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A b s t r a c t .  This paper describes a pragmatic framework for modeling, 
classifying, customizing, and combining various synchronization schemes 
for object-oriented concurrent programming (OOCP in short). This is 
achieved by using a general purpose OOCP generic software architec- 
ture/platform, named Actalk. The architecture is based on the notions 
of components, parameterization and inheritance. In this paper we focus 
on the activity component of an (active) object in order to express control 
over acceptance and execution of method invocations. Variations on the 
parameters (namely virtual methods) of the activity component are used 
to describe and implement various synchronization schemes. At first, our 
platform helps in classifying and experimenting with various synchro- 
nization schemes. Secondly, it helps in reusing them and building-up on 
previous expertise in order to derivate enhanced or novel schemes. To 
illustrate this in the paper, we progressively develop various schemes by 
successive refinements and combinations, start ing from two foundational 
synchronization schemes (namely enabled sets and guards). Before con- 
cluding, we briefly discuss some general architectural issues of generic 
software platforms by comparing the design of the Actalk architecture 
to some other similar software platforms. 

1 I n t r o d u c t i o n  

O b j e c t - o r i e n t e d  concurren t  p r o g r a m m i n g  ( O O C P  in shor t  [OOCP87])  is a ve ry  
p romis ing  m e t h o d o l o g y  for deve lopment  of paral le l ,  d i s t r i bu t ed  and open  appl i -  
cat ions .  I t  is a genera l i za t ion  of ob j ec t -o r i en t ed  p r o g r a m m i n g  t ak ing  in to  account  
mu l t ip l e  act ivi t ies .  The  ma in  app roach  of O O C P  is integrative 2, by  iden t i fy ing  

* From Spring 1996, at LAFORIA,  Inst i tut  Blaise Pascal, 4 place Jussieu, 75252 Paris 
Cedex 05, France. E-maih b r i o t @ l a f o r i a . i b p . f r .  

2 The integrative approach at tempts  at identifying and unifying object and concur- 
rency concepts, in order to provide a simple and unified conceptual model to the 
programmer.  Note that  this is not the only way to relate object concepts with con- 
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an object with an autonomous activity (therefore named an active object) 3. This 
integrative approach also identifies synchronization between objects/activities at 
the message passing level. This unification of object with activity, and of message 
passing with inter-object synchronization, eases the issue of synchronization of 
concurrent programs, as synchronization of requests becomes transparent to the 
client. 

Furthermore, it is also tempting to make the availability of services trans- 
parent to the client. For example, a bounded buffer may not accept insertion 
requests while it is full. The idea is to delay a request until the conditions for its 
processing are met, rather than to signal an error. 

Last, if we allow/free an object to process several messages concurrently 
(this is called intra-object concurrency), as opposed to a serialized object which 
processes one request at a time, we need to (re)gain control over concurrent 
activations of messages in order to preserve object consistency. 

We call synchronization constraints the specifications of such control (i.e. 
constraints) over the way invocations are scheduled and processed by an active 
object. Various formalisms for synchronization, we will call them synchronization 
schemes, have been proposed to achieve good expressive power, modularity, and 
efficient enough implementations. Many of them are actual derivations from 
general concurrent programming [AS83], e.g. guards, and have been integrated 
within the object-oriented concurrent programming framework [MY93, BG95]. 

Unfortunately, since the late 80's it has been found that it is not always 
trivial to reuse such specifications, and especially by using inheritance (which is 
the main standard tool for reuse and specialization of object abstractions). This 
problem has been coined as the inheritance anomaly phenomenon and various 
proposals have been studied and compared in [MY93]. Experience shows that  
there is no silver bullet and that a given scheme may perform well on some cases 
of reuse, but not well on some others. We may also note that  most of currently 
proposed schemes are ultimately based on one of the two following kinds: (1) 
enabled (methods) sets, where the active object specifies the sets of method 
patterns that it is willing to accept/serve, and (2) guards, where a boolean 
activation condition is associated to each method. 

Rather than proposing some unique fixed scheme, or even a choice between 
(only) two alternative schemes as in [MY93], in this paper we propose a frame- 
work to help the programmer and the language designer to himself choose, and 
if needed possibly customize, an appropriate synchronization scheme for a given 
piece of program. 

currency, parallelism, and distribution concerns. [BG95] analyzes and classifies three 
main approaches (applicative, integrative, reflective) and studies their difference as 
well as their complementary aspects and levels. 

3 This one-to-one identification between object and activity is the general model of 
an active object. Meanwhile, this does not preclude the existence of passive objects 
in some OOCP hybrid languages (or systems), nor the fact that, in some other 
languages, some kinds of active objects may own multiple sub-activities (intra-object 
concurrency as discussed below). 
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Our starting point is a platform and generic software architecture, named 
Actalk, for modeling and classifying various OOCP language models and con- 
structs, within a single framework and environment [Bri94]. In this paper we use 
Actalk to construct a taxonomy of various synchronization schemes for active 
objects. 

Our approach leads to the following benefits: 

1. it provides a comprehensive framework for describing and implementing var- 
ious synchronization schemes, 

2. it makes the classification and the comparison of various synchronization 
schemes/proposals easier (and more fair), 

3. it provides opportunity to test and select among several candidate synchro- 
nization schemes, for a given part of a whole program, 

4. it helps to c u s t o m i z e  a given scheme, or even to design a new one by building 
up (refining, combining) on the existing library of synchronization schemes. 

Note that the synchronization libraries developed are an application, and a 
part, of a more general software platform/architecture. Thus, it helps at putting 
various synchronization schemes into various computational contexts (computa- 
tion models, language constructs, granularity of objects and concurrency, com- 
munication models...) by also varying other components of the architecture 
(further described in Sect. 2.4). 

Outl ine  

This paper is organized as follows. Section 2 briefly discusses and describes the 
Actalk generic architecture to model and classify various OOCP mechanisms. 
Then in Sect. 3, we successively model various synchronization schemes, through 
step by step refinement and combination. Section 4 quickly summarizes and eval- 
uates our approach and results, and then compares them to other relevant works 
before concluding this paper. 

2 A G e n e r i c  A r c h i t e c t u r e  f o r  O O C P  D e s i g n  A l t e r n a t i v e s  

2.1 Mot iva t ions  

Object-oriented (concurrent) programming is based on a few simple and generic 
concepts: (active) objects and message passing. Concepts are strong enough to 
help at structuring and encapsulating computation modules, and generic enough 
to encompass various software and hardware architectures. Meanwhile, various 
alternative programming models, constructs and mechanisms have been pro- 
posed in various programming languages and systems. They reflect a wide vari- 
ation of concerns and domains. Possible variations on programming language 
design may be grouped into various issues, such as: 

- c o m m u n i c a t i o n :  is it synchronous or asynchronous, how is a reply conveyed ?, 
are there priority schemes ?. . .  ; 
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- activity: is acceptance of messages implicit or explicit ?, is there intra-object 
concurrency ?. . .  ; 

- synchronization/coordination: how does an active object control message se- 
lection and activation ? 

This variety of models, and the difficulty to compare them by abstracting 
from various associated terminologies, syntax and implementational foundations, 
led us to design a comprehensive and unified modeling platform. 

2.2 T h e  A c t a l k  P l a t f o r m  

The design and building of the Actalk 4 project started in 1988 from the needs 
for a comprehensive workbench for comparing various object-oriented concurrent 
programming schemes within a single unified framework/environment [Bri89]. 
Actalk provides a framework to help in: (1) analyzing and classifying existing 
language constructs and mechanisms, (2) designing new ones through derivation 
and combination of existing ones, and (3) testing them with actual programs 
within a rich programming environment [LBB91]. 

2.3 Arch i t ec tu re  

The architecture of Actalk includes a kerne/which models basic OOCP semantics 
(that is serialized active objects which communicate by asynchronous unidirec- 
tional message passing). The kernel is composed of a set of kernel component 
classes. Each component describes a different aspect of an active object, that is: 
behavior, activity/synchronization, and communication. Each component class 
is parameterized, that is some of its functionalities (methods) are specifically 
intended to be specialized in subclasses in order to model alternative language 
designs. Therefore, these (virtual) methods are named parameter methods. 

Note that the granularity and balance of the decomposition of the architec- 
ture into components and parameter methods is a very sensitive issue. Finer 
granularity of decomposition brings greater modularity but at the cost of pos- 
sible complexity, as well as increasing consistency management and efficiency 
problems. This issue will be discussed in Sect. 4.2, when comparing our platform 
to a few other similar systems. 

2.4 C o m p o n e n t  Classes of t h e  Ac ta l k  Kerne l  

The three main kernel component classes are: 

- Class Act• describes the behavior of the active object, that is the 
inner standard object which ultimately computes the messages. Application 
classes of active objects are defined as subclasses of class Active0bject .  
The language designer may also implement specific programming language 

4 Actalk stands for active objects, or actors, in Smalltalk-80. 
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constructs in some abstract subclasses. (For instance subclass Abc l l0b j  e c t  
implements the ABCL/1 language construct w a i t - f o r ,  to explicit wait for 
some message pattern [OOCP87, pages 55-89].) 

- Class A c t i v i t y  describes the internal activity of the active object. This class 
provides autonomy for the active object. It also defines the way method in- 
vocations are selected, scheduled and computed. Consequently, its subclasses 
may describe various synchronization schemes. 

- Class Address describes the address (mailbox) of an active object, that  is 
the identifier of an active object where messages will be sent. This class 
defines the way message transmissions will be interpreted. Its subclasses 
may implement various types of communication. 

This decomposition allows the independent modeling of various dimensions of 
active objects. One can decouple the actual program from a given communication 
model (e.g. with eager reply), and from a given model of activity (e.g. with 
intra-object concurrency) and synchronization scheme 5 (e.g. guards). Meanwhile, 
combination of arbitrary components may lead to inconsistencies. Therefore the 
Aetalk platform includes some simple compatibility specification and verification 
mechanism to keep some safeguards [Bri94]. 

Note that  the kernel actually provides two more kernel component classes: 
class MailBox which represents the message queue, and class I n v o c a t i o n  which 
represents a method invocation (by default the message itself, as instance of 
standard Smalltalk-80 class Message). They are not considered as prime compo- 
nents because their parameterization is minimal. Meanwhile their functionality 
may be extended by subclassing them as for the three main component classes. 
This proves to be useful when modeling complex protocols for message buffering, 
e.g. with priorities, or for invocation management, e.g. with time stamps (to be 
described in Sect. 3.6). 

2.5 R e l a t i o n s  b e t w e e n  C o m p o n e n t s  

To define a class of active objects, the programmer should define it as inheriting 
from class Ac t ive0b j  ec t .  After creating an active object behavior as its instance, 
creation and initialization of the associated components (activity, address and 
mailbox) take place transparently. Default classes for associated components are 
expressed by specific parameter methods (e.g. parameter method a d d r e s s C l a s s  
specifying the associated address component class, as later detailed in Table 1). 

The minimal (default) functionality of an active object, and the relations and 
interactions between its components, may be summarized by following the main 
steps of a message, from its reception to its processing (see Fig. 1): 

Note that in the architecture, the activity/synchronization component is explicitly 
and structurally distinct from the behavior/program component. This enforces inde- 
pendence between program code/data and synchronization code/data as advocated 
in [MBW+94]. This also eases comparison of various synchronization schemes on 
actual examples by just changing the synchronization class while keeping the same 
behavior/program. 
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- the address receives a message, triggering parameter method receiveMessage : 
of class Address which enqueues the message in the mailbox ; 

- independently, the activity selects the next message to be processed (param- 
eter method n e x t M e s s a g e  of class Act iv i ty)  ; 

- and accepts it (parameter method a c c e p t M e s s a g e :  of class Act iv i ty) ,  u l -  
timately delegating its processing (parameter method performMessage: of 
class Act iv i ty)  to the behavior. 

reception 
( receiveMessage = ) 

/ / m.iISox \ 

a ~ r e f ,  s 
(an Address) 

Fig. 1. Components of an Actalk active object 

2.6 The Act iv i ty  Kernel  Componen t  Class and  its Pa rame te r i za t i on  

In this paper we focus on the activity component classes (i.e. subclasses of ker- 
nel component class Act iv i ty)  in order to implement various synchronization 
schemes. Class Ac t iv i t y  defines two instance variables: a d d r e s s ,  to reference 
the associated address component, and bse l f  (as for behavior self), to reference 
the associated behavior component, of the active object. Parameter methods of 
class Activity are summarized in Table 1. 

2.7 Generic Event  Methods  

Another important characteristic of the Actalk architecture is the existence of 
generic event methods. These parameter methods are associated to the three 
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Table  1. Parameter methods of component class Activity 

method selector parameter example of redefinition 

i n i t i a l i z e  initialization initialize synchronization 
counters (see Sect. 3.4) 

s t a r t  start the activity start a second activity pro- 
(process) !cess specific to ABCL/1 ex- 

press mode messages 
c rea teProcess  create the activity provide a handle to the pro- 

9rocess cess (useful for termination 
control) 

body specification o] accept a single message (e.g. 
the activity Actors model of activity) 

nextMessage 

acceptMessage: 

performMessage: 

addressClass 

invocation- 
ClassFor: 
eventReceive:/ 
Accept:/ 
Complete: 

next message to 
be accepted 

!accept and com- 
pute a message 

perform 
message 

default 
component class 
invocation class 

message 
reception/accept- 
ance/completion 
generic events 

default value 

none 

start the process 
created by 
c rea teProcess  
create a process 
computing body 

serially 
accept successive 
messages 
return 
and remove first 
message from the 
message queue 
)err ormMessage : 

a delegate 
actual perform to 
Ithe behavior 

address Address 

Message 

none 

return and remove the first 
message whose selector is en- 
abled (see Sect. 3.1) 

spawn an inner thread to 
compute the message (intra- 
object concurrency class 
ConcurrentActivity) 
also return the value to the 
implicit reply destination 

PoolAddress (associated to 
class Poo lAc t iv i ty )  
WithSenderInvocat ion (in- 
eludes the sender) 
after completion, compute 
the next enabled set of selec- 
tors (see Sect. 3.1) 

following events: message (invocation) reception~acceptance/completion, and are 
respectively named:  e v e n t R e c e i v e  : / A c c e p t  : / C o m p l e t e  :. (They  take the cur- 
rent message as their argument . )  

The user may  redefine them to a t t ach  actions to a given class of  active objects,  
e.g.: for t racing activities, s tepping computa t ion ,  controlling global scheduling of  
act ivi t ies . . .  Generic event methods  may also be used by the designer for mod-  
eling language speeificities (e.g. for comput ing  post  actions as with the P O O L  
language [OOCP87,  pages 199-220]). Last,  they are also very useful for manag ing  
intra-object  synchronizat ion.  Subclass S y n c h r o C o n c u r r e n t A c t i v i t y  specializes 
them in order to ensure their a tomici ty  (mutual  exclusion), as we will see in 
Sect. 3.4. 
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2.8 Experiments and Applications 

Various extensions of the Actalk kernel have been defined as subclasses of one 
or more of the kernel component classes. These various component subclasses 
simulate various: 

- language models and constructs: e.g. Actors concept of behavior replace- 
ment [OOCP87, pages 37-53], ABCL/1 explicit wait for a message pattern 
[OOCP87, pages 55-89], POOL concept of body and post actions construct 
[OOCP87, pages 199-220]... ; 

- communication models: e.g. ABCL/1 three types (synchronous, asynchronous, 
future) and two modes (normal, express) of message transmission, implicit re- 
ply mechanism (for a good integration within underlying standard Smalltalk- 
80 method execution model)... ; 

- and synchronization schemes: the focus of this paper. Part of the correspond- 
ing taxonomy is detailed in Sect. 3. Other schemes include: explicit message 
acceptance (as in POOL and Eiffel//), method suspension (as in Portable 
ConcurrentSmalltalk), reflective framework (as in OCore).. .  

With its libraries and taxonomies of various OOCP languages characteristics, 
the Actalk testbed provides a comprehensive view of design alternatives and 
mechanisms. Actalk has been used as a tool for teaching and experiments by 
various people, notably in a graduate course led by Jean B~zivin at University 
of Nantes where students projects developed many experiments. Actalk has also 
been used as component or foundation for several projects and domains, such 
as simulation of software engineering process models [KG84], the construction 
of various multi-agent systems [BFS91], themselves applied to various domains 
(natural language processing, knowledge acquisition...). 

3 M o d e l i n g  S y n c h r o n i z a t i o n  S c h e m e s  

We will now model and implement various synchronization schemes and show 
the expressiveness of our platform. As noted in the introduction, enabled sets 
and guards are the two major synchronization schemes foundations. We will use 
successive refinements and combinations of these two schemes to produce increas- 
ingly expressive (and complex) synchronization schemes. Our point is actually 
in showing how we may easily enhance and customize various synchronization 
schemes along various requirements, while building-up on previous expertise. 
Figure 2 summarizes the hierarchy of synchronization schemes/classes which will 
be developed in this section. 

Note that we sometimes combine two synchronization schemes into a new 
one (e.g. class CountersAct iv i ty  described in Sect. 3.4), thus inheriting from 
more than one class. As there is currently no multiple inheritance mechanism in 
Smalltalk-80, we unfortunately must choose a single superclass (solid arrow in 
Fig. 2) and recopy variables and methods from the other one(s) (dashed arrow). 
These copied methods won't be shown in the definitions given in the paper. 
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Activity 

T ~ ~ C c  n~ urrentActivity 
EnabledSetsActivity GuardsActivity i~ 

/ ~  ~1~ SynchroConcurrentActivity \ 
\ 

\ CountersActivity AlwaysEnabledSetsActivity \ 
, \ 
\ GenericlnvocationsCountersActivity 

EnabledSetsCountersActivity ~ F u l l G e n  
\ ericlnvocationsCountersActivity 
\ 

EnabledSetsGenericlnvocationsCountersActivity 

Fig. 2. Hierarchy of synchronization schemes/classes described in the paper 

3.1 A First  Bas ic  Scheme :  E n a b l e d  S e t s / A b s t r a c t  S t a t e s  

The first synchronization scheme that we implement is the enabled sets syn- 
chronization scheme. This scheme is very good at expressing services availability 
constraints, i.e. how an active object is willing to accept certain method invo- 
cations. In many cases, parameters are not significant in the decision. One may 
then introduce a further level of abstraction in enabling (or disabling) method 
patterns (i.e. selectors) grouped into enabled methods sets. 

Abstract states (also named behavioral abstractions) are abstractions/names 
to which enabled sets will be assigned. (In the canonical example of the bounded 
buffer, pu t :  requests should be disabled while the buffer is full. This will be 
expressed with an abstract state f u l l  having only {get} as its corresponding 
enabled set.) After selecting and computing the current method invocation, a 
state transition function will compute the next abstract state (leading to the 
next enabled set). Enabled sets are computed through set operations such as 
union (+), intersection (t~), and difference (-). 

Class Enab ledSe t .qAct iv i ty  implements this scheme in the following way. 
It defines an instance variable e n a b l e d S e l e c t o z s  to hold the current enabled 
set. An enabled set of selectors is implemented as a Smalltalk array (e.g. # ( g e t  
p u t : ) )  6. An abstract state is represented by a method returning an enabled 
set. Implementation only redefines three of class A c t i v i t y  parameter methods: 
initialize, nextMessage, and completion generic event method eventComplet e :. 

6 # is the quotation character in Smalltalk, both for symbols (e.g. #empty) and for 
arrays (e.g. enabled set #(put:)) .  
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Activity subclass: #EnabledSetsActivity 
instanceVariableNames: 'enabledSelectors ' 

"Parameter method for initialization of the activity." 
initialize 

super initialize. 
"Initialize the initial set of enabled selectors." 
enabledSelectors := self perform: self initialAbstractState 

"Return first message from the mailbox belonging to the current enabled set." 
nextMessage 

"self mailbox firstMessageWithCondition: 

[:message I enabledSelectors includes: message selector] 

"Generic event method associated to the completion of the computation o/ a message." 
eventComplete : aMessage 

super eventComplete: aMessage. 
"Abstract state transition: computation of the next set o/ enabled selectors." 
enabledSelectors : = 

self perform: (self nextAbstractStateAfter: aMessage selector) 

Note that method definitions reference (call) two undefined methods: initial- 
A b s t r a c t S t a t e  (to specify the initial abstract state) and n e x t A b s t r a c t S t a t e -  
Af t e r :  (to compute the next abstract state). These two virtual  methods are not 
defined at this abstract level, but must be in a specific (concrete) synchroniza- 
tion subclass (e.g. in next example). Note that  the code above is a concise but 
complete implementation. 

Exampl e :  S y n c h r o n i z a t i o n  of  a B o u n d e d  Buf fe r  (1). The enabled sets/- 
abstract states synchronization scheme is very good at expressing services avail- 
ability constraints based on the state of the (active) object. In the canonical 
example of the bounded buffer, there will be three abstract states (note that  
abstract state p a r t i a l  may be defined as the union of empty and f u l l ) :  

abstract state enabled set 

empty # (put : ) 
mr t i a l  #(get put:)  
fu l l  #(get) 

The synchronization component of the bounded buffer is specified in class 
BufferEnabledSetsAct  ivi~y,  defined as a subclass of class Enab ledSe t sAct iv i ty :  

EnabledSetsActivity subclass: #BufferEnabledSetsActivity 
instanceVariableNames: ' ' 

"Abstract states." 
empty 

"# (put : ) 
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full 
"#(get)  

pa r t  ial 
"Defined as the union (+) o/ the abstract states empty and f u l l . "  

"(self empty) + (self ~ull) 

"The initial abstract state when creating an instance." 
initialAbstractState 

"#empty 

"Abstract state transition: computing the next abstract state." 
nextAbst rac tSta teAf ter :  s e l ec to r  

"bself isEmpty 
ifTrue: [#empty] 
ifFalse: [bself isFull 

ifTrue: [#full] 
ifFalse: [#partial]] 

Note that  the implementat ion of the bounded buffer behav ior /p rogram (triv- 
ial and here out of scope) is not shown in this paper. We assume that  the behav- 
ior implements methods pu t :  and ge t .  We also assume that  it implements the 
two predicate methods isEmpty and i s F u l l ,  and the accessor method maxSize 
(to consult the max imum size). As opposed to methods pu t :  and ge t ,  these 
latter methods are not declared in the external interface of the active object 
(i.e. they won' t  be enabled). They are for internal use only, so that  the ac- 
t ivi ty/synchronizat ion component may (namely, method n e x t A b s t r a c t S t a t e -  
A f t e r : )  consult the state of the buffer behavior (referenced by instance variable 
b s e l f ,  see Sect. 2.6). 

3.2 F i r s t  R e f i n e m e n t :  C o n s i d e r i n g  A l w a y s  E n a b l e d  M e t h o d s  

Although this is not the focus of this paper, we now briefly mention one example 
of inheritance anomaly phenomenon, and the way we can easily refine the ini- 
tial synchronization scheme described above in order to address that  particular 
problem 7. 

Suppose for example that  we define a subclass of the bounded buffer de- 
fined above (Sect. 3.1), as specifying a new method named number0fElements .  
This method should always be available, thus enabled. The problem is that  
we therefore need to add it to all existing enabled sets (or at least to "basic 
states" empty and f u l l ) ,  thus forcing some amount  of redefinition. This may  be 
done semi-automatically by specifying a generic set of "always enabled" meth-  
ods. This is easily implemented as the following refinement (subclass) of class 
EnabledSet sActivity: 

7 This is by no means a complete solution to the complete set of inheritance anomaly 
problems [MY93], which is not the focus of this paper. 
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EnabledSetsActivity subclass: #AlwaysEnabledSetsActivity 
instanceYariableNames: '' 

initialize 
"Add He set o f ~ e  always enabled selectors to the initialenabled set." 
super initialize. 

enabledSelectors := enabledSelectors + self always 

eventComplete: aMessage 

"Add the set o f t  he always enabled selectors to the next enabled set." 
super eventComplete: aMessage. 
enabledSelectors := enabledSelectors + self always 

"Abstract states." 
always 

"Return the set of the always enabled selectors. By default this set is empty." 
-#() 

E x a m p l e :  S y n c h r o n i z a t i o n  o f  a B o u n d e d  B u f f e r  (2). The new buffer ac- 
t ivity (class B u f f e r A l w a y s E a a b l e d S e t s A c t i v i t y )  is defined as for previous 
buffer activity (class B u f f e r E n a b l e d S e t s A c t i v i t y  in Sect. 3.1), plus the speci- 
fication of the "always enabled" method nt imber0fElements:  

AlwaysEnabledSetsActivity subclass: #BufferAlwaysEnabledSetsActivity 
instanceVariableNames: '' 

"Abstract states specij~cation and transition." 
**As for enabled sets scheme, class BufferEnabledSetsActivi ty in Sect. 3.1"* 

always 
"Method numberOfElements is specified as an always enabled me~od."  
"#(numberOfElements) 

3.3 A S e c o n d  Bas i c  S c h e m e :  G u a r d s  

Main alternative to enabled sets are guards. Intuitively, a method invocation 
will be blocked until the guard (boolean activation condition) associated to the 
method evaluates to "true". Class G u a r d s A c t i v i t y  implements a simple and 
naive mechanism for guards s. Parameter  method nextMessage  is redefined in 
order to look for the first candidate message (method i sCemdida teMessage : )  
whose corresponding guard evaluates to t r u e .  It  keeps fetching the next message 
and re-enqueueing it into the mailbox (method i n t e r n a l R e c e i v e M e s s a g e  : ) un- 
til it finds a candidate. Finally, we represent a guard associated to a method 

s Note that we also provide refinements of this naive initial implementation scheme 
Without resending messages. They use indexing messages within the mailbox and 
furthermore implement some optimized, but safe, reevaluation semantics for guards. 
They are implemented in subclasses of class GuardsActivity but won't be described 
in this paper. 
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as another method (whose name is prefixed by symbol guardOF). The complete 
implementation is as follows: 

Activity subclass: #GuardsActivity 
instanceVariableNames: '' 

"Returnthefirstcandidate message, otherwisere-enqueueit(methodinternalReceiveMessage:)." 
nextMessage 

I message I 
[message := super nextMessage. 
self isCandidateMessage: message] whileFalse: 

[address internalKeceiveMessage: message]. 
~message 

"A message is candidate]or acceptance ~ its associated guard evaluates to true." 
isCandidateMessage: aHessage 

^sell evaluateGuardForMessage: aMessage 

"Evaluate the associated condition/guard method with the current arguments." 
evaluateGuardForMessage: aMessage 

"self perform: (self guardOfSelector: aMessage selector) 
withArguments: aMessage arguments 

"Return the selector o]the associated guard: current selector prefixed by guard0F." 
guardOfSelector: selector 

^('guardOF' , selector) asSymbol 

Example:  Synchroniza t ion  of a Bounded  Buffer (3). Services availability 
constraints on the bounded buffer are easily expressed as guards referring to the 
state of the buffer: 

GuardsActivity subclass: #BufferGuardsActivity 
instanceVariableNames: '' 

"Guards: boolean activation conditions associated to methods." 
guardOFget 

^bself isEmpty not 

guardOFput: item 
"bself isFull not 

Note that guards have the advantage over enabled sets that they may de- 
cide on the acceptance of a particular message based on some of its parameters. 
(This is impossible with enabled sets which specify only abstractions/patterns of 
invocations.) Furthermore, guard notations may describe intra-object synchro- 
nization, with the addition of finer grained observation of invocations status (see 
in Sect. 3.4 below). Moreover, their modularity and finer grained specifications 
usually make them less prone to inheritance anomalies than enabled sets. Never- 
theless, guards have the following two main weaknesses: (1) their fine grain level 
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of specification may complicate descriptions, and moreover (2) an efficient im- 
plementation is difficult to achieve, and therefore needs extra program analysis. 

3.4 Second Refinement/Combination: Guards Extended with 
Synchronization Counters 

With the addition of some fine grain mechanism observing status of current in- 
vocations, guard notations may easily express intra-ohject synchronization, that 
is control over multiple method invocations within a single active object. Syn- 
chronization counters [RV77] are often chosen as such a general and expressive 
mechanism. Main counters record the number of invocations received, accepted, 
and completed for a given method selector. Actually, synchronization counters 
are a direct consequence of (Actalk) generic events. 

We also need a specialized activity class providing intra-object concurrency, 
as implemented by class ConcurrentActivity. Its subclass SynchroConcurrent- 
Activity redefines generic event methods in order to ensure their atomicity 
(mutual exclusion), by introducing some mutual exclusion semaphore (instance 
variable rautexSemaphore). 

Now, we may implement synchronization counters (class CountersActivity) 
as a subclass of both class SynchroConcurrentActivity (in order to inherit 
concurrency and atomic events) and class GuardsActivity (to inherit guards). 
The only difference with class GuardsAcZivity (Sect. 3.3) is the redefinition 
of method isCandidateMessage: in order to ensure atomicity of a success- 
ful guard evaluation with the acceptance event (method eventAccept:). Class 
CountersActivity also implements dictionaries to record and consult synchro- 
nization counters data. 

SynchroConcurrentActivity subclass: #CountersActivity 
inst anceVariableNames : ' receivedCount erDict ionary 

acceptedCounterDictionary completedCounterDictionary ' 

initialize 
super initialize. 
"Create a dictionary/or each/amily(3) o/counters, indexed by each selector." 
self makeSynchroCounterDictionaries0nSelectors: 

bself class allScriptSelectors 

"A message is candidate for acceptance i] its associated guard evaluates to t rue ."  
isCandidat eMessage : aMessage 

"Note that a successful guard evaluation AND the acceptance event must be atomic." 
"mat exSemaphore critical: 

[(self evaluateGuardForMessage: ablessage) 
ifTrue: [self eventAccept : aMessage. 

t n l e ]  
i fFa lse  : [ fa l se ] ]  
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"The reception event method increments the associated synchron~ation counter." 
"(Same for methods eventAccept:  and eventComplete: . )"  
eventReceive: aMessage 

super eventReceive: aMessage. 
receivedCounterDictionary at: aMessage selector 

put: (receivedCounterDictionary at: aMessage selector) + 1 

"Consultation of the reception synchronization counter." 
"(Same for methods accepted:  and compZeted:.}" 
received: selector 

"Number of received invocations of message selector." 
"receivedCounterDictionary at: selector 

"Simulation of other useful synchronization counters." 
current: selector 

"Number of current (accepted but not completed ye 0 invocations of message selector." 
"(self accepted: selector) - (self completed: selector) 

pending:  s e l e c t o r  
"Number ofpending(received but not accepted yeO invocations of message selector." 
" ( s e l f  r ece ived :  s e l e c t o r )  - ( s e l f  accepted:  s e l e c t o r )  

E x a m p l e :  S y n c h r o n i z a t i o n  of  a ( C o n c u r r e n t )  B o u n d e d  B u f f e r  (4).  Sup- 
pose that we now free the internal concurrency of a bounded buffer 9. We then 
must ensure its internal consistency, by forbidding concurrent processing of sev- 
eral pu t :  invocations (and as well for ge t  invocations). On the other hand, 
simultaneous processing of one put  : and one ge t  is allowed, as they access dis- 
tinct memory sectors. Note that the number of items of the buffer is computed 
as the difference between completed put :  and completed get ,  thus only relying 
on synchronization data. 

CountersActivity subclass: #BufferCountersActivity 
instanceVariableNames: '' 

"Guards." 
guardOFget 

"Only one get at once AND the buffer is not empty." 
" ( s e l f  current: #get) = 0 

and: [(self completed: #put:) - (self completed: #get) > O] 

guardOFput : item 

"Only one put :  at once AND the buffer is not full." 
"(se l f  c u r r e n t :  #pu t : )  = 0 

and: [ ( s e l f  completed: #put : )  - ( s e l f  completed: #get)  
< b s e l f  maxSize] 

9 Please keep in mind that the example of the bounded buffer is pedagogical and 
simple, but should not be considered as some significant example/granularity of 
object on which to introduce intra-object concurrency. 
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3.5 Second  C o m b i n a t i o n :  E n a b l e d  Sets  w i t h  G u a r d s / S y n c h r o -  
n i za t i on  C o u n t e r s  

Note that  enabled sets (sect. 3.1) are specific to services availability constraints, 
whereas guards with synchronization counters (Sect. 3.4) add intra-object syn- 
chronization constraints. It is therefore natural to try to combine them into 
a single scheme, for a clear separation of services availability and intra-object 
concurrency. Such a mixed scheme has initially been introduced in the Dooji 
language by Laurent Thomas [Tho94]. 

Its specification is easily achieved in Actalk by combining class Enabled-  
Setstctivity with class CountersActivity (the actual superclass) into sub- 
class EnabledSetsCountersActivity. The key aspect is the atomic combina- 
tion of the two (enabled sets and guards) synchronization conditions (in method 
evaluateGuardForMessage :). We also combine "by hand" initialization (init- 
ialize) and completion event (eventComplete :) parameter methods, as shown 
below: 

CountersActivity subclass: #EnabledSetsCountersActivity 
instanceVariableNames: 'enabledSelectors ' 

evaluateGuardForMessage: aMessage 
"Check both conditions." 
"(Atomicityis ensured bythecaH by method isCandidateMessage:,seeinSect.s 
"(enabledSelectors includes: aMessage selector) 

and: [super evaluateGuardForMessage: aMessage] 

"By-hand combinations ofmethods/romthe two superclasses." 
initialize 

super initialize. 
enabledSelectors :ffi self perform: self initialAbstractState 

eventComplete: aMessage 
super eventComplete: aMessage. 
enabledSelectors := 

self perform: (self nextAbstractStateAfter: aMessage selector) 

Exampl e :  S y n c h r o n i z a t i o n  of  a ( C o n c u r r e n t )  B o u n d e d  Buf fe r  (5). 

EnabledSetsCountersActivity subclass: #BufferEnabledSetsCountersActivity 
instanceVariableNames: ' '  

"Abstract states for services availability constraints." 
**As for enabled sets scheme, class BufferEnabledSetsActivity in Sect. 3.1"* 

"Guards(only) for intra-object concurrency synchronization." 
guardOFget 

"Only one get at once." 
" ( se l f  current:  #get) ffi 0 



guard0Fput: item 
"Only one put: at once." 
" ( s e l f  current :  #put:) = 0 

2 4 3  

F u r t h e r  M e t h o d  a n d  C o n c u r r e n c y .  With this mixed scheme, the clear sep- 
aration of services availability and intra-object concurrency makes specifications 
more modular and consequently more reusable. For instance, we may take ben- 
efit of this separation of specifications in order to make them cooperate. As an 
example (taken from [Tho94]), suppose that  some subclass defines a method 
ge t L a s t ,  which is like method get ,  except in that it extracts the last (as op- 
posed to the first) element of the bounded buffer. One optimization (increased 
concurrency) may be achieved by observing that one ge t  and one g e t L a s t  may 
execute concurrently (as they access distinct memory sectors) if there is more 
than one element. (Otherwise preference is given to a ge t  request.) 

Note that  the implementation described below makes use of a technique for 
dynamic subpartition of the abstract state p a r t i a l  (to disable g e t L a s t  in case 
of a single item). Therefore we do not need to introduce a new abstract state 
(thus avoiding the "partitioning of acceptable states" problem [MY93]). 

BufferEnabledSetsCountersActivity subclass: 
#GetLastBufferEnabledSetsCountersActivity 

instanceVariableNames: '' 

"Abstract states." 
f u l l  

"(super f u l l )  + #(getLast) 

partial 

"bself isOne 
ifTrue: [super partial - #(getLast)] 
ifFalse: [super partial] 

"Guards." 
guard0Fput: item 

"Methods put: and getLast are mutually exclusive (same memory sector)." 
"(super guardOFput: item) 

and: [ ( se l f  current :  #getLast) = 0] 

guardOFgetLast 

"As for put :, The parameter ( n i l )  is not used/significant." 
"self guardOFput: nil 
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3.6 Th i rd  Ref inement :  G u a r d s / S y n c h r o n i z a t i o n  C o u n t e r s  E x t e n d e d  
wi th  Generic  Invocat ions  

The previous synchronization scheme (Sect. 3.5), although expressive, still can- 
not directly express constraints on method invocations such as "the first to 
come is the first to be served". For instance, [MBW+94] recently proposed some 
modular and expressive synchronization scheme, named Synchronization Vari- 
ables, which addresses such issues. We can quickly model and implement their 
scheme by augmenting previous synchronization counters model (Sect. 3.4) with 
the three following points. 

First, we take benefit of the generic Actalk component for method invocation 
(class Invocat ion)  to include/attach specific information such as message arrival 
time. We also may attach arbitrary information, e.g. job priority in order to 
specify priority-based specific algorithms (see below). 

Secondly, we provide various iteration and predicate methods over the mail- 
box (that is the ordered set of pending invocations) in order to examine and 
compare them with current invocations (see below their application to imple- 
ment various ordering policies). 

Thirdly, we provide an optimized implementation of reevaluation semantics 
for guards, as opposed to the initial naive version (method nextMessage re- 
enqueueing messages) described in Sect. 3.3. 

This enhanced activity class, named Gener icInvocat ionsCountersAct iv i ty ,  
is defined as a subclass of class CountersAct iv i ty  (Sect. 3.4). It adds instance 
variables: cur ren t Invoca t ion  (dynamically bound to the invocation currently 
being checked, i.e. whose guard is being evaluated) and reevaluationSemaphore 
(to control the reevaluation of guards). This class also redefines the main activity 
loop (parameter method body) to control guard evaluation and to bind instance 
variable current Invocat ion .  The reception event method (eventReceive:)  is 
redefined in order to time stamp the invocation, and (as for the two other event 
methods, whose redefinition is not shown here) to signal reevaluation of guards. 

CountersActivity subclass: #GenericInvocationsCotmtersActivity 
instanceVariableNames: 'currentInvocation reevaluationSemaphore ' 

eventReceive : anInvocat ion 

"Assign a new time stamp to the invocation." 
super eventReceive: anInvocation. 
anInvocation arrivalTime: address nextTimeStamp. 
reevaluat ionSemaphore signal 

The two basic iteration and predicate methods over pending invocations are: 

"For all pending invocations, evaluate aBlock (whose parameter is pending invocation)." 
f orAllPendingDo : aBlock 

"self mailbox do: aBlock 

"Check if there is no pending invocation satisfying condition a.Block." 
noPendingWith: aBlock 

" ( s e l f  mailbox de tec t :  aBlock ifNone: [ n i l ] )  isNil 



245 

Example:  S yn c h ron iza t ion  of  a FCFS Concurrent  B o u n d e d  Buffer. As 
example, see below the upgrading of the concurrent bounded buffer example 
(with synchronization counters, in Sect. 3.4) to ensure some "first come first 
served" (FCFS) policy, locally to the get method: 

guardOFget 
"Ensures FCFS policy as a further constraint(thatis no prior pending get)." 
"super guardOFget 

and: [self noPending: #get priorTo: currentInvocation arrivalTime] 

Example:  S tarva t ion  Avoidance on a Shortes t  Job First  Served Policy. 
Suppose now that we alternatively constrain the bounded buffer example with 
some "shortest job first served" policy on the put: method (this is not shown 
here). We may ensure that starvation cannot happen, by dynamically decreasing 
the job size of a put : invocation each time it has been skipped: 

eventAccept: anInvocation 
"When accepting a put:, decrease job s~eofa l l  prior pending put: invocations." 
super eventAccept: anInvocation. 
anInvocation ifSelector: #put: do: 

[sel~ forAllPending: #put: do: [:invocation I 
invocation arrivalTime < anInvocation arrivalTime 

ifTrue: [invocation decrJobSize]]] 

Finally, note that a more complete version of the Synchronization Vari- 
ables scheme (subclass Ful lGener ic lnvocat ionsCountersAct iv i ty)  provides 
full recording of current and completed invocations (as opposed to just count- 
ing them) in order to express more complex synchronization algorithms. Again, 
thanks to inheritance, we may select the level of expressiveness (and computing 
overhead) needed. 

3.7 Fu r the r  Extensions  

We can go further, for instance, by combining the main functionalities previ- 
ously described, into some new activity class (e.g. named EnabledSetsGeneric- 
Invoca t ionsCoun t s r s t c t iv i ty ) .  Such a novel scheme is highly sophisticated 
and expressive, but at the cost of extra complexity and reduced efficiency. Our 
point in this paper is not to discuss its characteristics but in showing how our 
methodology/platform helps at reusing and customizing various levels of syn- 
chronization schemes, in order to produce (and implement) such refinements 
and variants. (You may again look at Fig. 2 which summarizes the hierarchy of 
synchronization schemes/classes that have been developed in this section.) 
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4 E v a l u a t i o n ,  R e l a t e d  a n d  F u t u r e  W o r k  

4.1. Evalua t ion  

These implementations of various synchronization schemes are all integrated 
within a parameterized architecture and taxonomy. The benefits are in the pos- 
sibilities to reuse and refine such schemes and to actually compare, apply and test 
them on real programs developed from the standard Smalltalk-80 environment. 
It is also possible to select and apply various synchronization schemes (and gen- 
erally speaking various OOCP models) locally to various parts and computational 
contexts of a whole program/system. 

Meanwhile, this experience in developing a hierarchy raises the general method- 
ological issue of how to best extend such a taxonomy of classes while maintaining 
it highly modular. Currently this is the sole responsibility of the designer and 
implementor. As we have now some significant number of classes within the three 
main components taxonomies, it will be interesting to see how semi-automatic 
hierarchy management/reclassification mechanisms (such as [Cas92]) may help 
us to manage the evolution and refinement of the taxonomies. 

One of the current limitations of our platform is that the optimization and 
efficiency issues are not deeply addressed. Our pragmatic approach (to proto- 
type and build-up up on existing software) is located somewhere between pure 
specifications and specific optimization concerns. One of our future works is in 
expanding the platform tools to better account for the efficiency concern. 

4.2 Re l a t ed  Work  

Our survey of various synchronization schemes has some similarities with the 
analysis and proposal in [MY93]. They discuss and analyze various synchroniza- 
tion schemes, and also use a multi (two) paradigm approach for their proposal 
to solve the inheritance anomaly phenomenon. Their reference work has been 
an influence to the work described here. Meanwhile, our work differs from theirs 
in the two following ways: (1) we consider the issue of intra-object concurrency, 
and (2) we propose a software workbench and some hierarchy of synchronization 
schemes, to help the designer/programmer at (himself) designing and imple- 
menting customized prototype synchronization schemes. 

The pros of building object-oriented (and more specifically Smalltalk-based) 
generic platforms for classifying various programming constructs has also been 
demonstrated by other platforms, such as Simtalk (for modeling various sim- 
ulation schemes [B~z87]) as well as others (Classtalk, Prototalk...  ). A generic 
scheduler has also been developed, as part of the Actalk project, by Loi'c Lescau- 
dron to classify and parameterize various scheduling policies [LBB91, Bri93]. 

Alternatives to represent various OOCP designs are some more formal ap- 
proaches, as the object calculus proposed by Oscar Nierstrasz [Nier93]. Note 
that our pragmatic approach allows experiments with actual programs within a 
sophisticated programming environment (Smalltalk-80 based) to help at devel- 
oping and monitoring them [LBB91]. 
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The component-based architecture of an Actalk active object is close to the 
component-based meta-architecture of CodA, designed by Jeff McAffer [McA95]. 
CodA provides finer grain components and more refined interface between them, 
but at the cost of more complexity. We definitely intend to study the porting of 
our synchronization libraries into CodA in order to cross-fertilize both projects. 

There are also other alternatives to components and methods decomposition, 
as for instance with parameterizing the invocation of some methods via argu- 
ments, as advocated by the Hermes/ST architecture [FHR94]. This is also related 
to the issue of having a minimal kernel and extending it with more complex pro- 
tocols and mechanisms versus having a bigger kernel offering more protocols not 
necessarily all used at the kernel level. In the case of Actalk, the kernel has been 
designed a while ago to be simple and efficient, as its initial motivation was 
mainly didactic [Bri89]. The scope of Actalk has also been restricted as it does 
not address distribution aspects (as for CodA) or fault-tolerance aspects (as for 
Hermes/ST) but concentrates on OOCP language design. 

4.3 P u t u r e  W o r k  

Besides the areas and directions for future work already mentioned, an impor- 
tant  and general issue is the combination of various aspects/descriptions of a 
computational behavior. The decomposition of the Actalk architecture in or- 
thogonal components, and their further decomposition in parameter methods, 
help at such combination. Meanwhile, it reaches some limitations when combin- 
ing differents versions of a same component (in the context o f  this paper, the 
activity/synchronization component). The programmer may have then to rely 
on some amount of explicit combination. A finer grain decomposition of compo- 
nents, as proposed by C o d a  [McA95], brings more independence and modularity, 
but it also still relies on a single component to cover activity and synchroniza- 
tion concerns. Our belief is that it is difficult anyway to further decompose a 
complex aspect, such as activity/synchronization, in fully orthogonal pieces. (In 
other words, we ultimately reach some atoms or even quarks.) Therefore, we be- 
lieve that  we cannot avoid the general problem of composing non fully orthogonal 
components, and that we should develop some rationale and methodology for 
doing so. Some starting propositions may for instance he found in [McA95] and 
in [MMC95]. Another more fundamental and long term approach is in defining 
a general pat tern language (based on a process calculus) as a foundation to de- 
fine arbitrary composable software patterns (from computation model to actual 
application software) [Nier93]. 

Conclus ion 

In this paper we have described the pros of using a platform for classifying and 
specializing various synchronization schemes for object-oriented concurrent pro- 
grams. We first introduced the key architectural aspects of the Actalk architec- 
ture/platform. We then implemented successive refinements and combinations 
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of synchronization schemes in order to show the expressive power of our plat- 
form. We finally evaluated our experience, related it to other works, and pointed 
future areas of investigations. 

Access  

Last version of the Actalk prototype testbed (with some documentation) is avail- 
able through anonymous ftp: 
" f t p  c a m i l l e ,  i s .  s . u - t o k y o ,  ac.  j p ;  cd p u b / a c t a l k " ,  
and WWW/Mosaic:  
"ht  t p : / / w e b ,  y l .  i s .  s.  u - tokyo ,  ac .  j p / ' b r i o t / a c t  a l k / a c t  a lk .  html".  
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