
Towards Fault-Tolerant Massively Multiagent

Systems

Zahia Guessoum, Jean-Pierre Briot, and Nora Faci

LIP6, Université Pierre et Marie Curie (Paris 6)
8 rue du Capitaine Scott, 75015 Paris, France

Zahia.Guessoum@lip6.fr, Jean-Pierre.Briot@lip6.f, faci@leri.univ-reims.fr

http://www.lip6.fr

Abstract. In order to construct and deploy massively multiagent sys-
tems, we must address one of the fundamental issue of distributed sys-
tems, the possibility of partial failures. This means that fault-tolerance
is an inevitable issue for massively multiagent systems. In this paper, we
discuss the issues and propose an approach for fault-tolerance of mas-
sively multiagent systems. The starting idea is the application of repli-
cation strategies to agents, the most critical agents being replicated to
prevent failures. As criticality of agents may evolve during the course
of computation and problem solving, and as resources are bounded, we
need to dynamically and automatically adapt the number of replicas of
agents, in order to maximize their reliability and availability. We will
describe our approach and related mechanisms for evaluating the criti-
cality of a given agent (based on application-level semantic information,
e.g. messages intention, and also system-level statistical information, e.g.,
communication load) and for deciding what strategy to apply (e.g., active
replication, passive) and how to parameterize it (e.g., number of repli-
cas). We also will report on experiments conducted with our prototype
architecture (named DarX).

Agents, Organization, Role, Replication, Fault-Tolerance.

1 Introduction

The possibility of partial failures is a fundamental characteristic of distributed
applications. The fault-tolerance research community has developed solutions
(algorithms and architectures), mostly based on the concept of replication, ap-
plied for instance to data bases. But, these techniques are almost always applied
explicitly and statically, at design time. In such approaches, this is the respon-
sibility of the designer of the application to identify explicitly which critical
servers should be made robust and also to decide which strategies (active or
passive replication. . .) and their configurations (how many replicas, their place-
ment. . .).

New cooperative applications, e.g., air traffic control, cooperative work, and
e-commerce, are much more dynamic and massive. It is thus very difficult, or even

2 Zahia Guessoum et al.

impossible, to identify in advance the most critical software components of the
application. Furthermore, criticality can vary over run time, an information that
should be used to best allocate the scarce replication resources. Such cooperative
applications are now increasingly designed as a set of autonomous and interactive
entities, named agents, which interact and coordinate (multiagent system). In
such applications, the roles and relative importance of the agents can greatly
vary during the course of computation, of interaction and of cooperation, the
agents being able to change roles, strategies. Also, new agents may also join or
leave the application (open system).

In addition, such applications may be massive. And the fact that the un-
derlying distributed system is massive makes it unstable by nature, at least
in currently deployed technologies. That increases the needs for mechanism for
adaptive fiabilisation of the application.

Our approach is in consequence to give the capacity to the multiagent sys-
tem itself to dynamically identify the most critical agents and to decide which
fiabilisation strategies to apply to them. This is analog to “load balancing” but
for fiabilisation. We want to automatically and dynamically apply fiabili-
sation (mostly through replication mechanisms) where (to which agents) and
when they are most needed. To guide the adaptive fiabilisation, we intend to
use various levels of information, system level, like communication load, and
application/agent level, like roles or plans.

This paper is organized as follows: Section 2 presents fault tolerance concepts
and replication principles. Section 3 introduces a new approach of dynamic and
adaptive control of replication. Section 4 presents the DarX framework that we
developed to replicate agents. This framework introduces novel features for dy-
namic control of replication. Section 5 describes our approach to compute agent
criticality in order to guide replication. Section 6 describes the implementation
of this solution and our preliminary experiments.

2 Related Work

Several approaches address the multi-faced problem of fault tolerance in mul-
tiagent systems. These approaches can be classified in two main categories. A
first category focuses especially on the reliability of an agent within a multi-
agent system. This approach handles the serious problems of communication,
interaction and coordination of agents with the other agents of the system. The
second category addresses the difficulties of making reliable mobile agents which
are more exposed to security problems [10]. This second category is beyond the
scope of this paper.

Within the family of reactive multiagent systems, some systems offer high
redundancy. A good example is a system based on the metaphor of ant nests.
Unfortunately:

– we cannot design any application in term of such reactive multiagent systems.
Basically we do not have yet a good methodology. Moreover, these systems
are more suitable for simulations.

Fault-Tolerant Massively MAS 3

– we cannot apply such simple redundancy scheme onto more cognitive multi-
agent systems as this would cause inconsistencies between copies of a single
agent. We need to control its redundancy.

S. Hagg introduces sentinels to protect the agents from some undesirable
states [6]. Sentinels represent the control structure of their multiagent system.
They need to build models of each agent and monitor communications in order
to react to faults. Each sentinel is associated by the designer to one function-
ality of the multiagent system. This sentinel handles the different agents which
interact to achieve the functionality. The analysis of his believes on the other
agents enables the sentinel to detect a fault when it occurs. Adding sentinels to
multiagent systems seems to be a good approach, however the sentinels them-
selves represent failure points for the multiagent system. Moreover, the problem
solving agents themselves participate in the fault-tolerance process.

A. Fedoruk and R. Deters [1] propose to use proxies to make transparent the
use of agent replication, i.e. enabling the replicas of an agent to act as a same
entity regarding the other agents. The proxy manages the state of the replicas.
All the external and internal communications of the group are redirected to the
proxy. However this increases the workload of the proxy which is a quasi cen-
tral entity. To make it reliable, they propose to build a hierarchy of proxies for
each group of replicas. They point out the specific problems of read/write con-
sistency, resource locking also discussed in [11]. This approach lacks flexibility
and reusability in particular concerning the replication control. The experiments
have been done with FIPA-OS which does not provide any replication mecha-
nism. The replication is therefore realized by the designer before run time.

Kaminka and al. [7] adapt a monitoring approach in order to detect and re-
cover faults. They use models of relations between mental states of agents. They
adopt a procedural plan-recognition based approach to identify the inconsisten-
cies. However, the adaptation is only structural, the relation models may change
but the contents of plans are static. Their main hypothesis is that any failure
comes from incompleteness of beliefs. This monitoring approach relies on agent
knowledge. The design of such multiagent systems is very complex. Moreover,
the behavior of agent cannot be adaptive and the system cannot be open.

In distributed computing, many toolkits include replication facilities to build
reliable application. However, many of products are not enough flexible to imple-
ment an adaptive replication. MetaXa [8] implements in Java active and passive
replication in a flexible way. Authors extended Java with a reactive metalevel
architecture. Like in DarX, the replication is transparent. However, MetaXa re-
lies on a modified Java interpreter. GARF [3] realizes fault-tolerant Smalltalk
machines using active replication. Similar to MetaXa, GARF uses a reflexive ar-
chitecture and provides different replication strategies. But, it does not provide
adaptive mechanism to apply these strategies.

4 Zahia Guessoum et al.

3 Requirements and Techniques for Fault-Tolerance

3.1 A First and Simple Example

We consider the example of a distributed multiagent system that helps at schedul-
ing meetings. Each user has a personal assistant agent which manages his cal-
endar. This agent interacts with:

– the user to receive his meeting requests and the associated information (a
title, a description, possible dates, participants, priority, etc.),

– the other agents of the system to schedule meetings.

If the assistant agent of one important participant (initiator or prime participant)
in a meeting fails (e.g., his machine crashes), this may disorganize the whole
process. As the application is very dynamic - new meeting negotiations start
and complete dynamically and simultaneously - decision for replication should
be done automatically and dynamically.

3.2 Principles of Replication

Replication of data and/or computation is an effective way to achieve fault
tolerance in distributed systems. A replicated software component is defined as
a software component that possesses a representation on two or more hosts [3].
There are two main types of replication protocols:

– active replication, in which all replicas process concurrently all input mes-
sages,

– passive replication, in which only one of the replicas processes all input
messages and periodically transmits its current state to the other replicas in
order to maintain consistency.

Active replication strategies provide fast recovery but lead to a high over-
head. Passive replication minimizes processor utilization by activating redundant
replicas only in case of failures. It requires less CPU resources than the active
approach but it needs a checkpoint management which remains expensive in
processing time and space.

3.3 Limits of Current Replication Techniques

Many toolkits (e.g., [3] and [12]) include replication facilities to build reliable
applications. However, most of them are not quite suitable for implementing
adaptive replication mechanisms. For example, although the strategy can be
modified in the course of the computation, no indication is given as to which new
strategy ought to be applied; moreover, such a change must have been devised
by the application developer before runtime. Besides, as each group structure
is left to be designed by the user, the task of conceiving a software appears
tremendously complex.

Fault-Tolerant Massively MAS 5

Therefore we designed a specific and novel framework for replication, named
DarX (see details in Section 4), which allows dynamic replication and dynamic
adaptation of the replication policy (e.g., passive to active, changing the num-
ber of replicas). Moreover, DarX has been designed to easily integrate various
agent architectures, and the mechanisms that ensure dependability are kept as
transparent as possible to the application.

4 Towards Dynamic Replication and Adaptive Control

Several solutions have been proposed to replicate distributed systems. These so-
lutions are often used by the designer to replicate the system components before
run time. The number of replicas and the replication strategy are explicitly and
statically defined by the designer before run time. However, these solutions are
not suitable to multiagent systems. The solution we propose is mainly charac-
terized by dynamic replication and adaptive control.

4.1 Dynamic Replication

The two replication strategies (active and passive) can be used to replicate
agents. Active replication provides a fast recovery delay. So, it is dedicated to
applications with real-time constraints. Moreover, passive replication provides
a low overhead under failure but it does not provide short recovery delays. So,
the choice of the most suitable strategy relies on the environment context. Ac-
tive replication must be chosen when the failure rate becomes too high or when
the application has real-time constraints. Otherwise, passive replication is most
suitable.

In most multiagent applications, the environment context is very dynamic.
So, the choice of the replication strategy of each component, which relies on a
part of this environment, must be determined dynamically and adapted to the
environment changes.

Moreover, a multiagent system component which can be very critical at a
moment can loose its criticality later. If we consider the replication cost which
is very high, the number of replicas of these components must be therefore
dynamically updated.

Thus, the solution we propose allows to dynamically adapt the number of
replicas and the replication strategy. This solution is provided by the framework
DarX (see Section 4).

4.2 Adaptive Control

DarX provides the needed adaptive mechanisms to replicate agents and to modify
the replication strategy. Meanwhile, we cannot always replicate all the agents of
the system because the available resources are usually limited. In the given exam-
ple (Section 2.1), we can consider more than 100 assistant agents and resources
that do not allow to duplicate more than 60 agents. The problem therefore is

6 Zahia Guessoum et al.

to determine the most critical agents and then the needed number of replicas of
these agents.

We distinguish two cases: 1) the agent’s criticality is static and 2) the agent’s
criticality is dynamic. In the first case, multiagent systems have often static
organization structures, static behaviors of agents, and a small number of agents.
Critical agents can be therefore identified by the designer and can be replicated
by the programmer before run time.

In the second case, multiagent systems may have dynamic organization struc-
tures, dynamic behaviors of agents, and a large number of agents. So, the agents
criticality cannot be determined before run time. The agent criticality can be
therefore based on these dynamic organizational structures. The problem is how
to determine dynamically these structures to evaluate the agent criticality?

Thus, we propose a new approach for observing the domain agents and eval-
uating dynamically their criticality. This approach is based on two kinds of in-
formation: semantic-level information and system-level information (see Section
5).

5 DarX: A Framework for Dynamic Replication

DarX is a framework to design reliable distributed applications which include a
set of distributed communicating entities (agents). Each agent can be replicated
an unlimited number of times and with different replication strategies (passive
and active). Note that we are working on the integration of other replication
strategies in DarX, including quorum-based strategies. However, this paper does
not address the design of particular strategies, but describes the infrastructure
that will enable to switch to the most suitable dependability protocol. The num-
ber of replicas may be adapted dynamically. Also, and this is a novel feature, the
replication strategy is reified such as one may dynamically change the replication
strategy.

5.1 DarX Architecture

DarX includes group membership management to dynamically add or remove
replicas. It also provides atomic and ordered multi-cast for the replication groups’
internal communication. Messages between agents, that is communication exter-
nal to the group are also logged by each replica, and sequences of messages can
be re-emitted for recovery purposes. For portability and compatibility issues,
DarX is implemented in Java.

5.2 Agent Replication

A replication group is an opaque entity underlying every application agent. The
number of replicas and the internal strategy of a specific agent are totally hidden
to the other application agents. Each replication group has exactly one leader
which communicates with the other agents. The leader also checks the liveness

Fault-Tolerant Massively MAS 7

RemoteTask

RemoteTask

Agent

Agent

Agent

Agent

Agent

Agent

group 1

group 2

TaskShell

Task Supervision

Fig. 1. DarX application architecture

of each replica and is responsible for reliable broadcasting. In case of failure of a
leader, a new one is automatically elected among the set of remaining replicas.

DarX provides global naming. Each agent has a global name which is inde-
pendent of the current location of its replicas. The underlying system allows to
handle the agent’s execution and communication. Each agent is itself wrapped
into a TaskShell (Figure 1), which acts as a replication group manager and is re-
sponsible for delivering received messages to all the members of the replication
group, thus preserving the transparency for the supported application. Input
messages are intercepted by the TaskShell, enabling message caching. Hence all
messages get to be processed in the same order within a replication group.

An agent can communicate with a remote agent, unregarding whether it
is a single agent or a replication group, by using a local proxy implemented
by the RemoteTask interface. Each RemoteTask references a distinct remote
entity considered as its replication group leader. The reliability features are thus
brought to agents by an instance of a DarX server (DarxServer) running on every
location. Each DarxServer implements the required replication services, backed
up by a common global naming/location service.

6 Adaptive Control of Replication

We will now detail our approach for dynamically evaluating criticality of each
agent in order to perform dynamic replication where and when best needed.

6.1 Hypothesis and principles

We want some automatic mechanism for generality reasons. But in order to be
efficient, we also need some prior input from the designer of the application.

8 Zahia Guessoum et al.

This designer can choose among several approaches of replication: static and
dynamic.

In the proposed dynamic approach, the agent criticality relies on two kinds
of information:

– System-level information. It will be based on standard measurements (com-
munication load, processing time...). We are currently evaluating their sig-
nificance to measure the activity of an agent.

– Semantic-level information.

Several aspects may be considered (importance of agents, independence of
agents, importance of messages...). We decided to use the concept of role [9],
because it captures the importance of an agent in an organization, and his de-
pendencies to other agents.

Note that our approach is generic and that it is not related to a specific
interaction language or application domain. We just suppose that agents com-
municate with some agent communication language such as ACL [2].

6.2 Architecture

In order to track the dynamical adoption of roles by agents, we propose a role
recognition method. Our approach is based on the observation of the agent exe-
cution and their interactions to recognize the roles of each agent and to evaluate
his processing activity. This is used to dynamically compute the criticality of an
agent.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

O
bs

er
va

tio
n

L
ev

el
A

ge
nt

 L
ev

el

2
1

1

Monitor 1 Monitor 3

Domain agent 3Domain agent 2

Domain agent 4

Event

Replication

SendMessage

Domain agent 1

Observer

Monitor 2 Monitor 3

Fig. 2. Multiagent architecture

In order to collect the data, we associate an observation module to each
DarxServer on each machine (see Section 5.1). This module will collect events and
data (provided by DarxServer). A monitoring agent is then associated to each

Fault-Tolerant Massively MAS 9

agent (the leader of replica group). This monitoring agent (see Figure 2) realizes
the role analysis and activity analysis of the associated agent by considering
his sent and received interaction events, and his system data. He then uses the
obtained roles and degree of activity to compute the agent criticality.

The next sections describe the role analysis and activity analysis methods
that we propose.

6.3 Role Analysis

We consider two cases. In the first case, each agent displays explicitly his roles
or interaction protocols. The roles of each agent are thus easily deduced from his
interaction events. In the second case, agents do not display their roles nor their
interaction protocols. The agent roles are deduced from the interaction events
by the role analysis module.

In this analysis, attention is focused on the precise ordering of interaction
events. The role analysis module captures and represents the set of inter-
action events resulting from the domain agent interactions (sent and received
messages). These events are then used to determine the roles of the agent. Fig-
ure 3 illustrates the various steps of this analysis.

Fig. 3. Roles recognition

To represent the agent interactions, several methods have been proposed such
as state machines and Petri nets. For our application, state machines provide
a well suitable representation. Each role interaction model is represented by a
state machine. A transition represents an interaction event (sending or receiving
a message). Figure 4 shows an example of machine state that represents the
interaction model of the roles Initiator.

Interaction events represent the exchanged messages. We distinguish two
kinds of interaction events: ReceiveMessage and SendMessage. The attributes
of the SendMessage and ReceiveMessage interaction events are similar to the
attributes of ACL messages:

10 Zahia Guessoum et al.

(SendMessageEvent("cfp",Agent,?,?,M1)).1
((ReceiveMessageEvent("propose",?,Agent,?,M2,M1)) | 2

3
((SendMessageEvent("reject",Agent,?,?,M2,M1)) |4
(SendMessageEvent("accept",Agent,?,?,M2,M1))).5

6

(ReceiveMessageEvent("refuse",?,Agent,?,M2,M1))).

(ReceiveMessageEvent("inform",?,Agent,?,M2))

S2

S1

S3

S4

1

2

3

4

5
6

Fig. 4. Machine State for the Initiator

– SendMessage(Communicative act, sender, receiver, content, reply-with, ...).
– ReceiveMessage(Communicative act, sender, receiver, content, reply-with,

...).

In order to be able to filter various messages, we introduce the ”wild card”
character? For example, in the interaction event ReceiveMessage (”CFP”, ”X”,
”Y”, ?), the content is unconstrained. So, this interaction event can match any
other interaction event with the communication act CFP, the sender ”X”, the
receiver ”Y” and any content.

In the example of scheduling meetings, the assistant agents use the contract
net protocol to schedule a meeting. The interaction models of the initiator and
the participant are deduced from the contract net protocol. The initiator is
described in Figures 4. The description represents the different steps (sent and
received messages) of the role. The description of the Initiator can be interpreted
as follows:

– A call for proposals message is sent to the participants from the initiator
following the FIPA Contract Net protocol.

– The participants reply to the initiator with the proposed meeting times. The
form of this message is either a proposal or a refusal.

– The initiator sends accept or reject messages to participants.
– The participants which agree to the proposed meeting inform the initiator

that they have completed the request to schedule a meeting (confirm).

An agent may simultaneously fulfill more than one role. Each monitoring
agent may therefore have one or more active role recognition process.

Fault-Tolerant Massively MAS 11

6.4 Activity Analysis

In multiagent systems, the internal activity of agents cannot be observed, because
it is private. The observation is restricted to events. To evaluate the degree of
the agent activity, we use system data that are collected at the system level. We
are considering two kinds of measures: CPU time and communication load. We
are currently evaluating the significance of these measures as indicators of agent
activity, to be useful to calculate agent criticality.

For an agent Agenti and a given time interval ∆t, these measures provide:

– The used time of CPU (cpi),
– The communication load (cli).

cpi and cli may be then used to measure the agent degree of activity awi as
follows:

awi = (d1 ∗ cpi/∆t + d2 ∗ cli/CL)/(d1 + d2) (1)

where:

– CL is the global communication load,
– d1 and d2 are weights introduced by the user.

6.5 Agent Criticality

The analysis of events and measures (system data and interaction events) pro-
vides two kinds of information: the roles and the degree of activity of each agent.
This information is then processed by the agent’s criticality module. The latter
relies on a table T that defines the weights of roles. This table is initialized by
the application designer.

The criticality of the agent Agenti which fulfills the roles ri1 to rim is com-
puted as follows:

wi = (a1 ∗ aggregation(T [rij]]j=1,m) + a2 ∗ awi)/(a1 + a2) (2)

Where a1 and a2 are the weights given to the two kinds of parameters (roles
and degree of activity). They are introduced by the designer.

For each Agent Ai, his criticality wi is used to compute the number of his
replicas.

6.6 Replication

An agent is replicated according to:

– wi: his criticality,
– W: the sum of the domain agents’ criticality,
– rm: the minimum number of replicas which is introduced by the designer,
– Rm: the available resources which define the maximum number of possible

simultaneous replicas.

12 Zahia Guessoum et al.

The number of replicas nbi of Agenti can be determined as follows:

nbi = rounded(rm + wi ∗ Rm/W) (3)

The numbers of replicas are then used by DarX to update the number of
replicas of each agent.

7 Experiments

To validate the proposed approach, we realized an integration of DarX with the
multiagent platform DIMA [4]. This integration provides a generic fault-tolerant
multiagent platform. In order to validate this fault-tolerant multiagent platform,
we carried out several experiments.

Measures were obtained using a set of 20 Pentium PCs running linux with
JDK1.2 and linked by a fast Ethernet (10Mb/s).

7.1 Performances

The monitoring is a useful mechanism. However, its cost seems important. Thus,
our first experiment measures the monitoring cost in the proposed architecture.
We consider, a multiagent system with n distributed agents that execute the
same scenario, each agent has a fixed scenario. The number of agents (n) is an
important factor because our framework was specially designed for massively
multiagent systems. For each n (100, 150, ..., 400), we realized two kinds of mea-
sures (with and without monitoring). We use n/20 machines for each experiment
and repeat each experiment 10 times.

Fig. 5. Monitoring cost

Figure 5 gives the average execution time for each n. It shows that the moni-
toring cost is almost a constant function. It does not increase with the number of

Fault-Tolerant Massively MAS 13

agents. That can be explained by the proposed optimization in the multiagent
architecture such as the communication between the monitors and observers.
For instance, to build global information (global communication load ...), the
observers communicate only if the local information changes.

7.2 Robustness

We considered 100 agents which are distributed on 10 machines. We run each
experiment 10 mn and we introduced 100 faults. To simulate the presence of
faults, we implemented a failure simulator randomly stopping the thread of an
agent (chosen randomly). We repeated several times the experiments with a
variable number of extra resources (number of replicas that can be used).

We consider here the following variables:

ReplicationRate =
NumberOfExtraReplicats

NumberOfAgents
(4)

and the rate of simulations which succeeded (i.e., which did not fail):

SuccessRate =
NumberOfSuccessfulSimulations

NumberOfSimulations
(5)

Figure 6 shows the success rate as a function of the replication rate.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

R
at

e
of

 S
uc

ce
de

d
S

im
ul

at
io

ns

Number of Replicas

Rate

Fig. 6. Rate of succeeded simulations for each number of replicats

From these experiments, we found that the number of extra resources should
be at least equal to the number of critical agents.

Although preliminary, we believe these results are encouraging. Note that
the results are similar for the two replication strategies.

14 Zahia Guessoum et al.

8 Conclusion

Massively multiagent systems are often distributed and must run without any
interruption. To make these systems reliable, we proposed a new approach to
evaluate dynamically the criticality of agents [5]. This approach is based on the
concepts of roles and degree of activity. The agent criticality is then used to
replicate agents in order to maximize their reliability and availability based on
available resources.

To validate the proposed approach, we realized a fault-tolerant framework
(DarX) and we used a multiagent platform (DIMA [4]) to implement multi-
agent systems. The integration of DarX with the multiagent platform DIMA
provides a generic fault-tolerant multiagent platform. In order to validate this
fault-tolerant multiagent platform, two small applications have been developed
(meetings scheduling and crisis management system). They are intended at eval-
uating our model and architecture viability. The obtained results are interesting
and promising. However, more experiments with real-life applications are needed
to validate the proposed approach.

References

1. A. Fedoruk and R. Deters. Improving fault-tolerance by replicating agents. In
AAMAS2002, Boulogna, Italy, 2002.

2. FIPA. Specification. part 2, agent communication language,
foundation for intelligent physical agents, geneva, switzerland.
http://www.cselt.stet.it/ufv/leonardo/fipa/index.htm, 1997.

3. R. Guerraoui, B. Garbinato, and K. Mazouni. Lessons from designing and imple-
menting garf. In Proceedings Objects Oriented Parallel and Distributed Computatio,
volume LNCS 791, pages 238–256, Nottingham, 1989.

4. Z. Guessoum and J.-P. Briot. From active objects to autonomous agents. IEEE
Concurrency, 7(3):68–76, 1999.

5. Zahia Guessoum, Jean-Pierre Briot, and Sébastien Charpentier. Dynamic and
adaptative replication for large-scale reliable multi-agent systems. In Proceedings
of the ICSE’02 First International Workshop on Software Engineering for Large-
Scale Multi-Agent Systems (SELMAS’02), Orlando FL, U.S.A., may 2002. ACM.

6. S. Hagg. A sentinel approach to fault handling in multi-agent systems. In C. Zhang
and D. Lukose, editors, Multi-Agent Systems, Methodologies and Applications,
number 1286 in LNCS, pages 190–195. Springer Verlag, 1997.

7. G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams by overhear-
ing: A multi-agent plan-recognition approach. Journal of Intelligence Artificial
Research, 17:83–135, 2002.

8. M.Golm. Metaxa and the future of reflection. In OOPSLA -Workshop on Reflective
Programming in C++ and Java, pages 238–256. Springer Verlag, 1998.

9. J. J. Odell, H. V. Dyke Parunak, and B. Bauer. Representing agent interaction
protocols in UML. In Fourth International Conference on Autonomous Agents,
2000.

10. F. De Assis Silva and R. Popescu-Zeletin. An approach for providing mobile agent
fault tolerance. In S. N. Maheshwari, editor, Second International Workshop on
Mobile Agents, number 1477 in LNCS, pages 14–25. Springer Verlag, 1998.

Fault-Tolerant Massively MAS 15

11. L. Silva, V. Batista, and J. Silva. Fault-tolerant execution of mobile agents. In
International Conference on Dependable Systems and Networks, pages 135–143,
2000.

12. R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group communication
system. Communications of the ACM, 39(4):76–83, 1996.

