 97] T. Finin, Y.Labrou, J.Mayfield, KQML as an Agent Communication Language, in
[Bradshow 97]
[FIPA 97] Foundation for Intelligent Physical Agents, Specification Version 2, Part1 - Part5, 1997,
http://drogo.cselt.stet.it/fipa/spec.
[Gauvin et al. 97] Daniel Gauvin, Gervé Marchal, Carlos Saldanha, LALO: un environnement de
programmation ouvert pour des systèmes multi-agents, acte des 5éme jounées francophones
JFIADSMA ‘97, Hermes 1997.
[Genesereth 97] Michael R. Genesereth, An Agent-Based Framework for Interoperability, in
[Bradshow 97]
[Haddadi Sundermeyer 96] Afsaneh Haddadi and Kurt Sundermeyer, Belief-Desire-Intention Agent
Architectures, in Foundations of Distributed Artificial Intelligence, G.M.P O’Hare and N.R.Jenning, eds,
Wiley-Interscience 1996.
[Merlat et al. 97] Walter Merlat, Claude Seyrat, Jacques Ferber, Mobile-Agents for Dynamic
Organizations: The Conversational-Agent Paradigm, 8th European Workshop on Modeling Autonomous
Agents in a Multi-Agent World (MAAMAW), Ronnevy Sweden, LNAI 1237, Springer-Verlag 1997.
[Ohsuga et al. 97] Akihiko OHSUGA, Yasuo NAGAI, Yutaka IRIE, Masanori HATTORI, Shinichi
HONIDEN, Plangent : An Approach to Making Mobile Agents Intelligent, IEEE Internet Computing,
July-August, 1997.
[Rao Georgeff 95] Anand S.RAO, Michel P.GEORGEFF, BDI Agents : From Theory to Practice,
ICMAS ’95 First International Conference on Multi-Agent system 1995.
[Smith 80] Reid G. Smith, The Contract Net Protocol: A High Level Negociation Protocol for
Distributed Problem Solving, IEEE Transactions on Computer (29) 1980.
[Telescript 95] General Magic. Telescript: An Overview. Available on http://www.genmagic.com.
[Voyager 97] ObjectSpace Voyager, available on

 13

[VonMartial 92] F. von Martial , Coordinating plans of autonomous agents, LNCS 610, Springer-
Verlag, 1992
[Yoo et al. 98] Min-Jung YOO, Walter MERLAT, Jean-Pierre BRIOT, Modeling and Validation of
Mobile Agents on the Web, in the Proceedings of the International Conference on the Web-based
Modeling & Simulation, San Diego, SCS Simulation Series, Vol. 30, N° 1, January 1998, pages 23-28.

