
An Experiment in Classification and
Specialization of Synchronization Schemes

Jean -P ie r r e BRIOT*

Dept. of Information Science
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

tel: +81 (3) 3812-2111 ext. 4116
fax: +81 (3) 5689-4365

e-mail: b r i o t @ i s , s . u - tokyo . ac. jp

A b s t r a c t . This paper describes a pragmatic framework for modeling,
classifying, customizing, and combining various synchronization schemes
for object-oriented concurrent programming (OOCP in short). This is
achieved by using a general purpose OOCP generic software architec-
ture/platform, named Actalk. The architecture is based on the notions
of components, parameterization and inheritance. In this paper we focus
on the activity component of an (active) object in order to express control
over acceptance and execution of method invocations. Variations on the
parameters (namely virtual methods) of the activity component are used
to describe and implement various synchronization schemes. At first, our
platform helps in classifying and experimenting with various synchro-
nization schemes. Secondly, it helps in reusing them and building-up on
previous expertise in order to derivate enhanced or novel schemes. To
illustrate this in the paper, we progressively develop various schemes by
successive refinements and combinations, start ing from two foundational
synchronization schemes (namely enabled sets and guards). Before con-
cluding, we briefly discuss some general architectural issues of generic
software platforms by comparing the design of the Actalk architecture
to some other similar software platforms.

1 I n t r o d u c t i o n

O b j e c t - o r i e n t e d concurren t p r o g r a m m i n g (O O C P in shor t [OOCP87]) is a ve ry
p romis ing m e t h o d o l o g y for deve lopment of paral le l , d i s t r i bu t ed and open appl i -
cat ions . I t is a genera l i za t ion of ob j ec t -o r i en t ed p r o g r a m m i n g t ak ing in to account
mu l t ip l e act ivi t ies . The ma in app roach of O O C P is integrative 2, by iden t i fy ing

* From Spring 1996, at LAFORIA, Inst i tut Blaise Pascal, 4 place Jussieu, 75252 Paris
Cedex 05, France. E-maih b r i o t @ l a f o r i a . i b p . f r .

2 The integrative approach at tempts at identifying and unifying object and concur-
rency concepts, in order to provide a simple and unified conceptual model to the
programmer. Note that this is not the only way to relate object concepts with con-

228

an object with an autonomous activity (therefore named an active object) 3. This
integrative approach also identifies synchronization between objects/activities at
the message passing level. This unification of object with activity, and of message
passing with inter-object synchronization, eases the issue of synchronization of
concurrent programs, as synchronization of requests becomes transparent to the
client.

Furthermore, it is also tempting to make the availability of services trans-
parent to the client. For example, a bounded buffer may not accept insertion
requests while it is full. The idea is to delay a request until the conditions for its
processing are met, rather than to signal an error.

Last, if we allow/free an object to process several messages concurrently
(this is called intra-object concurrency), as opposed to a serialized object which
processes one request at a time, we need to (re)gain control over concurrent
activations of messages in order to preserve object consistency.

We call synchronization constraints the specifications of such control (i.e.
constraints) over the way invocations are scheduled and processed by an active
object. Various formalisms for synchronization, we will call them synchronization
schemes, have been proposed to achieve good expressive power, modularity, and
efficient enough implementations. Many of them are actual derivations from
general concurrent programming [AS83], e.g. guards, and have been integrated
within the object-oriented concurrent programming framework [MY93, BG95].

Unfortunately, since the late 80's it has been found that it is not always
trivial to reuse such specifications, and especially by using inheritance (which is
the main standard tool for reuse and specialization of object abstractions). This
problem has been coined as the inheritance anomaly phenomenon and various
proposals have been studied and compared in [MY93]. Experience shows that
there is no silver bullet and that a given scheme may perform well on some cases
of reuse, but not well on some others. We may also note that most of currently
proposed schemes are ultimately based on one of the two following kinds: (1)
enabled (methods) sets, where the active object specifies the sets of method
patterns that it is willing to accept/serve, and (2) guards, where a boolean
activation condition is associated to each method.

Rather than proposing some unique fixed scheme, or even a choice between
(only) two alternative schemes as in [MY93], in this paper we propose a frame-
work to help the programmer and the language designer to himself choose, and
if needed possibly customize, an appropriate synchronization scheme for a given
piece of program.

currency, parallelism, and distribution concerns. [BG95] analyzes and classifies three
main approaches (applicative, integrative, reflective) and studies their difference as
well as their complementary aspects and levels.

3 This one-to-one identification between object and activity is the general model of
an active object. Meanwhile, this does not preclude the existence of passive objects
in some OOCP hybrid languages (or systems), nor the fact that, in some other
languages, some kinds of active objects may own multiple sub-activities (intra-object
concurrency as discussed below).

229

Our starting point is a platform and generic software architecture, named
Actalk, for modeling and classifying various OOCP language models and con-
structs, within a single framework and environment [Bri94]. In this paper we use
Actalk to construct a taxonomy of various synchronization schemes for active
objects.

Our approach leads to the following benefits:

1. it provides a comprehensive framework for describing and implementing var-
ious synchronization schemes,

2. it makes the classification and the comparison of various synchronization
schemes/proposals easier (and more fair),

3. it provides opportunity to test and select among several candidate synchro-
nization schemes, for a given part of a whole program,

4. it helps to c u s t o m i z e a given scheme, or even to design a new one by building
up (refining, combining) on the existing library of synchronization schemes.

Note that the synchronization libraries developed are an application, and a
part, of a more general software platform/architecture. Thus, it helps at putting
various synchronization schemes into various computational contexts (computa-
tion models, language constructs, granularity of objects and concurrency, com-
munication models...) by also varying other components of the architecture
(further described in Sect. 2.4).

Outl ine

This paper is organized as follows. Section 2 briefly discusses and describes the
Actalk generic architecture to model and classify various OOCP mechanisms.
Then in Sect. 3, we successively model various synchronization schemes, through
step by step refinement and combination. Section 4 quickly summarizes and eval-
uates our approach and results, and then compares them to other relevant works
before concluding this paper.

2 A G e n e r i c A r c h i t e c t u r e f o r O O C P D e s i g n A l t e r n a t i v e s

2.1 Mot iva t ions

Object-oriented (concurrent) programming is based on a few simple and generic
concepts: (active) objects and message passing. Concepts are strong enough to
help at structuring and encapsulating computation modules, and generic enough
to encompass various software and hardware architectures. Meanwhile, various
alternative programming models, constructs and mechanisms have been pro-
posed in various programming languages and systems. They reflect a wide vari-
ation of concerns and domains. Possible variations on programming language
design may be grouped into various issues, such as:

- c o m m u n i c a t i o n : is it synchronous or asynchronous, how is a reply conveyed ?,
are there priority schemes ?. . . ;

230

- activity: is acceptance of messages implicit or explicit ?, is there intra-object
concurrency ?. . . ;

- synchronization/coordination: how does an active object control message se-
lection and activation ?

This variety of models, and the difficulty to compare them by abstracting
from various associated terminologies, syntax and implementational foundations,
led us to design a comprehensive and unified modeling platform.

2.2 T h e A c t a l k P l a t f o r m

The design and building of the Actalk 4 project started in 1988 from the needs
for a comprehensive workbench for comparing various object-oriented concurrent
programming schemes within a single unified framework/environment [Bri89].
Actalk provides a framework to help in: (1) analyzing and classifying existing
language constructs and mechanisms, (2) designing new ones through derivation
and combination of existing ones, and (3) testing them with actual programs
within a rich programming environment [LBB91].

2.3 Arch i t ec tu re

The architecture of Actalk includes a kerne/which models basic OOCP semantics
(that is serialized active objects which communicate by asynchronous unidirec-
tional message passing). The kernel is composed of a set of kernel component
classes. Each component describes a different aspect of an active object, that is:
behavior, activity/synchronization, and communication. Each component class
is parameterized, that is some of its functionalities (methods) are specifically
intended to be specialized in subclasses in order to model alternative language
designs. Therefore, these (virtual) methods are named parameter methods.

Note that the granularity and balance of the decomposition of the architec-
ture into components and parameter methods is a very sensitive issue. Finer
granularity of decomposition brings greater modularity but at the cost of pos-
sible complexity, as well as increasing consistency management and efficiency
problems. This issue will be discussed in Sect. 4.2, when comparing our platform
to a few other similar systems.

2.4 C o m p o n e n t Classes of t h e Ac ta l k Kerne l

The three main kernel component classes are:

- Class Act• describes the behavior of the active object, that is the
inner standard object which ultimately computes the messages. Application
classes of active objects are defined as subclasses of class Active0bject .
The language designer may also implement specific programming language

4 Actalk stands for active objects, or actors, in Smalltalk-80.

231

constructs in some abstract subclasses. (For instance subclass Abc l l0b j e c t
implements the ABCL/1 language construct w a i t - f o r , to explicit wait for
some message pattern [OOCP87, pages 55-89].)

- Class A c t i v i t y describes the internal activity of the active object. This class
provides autonomy for the active object. It also defines the way method in-
vocations are selected, scheduled and computed. Consequently, its subclasses
may describe various synchronization schemes.

- Class Address describes the address (mailbox) of an active object, that is
the identifier of an active object where messages will be sent. This class
defines the way message transmissions will be interpreted. Its subclasses
may implement various types of communication.

This decomposition allows the independent modeling of various dimensions of
active objects. One can decouple the actual program from a given communication
model (e.g. with eager reply), and from a given model of activity (e.g. with
intra-object concurrency) and synchronization scheme 5 (e.g. guards). Meanwhile,
combination of arbitrary components may lead to inconsistencies. Therefore the
Aetalk platform includes some simple compatibility specification and verification
mechanism to keep some safeguards [Bri94].

Note that the kernel actually provides two more kernel component classes:
class MailBox which represents the message queue, and class I n v o c a t i o n which
represents a method invocation (by default the message itself, as instance of
standard Smalltalk-80 class Message). They are not considered as prime compo-
nents because their parameterization is minimal. Meanwhile their functionality
may be extended by subclassing them as for the three main component classes.
This proves to be useful when modeling complex protocols for message buffering,
e.g. with priorities, or for invocation management, e.g. with time stamps (to be
described in Sect. 3.6).

2.5 R e l a t i o n s b e t w e e n C o m p o n e n t s

To define a class of active objects, the programmer should define it as inheriting
from class Ac t ive0b j ec t . After creating an active object behavior as its instance,
creation and initialization of the associated components (activity, address and
mailbox) take place transparently. Default classes for associated components are
expressed by specific parameter methods (e.g. parameter method a d d r e s s C l a s s
specifying the associated address component class, as later detailed in Table 1).

The minimal (default) functionality of an active object, and the relations and
interactions between its components, may be summarized by following the main
steps of a message, from its reception to its processing (see Fig. 1):

Note that in the architecture, the activity/synchronization component is explicitly
and structurally distinct from the behavior/program component. This enforces inde-
pendence between program code/data and synchronization code/data as advocated
in [MBW+94]. This also eases comparison of various synchronization schemes on
actual examples by just changing the synchronization class while keeping the same
behavior/program.

232

- the address receives a message, triggering parameter method receiveMessage :
of class Address which enqueues the message in the mailbox ;

- independently, the activity selects the next message to be processed (param-
eter method n e x t M e s s a g e of class Act iv i ty) ;

- and accepts it (parameter method a c c e p t M e s s a g e : of class Act iv i ty) , u l -
timately delegating its processing (parameter method performMessage: of
class Act iv i ty) to the behavior.

reception
(receiveMessage =)

/ / m.iISox \

a ~ r e f , s
(an Address)

Fig. 1. Components of an Actalk active object

2.6 The Act iv i ty Kernel Componen t Class and its Pa rame te r i za t i on

In this paper we focus on the activity component classes (i.e. subclasses of ker-
nel component class Act iv i ty) in order to implement various synchronization
schemes. Class Ac t iv i t y defines two instance variables: a d d r e s s , to reference
the associated address component, and bse l f (as for behavior self), to reference
the associated behavior component, of the active object. Parameter methods of
class Activity are summarized in Table 1.

2.7 Generic Event Methods

Another important characteristic of the Actalk architecture is the existence of
generic event methods. These parameter methods are associated to the three

233

Table 1. Parameter methods of component class Activity

method selector parameter example of redefinition

i n i t i a l i z e initialization initialize synchronization
counters (see Sect. 3.4)

s t a r t start the activity start a second activity pro-
(process) !cess specific to ABCL/1 ex-

press mode messages
c rea teProcess create the activity provide a handle to the pro-

9rocess cess (useful for termination
control)

body specification o] accept a single message (e.g.
the activity Actors model of activity)

nextMessage

acceptMessage:

performMessage:

addressClass

invocation-
ClassFor:
eventReceive:/
Accept:/
Complete:

next message to
be accepted

!accept and com-
pute a message

perform
message

default
component class
invocation class

message
reception/accept-
ance/completion
generic events

default value

none

start the process
created by
c rea teProcess
create a process
computing body

serially
accept successive
messages
return
and remove first
message from the
message queue
)err ormMessage :

a delegate
actual perform to
Ithe behavior

address Address

Message

none

return and remove the first
message whose selector is en-
abled (see Sect. 3.1)

spawn an inner thread to
compute the message (intra-
object concurrency class
ConcurrentActivity)
also return the value to the
implicit reply destination

PoolAddress (associated to
class Poo lAc t iv i ty)
WithSenderInvocat ion (in-
eludes the sender)
after completion, compute
the next enabled set of selec-
tors (see Sect. 3.1)

following events: message (invocation) reception~acceptance/completion, and are
respectively named: e v e n t R e c e i v e : / A c c e p t : / C o m p l e t e :. (They take the cur-
rent message as their argument .)

The user may redefine them to a t t ach actions to a given class of active objects,
e.g.: for t racing activities, s tepping computa t ion , controlling global scheduling of
act ivi t ies . . . Generic event methods may also be used by the designer for mod-
eling language speeificities (e.g. for comput ing post actions as with the P O O L
language [OOCP87, pages 199-220]). Last, they are also very useful for manag ing
intra-object synchronizat ion. Subclass S y n c h r o C o n c u r r e n t A c t i v i t y specializes
them in order to ensure their a tomici ty (mutual exclusion), as we will see in
Sect. 3.4.

234

2.8 Experiments and Applications

Various extensions of the Actalk kernel have been defined as subclasses of one
or more of the kernel component classes. These various component subclasses
simulate various:

- language models and constructs: e.g. Actors concept of behavior replace-
ment [OOCP87, pages 37-53], ABCL/1 explicit wait for a message pattern
[OOCP87, pages 55-89], POOL concept of body and post actions construct
[OOCP87, pages 199-220]... ;

- communication models: e.g. ABCL/1 three types (synchronous, asynchronous,
future) and two modes (normal, express) of message transmission, implicit re-
ply mechanism (for a good integration within underlying standard Smalltalk-
80 method execution model)... ;

- and synchronization schemes: the focus of this paper. Part of the correspond-
ing taxonomy is detailed in Sect. 3. Other schemes include: explicit message
acceptance (as in POOL and Eiffel//), method suspension (as in Portable
ConcurrentSmalltalk), reflective framework (as in OCore).. .

With its libraries and taxonomies of various OOCP languages characteristics,
the Actalk testbed provides a comprehensive view of design alternatives and
mechanisms. Actalk has been used as a tool for teaching and experiments by
various people, notably in a graduate course led by Jean B~zivin at University
of Nantes where students projects developed many experiments. Actalk has also
been used as component or foundation for several projects and domains, such
as simulation of software engineering process models [KG84], the construction
of various multi-agent systems [BFS91], themselves applied to various domains
(natural language processing, knowledge acquisition...).

3 M o d e l i n g S y n c h r o n i z a t i o n S c h e m e s

We will now model and implement various synchronization schemes and show
the expressiveness of our platform. As noted in the introduction, enabled sets
and guards are the two major synchronization schemes foundations. We will use
successive refinements and combinations of these two schemes to produce increas-
ingly expressive (and complex) synchronization schemes. Our point is actually
in showing how we may easily enhance and customize various synchronization
schemes along various requirements, while building-up on previous expertise.
Figure 2 summarizes the hierarchy of synchronization schemes/classes which will
be developed in this section.

Note that we sometimes combine two synchronization schemes into a new
one (e.g. class CountersAct iv i ty described in Sect. 3.4), thus inheriting from
more than one class. As there is currently no multiple inheritance mechanism in
Smalltalk-80, we unfortunately must choose a single superclass (solid arrow in
Fig. 2) and recopy variables and methods from the other one(s) (dashed arrow).
These copied methods won't be shown in the definitions given in the paper.

235

Activity

T ~ ~ C c n~ urrentActivity
EnabledSetsActivity GuardsActivity i~

/ ~ ~1~ SynchroConcurrentActivity \
\

\ CountersActivity AlwaysEnabledSetsActivity \
, \
\ GenericlnvocationsCountersActivity

EnabledSetsCountersActivity ~ F u l l G e n
\ ericlnvocationsCountersActivity
\

EnabledSetsGenericlnvocationsCountersActivity

Fig. 2. Hierarchy of synchronization schemes/classes described in the paper

3.1 A First Bas ic Scheme : E n a b l e d S e t s / A b s t r a c t S t a t e s

The first synchronization scheme that we implement is the enabled sets syn-
chronization scheme. This scheme is very good at expressing services availability
constraints, i.e. how an active object is willing to accept certain method invo-
cations. In many cases, parameters are not significant in the decision. One may
then introduce a further level of abstraction in enabling (or disabling) method
patterns (i.e. selectors) grouped into enabled methods sets.

Abstract states (also named behavioral abstractions) are abstractions/names
to which enabled sets will be assigned. (In the canonical example of the bounded
buffer, pu t : requests should be disabled while the buffer is full. This will be
expressed with an abstract state f u l l having only {get} as its corresponding
enabled set.) After selecting and computing the current method invocation, a
state transition function will compute the next abstract state (leading to the
next enabled set). Enabled sets are computed through set operations such as
union (+), intersection (t~), and difference (-).

Class Enab ledSe t .qAct iv i ty implements this scheme in the following way.
It defines an instance variable e n a b l e d S e l e c t o z s to hold the current enabled
set. An enabled set of selectors is implemented as a Smalltalk array (e.g. # (g e t
p u t :)) 6. An abstract state is represented by a method returning an enabled
set. Implementation only redefines three of class A c t i v i t y parameter methods:
initialize, nextMessage, and completion generic event method eventComplet e :.

6 # is the quotation character in Smalltalk, both for symbols (e.g. #empty) and for
arrays (e.g. enabled set #(put:)) .

236

Activity subclass: #EnabledSetsActivity
instanceVariableNames: 'enabledSelectors '

"Parameter method for initialization of the activity."
initialize

super initialize.
"Initialize the initial set of enabled selectors."
enabledSelectors := self perform: self initialAbstractState

"Return first message from the mailbox belonging to the current enabled set."
nextMessage

"self mailbox firstMessageWithCondition:

[:message I enabledSelectors includes: message selector]

"Generic event method associated to the completion of the computation o/ a message."
eventComplete : aMessage

super eventComplete: aMessage.
"Abstract state transition: computation of the next set o/ enabled selectors."
enabledSelectors : =

self perform: (self nextAbstractStateAfter: aMessage selector)

Note that method definitions reference (call) two undefined methods: initial-
A b s t r a c t S t a t e (to specify the initial abstract state) and n e x t A b s t r a c t S t a t e -
Af t e r : (to compute the next abstract state). These two virtual methods are not
defined at this abstract level, but must be in a specific (concrete) synchroniza-
tion subclass (e.g. in next example). Note that the code above is a concise but
complete implementation.

Exampl e : S y n c h r o n i z a t i o n of a B o u n d e d Buf fe r (1). The enabled sets/-
abstract states synchronization scheme is very good at expressing services avail-
ability constraints based on the state of the (active) object. In the canonical
example of the bounded buffer, there will be three abstract states (note that
abstract state p a r t i a l may be defined as the union of empty and f u l l) :

abstract state enabled set

empty # (put :)
mr t i a l #(get put:)
fu l l #(get)

The synchronization component of the bounded buffer is specified in class
BufferEnabledSetsAct ivi~y, defined as a subclass of class Enab ledSe t sAct iv i ty :

EnabledSetsActivity subclass: #BufferEnabledSetsActivity
instanceVariableNames: ' '

"Abstract states."
empty

"# (put :)

237

full
"#(get)

pa r t ial
"Defined as the union (+) o/ the abstract states empty and f u l l . "

"(self empty) + (self ~ull)

"The initial abstract state when creating an instance."
initialAbstractState

"#empty

"Abstract state transition: computing the next abstract state."
nextAbst rac tSta teAf ter : s e l ec to r

"bself isEmpty
ifTrue: [#empty]
ifFalse: [bself isFull

ifTrue: [#full]
ifFalse: [#partial]]

Note that the implementat ion of the bounded buffer behav ior /p rogram (triv-
ial and here out of scope) is not shown in this paper. We assume that the behav-
ior implements methods pu t : and ge t . We also assume that it implements the
two predicate methods isEmpty and i s F u l l , and the accessor method maxSize
(to consult the max imum size). As opposed to methods pu t : and ge t , these
latter methods are not declared in the external interface of the active object
(i.e. they won' t be enabled). They are for internal use only, so that the ac-
t ivi ty/synchronizat ion component may (namely, method n e x t A b s t r a c t S t a t e -
A f t e r :) consult the state of the buffer behavior (referenced by instance variable
b s e l f , see Sect. 2.6).

3.2 F i r s t R e f i n e m e n t : C o n s i d e r i n g A l w a y s E n a b l e d M e t h o d s

Although this is not the focus of this paper, we now briefly mention one example
of inheritance anomaly phenomenon, and the way we can easily refine the ini-
tial synchronization scheme described above in order to address that particular
problem 7.

Suppose for example that we define a subclass of the bounded buffer de-
fined above (Sect. 3.1), as specifying a new method named number0fElements .
This method should always be available, thus enabled. The problem is that
we therefore need to add it to all existing enabled sets (or at least to "basic
states" empty and f u l l) , thus forcing some amount of redefinition. This may be
done semi-automatically by specifying a generic set of "always enabled" meth-
ods. This is easily implemented as the following refinement (subclass) of class
EnabledSet sActivity:

7 This is by no means a complete solution to the complete set of inheritance anomaly
problems [MY93], which is not the focus of this paper.

238

EnabledSetsActivity subclass: #AlwaysEnabledSetsActivity
instanceYariableNames: ''

initialize
"Add He set o f ~ e always enabled selectors to the initialenabled set."
super initialize.

enabledSelectors := enabledSelectors + self always

eventComplete: aMessage

"Add the set o f t he always enabled selectors to the next enabled set."
super eventComplete: aMessage.
enabledSelectors := enabledSelectors + self always

"Abstract states."
always

"Return the set of the always enabled selectors. By default this set is empty."
-#()

E x a m p l e : S y n c h r o n i z a t i o n o f a B o u n d e d B u f f e r (2). The new buffer ac-
t ivity (class B u f f e r A l w a y s E a a b l e d S e t s A c t i v i t y) is defined as for previous
buffer activity (class B u f f e r E n a b l e d S e t s A c t i v i t y in Sect. 3.1), plus the speci-
fication of the "always enabled" method nt imber0fElements:

AlwaysEnabledSetsActivity subclass: #BufferAlwaysEnabledSetsActivity
instanceVariableNames: ''

"Abstract states specij~cation and transition."
**As for enabled sets scheme, class BufferEnabledSetsActivi ty in Sect. 3.1"*

always
"Method numberOfElements is specified as an always enabled me~od."
"#(numberOfElements)

3.3 A S e c o n d Bas i c S c h e m e : G u a r d s

Main alternative to enabled sets are guards. Intuitively, a method invocation
will be blocked until the guard (boolean activation condition) associated to the
method evaluates to "true". Class G u a r d s A c t i v i t y implements a simple and
naive mechanism for guards s. Parameter method nextMessage is redefined in
order to look for the first candidate message (method i sCemdida teMessage :)
whose corresponding guard evaluates to t r u e . It keeps fetching the next message
and re-enqueueing it into the mailbox (method i n t e r n a l R e c e i v e M e s s a g e :) un-
til it finds a candidate. Finally, we represent a guard associated to a method

s Note that we also provide refinements of this naive initial implementation scheme
Without resending messages. They use indexing messages within the mailbox and
furthermore implement some optimized, but safe, reevaluation semantics for guards.
They are implemented in subclasses of class GuardsActivity but won't be described
in this paper.

239

as another method (whose name is prefixed by symbol guardOF). The complete
implementation is as follows:

Activity subclass: #GuardsActivity
instanceVariableNames: ''

"Returnthefirstcandidate message, otherwisere-enqueueit(methodinternalReceiveMessage:)."
nextMessage

I message I
[message := super nextMessage.
self isCandidateMessage: message] whileFalse:

[address internalKeceiveMessage: message].
~message

"A message is candidate]or acceptance ~ its associated guard evaluates to true."
isCandidateMessage: aHessage

^sell evaluateGuardForMessage: aMessage

"Evaluate the associated condition/guard method with the current arguments."
evaluateGuardForMessage: aMessage

"self perform: (self guardOfSelector: aMessage selector)
withArguments: aMessage arguments

"Return the selector o]the associated guard: current selector prefixed by guard0F."
guardOfSelector: selector

^('guardOF' , selector) asSymbol

Example: Synchroniza t ion of a Bounded Buffer (3). Services availability
constraints on the bounded buffer are easily expressed as guards referring to the
state of the buffer:

GuardsActivity subclass: #BufferGuardsActivity
instanceVariableNames: ''

"Guards: boolean activation conditions associated to methods."
guardOFget

^bself isEmpty not

guardOFput: item
"bself isFull not

Note that guards have the advantage over enabled sets that they may de-
cide on the acceptance of a particular message based on some of its parameters.
(This is impossible with enabled sets which specify only abstractions/patterns of
invocations.) Furthermore, guard notations may describe intra-object synchro-
nization, with the addition of finer grained observation of invocations status (see
in Sect. 3.4 below). Moreover, their modularity and finer grained specifications
usually make them less prone to inheritance anomalies than enabled sets. Never-
theless, guards have the following two main weaknesses: (1) their fine grain level

240

of specification may complicate descriptions, and moreover (2) an efficient im-
plementation is difficult to achieve, and therefore needs extra program analysis.

3.4 Second Refinement/Combination: Guards Extended with
Synchronization Counters

With the addition of some fine grain mechanism observing status of current in-
vocations, guard notations may easily express intra-ohject synchronization, that
is control over multiple method invocations within a single active object. Syn-
chronization counters [RV77] are often chosen as such a general and expressive
mechanism. Main counters record the number of invocations received, accepted,
and completed for a given method selector. Actually, synchronization counters
are a direct consequence of (Actalk) generic events.

We also need a specialized activity class providing intra-object concurrency,
as implemented by class ConcurrentActivity. Its subclass SynchroConcurrent-
Activity redefines generic event methods in order to ensure their atomicity
(mutual exclusion), by introducing some mutual exclusion semaphore (instance
variable rautexSemaphore).

Now, we may implement synchronization counters (class CountersActivity)
as a subclass of both class SynchroConcurrentActivity (in order to inherit
concurrency and atomic events) and class GuardsActivity (to inherit guards).
The only difference with class GuardsAcZivity (Sect. 3.3) is the redefinition
of method isCandidateMessage: in order to ensure atomicity of a success-
ful guard evaluation with the acceptance event (method eventAccept:). Class
CountersActivity also implements dictionaries to record and consult synchro-
nization counters data.

SynchroConcurrentActivity subclass: #CountersActivity
inst anceVariableNames : ' receivedCount erDict ionary

acceptedCounterDictionary completedCounterDictionary '

initialize
super initialize.
"Create a dictionary/or each/amily(3) o/counters, indexed by each selector."
self makeSynchroCounterDictionaries0nSelectors:

bself class allScriptSelectors

"A message is candidate for acceptance i] its associated guard evaluates to t rue ."
isCandidat eMessage : aMessage

"Note that a successful guard evaluation AND the acceptance event must be atomic."
"mat exSemaphore critical:

[(self evaluateGuardForMessage: ablessage)
ifTrue: [self eventAccept : aMessage.

t n l e]
i fFa lse : [fa l se]]

241

"The reception event method increments the associated synchron~ation counter."
"(Same for methods eventAccept: and eventComplete: .)"
eventReceive: aMessage

super eventReceive: aMessage.
receivedCounterDictionary at: aMessage selector

put: (receivedCounterDictionary at: aMessage selector) + 1

"Consultation of the reception synchronization counter."
"(Same for methods accepted: and compZeted:.}"
received: selector

"Number of received invocations of message selector."
"receivedCounterDictionary at: selector

"Simulation of other useful synchronization counters."
current: selector

"Number of current (accepted but not completed ye 0 invocations of message selector."
"(self accepted: selector) - (self completed: selector)

pending: s e l e c t o r
"Number ofpending(received but not accepted yeO invocations of message selector."
" (s e l f r ece ived : s e l e c t o r) - (s e l f accepted: s e l e c t o r)

E x a m p l e : S y n c h r o n i z a t i o n of a (C o n c u r r e n t) B o u n d e d B u f f e r (4). Sup-
pose that we now free the internal concurrency of a bounded buffer 9. We then
must ensure its internal consistency, by forbidding concurrent processing of sev-
eral pu t : invocations (and as well for ge t invocations). On the other hand,
simultaneous processing of one put : and one ge t is allowed, as they access dis-
tinct memory sectors. Note that the number of items of the buffer is computed
as the difference between completed put : and completed get , thus only relying
on synchronization data.

CountersActivity subclass: #BufferCountersActivity
instanceVariableNames: ''

"Guards."
guardOFget

"Only one get at once AND the buffer is not empty."
" (s e l f current: #get) = 0

and: [(self completed: #put:) - (self completed: #get) > O]

guardOFput : item

"Only one put : at once AND the buffer is not full."
"(se l f c u r r e n t : #pu t :) = 0

and: [(s e l f completed: #put :) - (s e l f completed: #get)
< b s e l f maxSize]

9 Please keep in mind that the example of the bounded buffer is pedagogical and
simple, but should not be considered as some significant example/granularity of
object on which to introduce intra-object concurrency.

242

3.5 Second C o m b i n a t i o n : E n a b l e d Sets w i t h G u a r d s / S y n c h r o -
n i za t i on C o u n t e r s

Note that enabled sets (sect. 3.1) are specific to services availability constraints,
whereas guards with synchronization counters (Sect. 3.4) add intra-object syn-
chronization constraints. It is therefore natural to try to combine them into
a single scheme, for a clear separation of services availability and intra-object
concurrency. Such a mixed scheme has initially been introduced in the Dooji
language by Laurent Thomas [Tho94].

Its specification is easily achieved in Actalk by combining class Enabled-
Setstctivity with class CountersActivity (the actual superclass) into sub-
class EnabledSetsCountersActivity. The key aspect is the atomic combina-
tion of the two (enabled sets and guards) synchronization conditions (in method
evaluateGuardForMessage :). We also combine "by hand" initialization (init-
ialize) and completion event (eventComplete :) parameter methods, as shown
below:

CountersActivity subclass: #EnabledSetsCountersActivity
instanceVariableNames: 'enabledSelectors '

evaluateGuardForMessage: aMessage
"Check both conditions."
"(Atomicityis ensured bythecaH by method isCandidateMessage:,seeinSect.s
"(enabledSelectors includes: aMessage selector)

and: [super evaluateGuardForMessage: aMessage]

"By-hand combinations ofmethods/romthe two superclasses."
initialize

super initialize.
enabledSelectors :ffi self perform: self initialAbstractState

eventComplete: aMessage
super eventComplete: aMessage.
enabledSelectors :=

self perform: (self nextAbstractStateAfter: aMessage selector)

Exampl e : S y n c h r o n i z a t i o n of a (C o n c u r r e n t) B o u n d e d Buf fe r (5).

EnabledSetsCountersActivity subclass: #BufferEnabledSetsCountersActivity
instanceVariableNames: ' '

"Abstract states for services availability constraints."
**As for enabled sets scheme, class BufferEnabledSetsActivity in Sect. 3.1"*

"Guards(only) for intra-object concurrency synchronization."
guardOFget

"Only one get at once."
" (se l f current: #get) ffi 0

guard0Fput: item
"Only one put: at once."
" (s e l f current : #put:) = 0

2 4 3

F u r t h e r M e t h o d a n d C o n c u r r e n c y . With this mixed scheme, the clear sep-
aration of services availability and intra-object concurrency makes specifications
more modular and consequently more reusable. For instance, we may take ben-
efit of this separation of specifications in order to make them cooperate. As an
example (taken from [Tho94]), suppose that some subclass defines a method
ge t L a s t , which is like method get , except in that it extracts the last (as op-
posed to the first) element of the bounded buffer. One optimization (increased
concurrency) may be achieved by observing that one ge t and one g e t L a s t may
execute concurrently (as they access distinct memory sectors) if there is more
than one element. (Otherwise preference is given to a ge t request.)

Note that the implementation described below makes use of a technique for
dynamic subpartition of the abstract state p a r t i a l (to disable g e t L a s t in case
of a single item). Therefore we do not need to introduce a new abstract state
(thus avoiding the "partitioning of acceptable states" problem [MY93]).

BufferEnabledSetsCountersActivity subclass:
#GetLastBufferEnabledSetsCountersActivity

instanceVariableNames: ''

"Abstract states."
f u l l

"(super f u l l) + #(getLast)

partial

"bself isOne
ifTrue: [super partial - #(getLast)]
ifFalse: [super partial]

"Guards."
guard0Fput: item

"Methods put: and getLast are mutually exclusive (same memory sector)."
"(super guardOFput: item)

and: [(se l f current : #getLast) = 0]

guardOFgetLast

"As for put :, The parameter (n i l) is not used/significant."
"self guardOFput: nil

244

3.6 Th i rd Ref inement : G u a r d s / S y n c h r o n i z a t i o n C o u n t e r s E x t e n d e d
wi th Generic Invocat ions

The previous synchronization scheme (Sect. 3.5), although expressive, still can-
not directly express constraints on method invocations such as "the first to
come is the first to be served". For instance, [MBW+94] recently proposed some
modular and expressive synchronization scheme, named Synchronization Vari-
ables, which addresses such issues. We can quickly model and implement their
scheme by augmenting previous synchronization counters model (Sect. 3.4) with
the three following points.

First, we take benefit of the generic Actalk component for method invocation
(class Invocat ion) to include/attach specific information such as message arrival
time. We also may attach arbitrary information, e.g. job priority in order to
specify priority-based specific algorithms (see below).

Secondly, we provide various iteration and predicate methods over the mail-
box (that is the ordered set of pending invocations) in order to examine and
compare them with current invocations (see below their application to imple-
ment various ordering policies).

Thirdly, we provide an optimized implementation of reevaluation semantics
for guards, as opposed to the initial naive version (method nextMessage re-
enqueueing messages) described in Sect. 3.3.

This enhanced activity class, named Gener icInvocat ionsCountersAct iv i ty ,
is defined as a subclass of class CountersAct iv i ty (Sect. 3.4). It adds instance
variables: cur ren t Invoca t ion (dynamically bound to the invocation currently
being checked, i.e. whose guard is being evaluated) and reevaluationSemaphore
(to control the reevaluation of guards). This class also redefines the main activity
loop (parameter method body) to control guard evaluation and to bind instance
variable current Invocat ion . The reception event method (eventReceive:) is
redefined in order to time stamp the invocation, and (as for the two other event
methods, whose redefinition is not shown here) to signal reevaluation of guards.

CountersActivity subclass: #GenericInvocationsCotmtersActivity
instanceVariableNames: 'currentInvocation reevaluationSemaphore '

eventReceive : anInvocat ion

"Assign a new time stamp to the invocation."
super eventReceive: anInvocation.
anInvocation arrivalTime: address nextTimeStamp.
reevaluat ionSemaphore signal

The two basic iteration and predicate methods over pending invocations are:

"For all pending invocations, evaluate aBlock (whose parameter is pending invocation)."
f orAllPendingDo : aBlock

"self mailbox do: aBlock

"Check if there is no pending invocation satisfying condition a.Block."
noPendingWith: aBlock

" (s e l f mailbox de tec t : aBlock ifNone: [n i l]) isNil

245

Example: S yn c h ron iza t ion of a FCFS Concurrent B o u n d e d Buffer. As
example, see below the upgrading of the concurrent bounded buffer example
(with synchronization counters, in Sect. 3.4) to ensure some "first come first
served" (FCFS) policy, locally to the get method:

guardOFget
"Ensures FCFS policy as a further constraint(thatis no prior pending get)."
"super guardOFget

and: [self noPending: #get priorTo: currentInvocation arrivalTime]

Example: S tarva t ion Avoidance on a Shortes t Job First Served Policy.
Suppose now that we alternatively constrain the bounded buffer example with
some "shortest job first served" policy on the put: method (this is not shown
here). We may ensure that starvation cannot happen, by dynamically decreasing
the job size of a put : invocation each time it has been skipped:

eventAccept: anInvocation
"When accepting a put:, decrease job s~eofa l l prior pending put: invocations."
super eventAccept: anInvocation.
anInvocation ifSelector: #put: do:

[sel~ forAllPending: #put: do: [:invocation I
invocation arrivalTime < anInvocation arrivalTime

ifTrue: [invocation decrJobSize]]]

Finally, note that a more complete version of the Synchronization Vari-
ables scheme (subclass Ful lGener ic lnvocat ionsCountersAct iv i ty) provides
full recording of current and completed invocations (as opposed to just count-
ing them) in order to express more complex synchronization algorithms. Again,
thanks to inheritance, we may select the level of expressiveness (and computing
overhead) needed.

3.7 Fu r the r Extensions

We can go further, for instance, by combining the main functionalities previ-
ously described, into some new activity class (e.g. named EnabledSetsGeneric-
Invoca t ionsCoun t s r s t c t iv i ty) . Such a novel scheme is highly sophisticated
and expressive, but at the cost of extra complexity and reduced efficiency. Our
point in this paper is not to discuss its characteristics but in showing how our
methodology/platform helps at reusing and customizing various levels of syn-
chronization schemes, in order to produce (and implement) such refinements
and variants. (You may again look at Fig. 2 which summarizes the hierarchy of
synchronization schemes/classes that have been developed in this section.)

246

4 E v a l u a t i o n , R e l a t e d a n d F u t u r e W o r k

4.1. Evalua t ion

These implementations of various synchronization schemes are all integrated
within a parameterized architecture and taxonomy. The benefits are in the pos-
sibilities to reuse and refine such schemes and to actually compare, apply and test
them on real programs developed from the standard Smalltalk-80 environment.
It is also possible to select and apply various synchronization schemes (and gen-
erally speaking various OOCP models) locally to various parts and computational
contexts of a whole program/system.

Meanwhile, this experience in developing a hierarchy raises the general method-
ological issue of how to best extend such a taxonomy of classes while maintaining
it highly modular. Currently this is the sole responsibility of the designer and
implementor. As we have now some significant number of classes within the three
main components taxonomies, it will be interesting to see how semi-automatic
hierarchy management/reclassification mechanisms (such as [Cas92]) may help
us to manage the evolution and refinement of the taxonomies.

One of the current limitations of our platform is that the optimization and
efficiency issues are not deeply addressed. Our pragmatic approach (to proto-
type and build-up up on existing software) is located somewhere between pure
specifications and specific optimization concerns. One of our future works is in
expanding the platform tools to better account for the efficiency concern.

4.2 Re l a t ed Work

Our survey of various synchronization schemes has some similarities with the
analysis and proposal in [MY93]. They discuss and analyze various synchroniza-
tion schemes, and also use a multi (two) paradigm approach for their proposal
to solve the inheritance anomaly phenomenon. Their reference work has been
an influence to the work described here. Meanwhile, our work differs from theirs
in the two following ways: (1) we consider the issue of intra-object concurrency,
and (2) we propose a software workbench and some hierarchy of synchronization
schemes, to help the designer/programmer at (himself) designing and imple-
menting customized prototype synchronization schemes.

The pros of building object-oriented (and more specifically Smalltalk-based)
generic platforms for classifying various programming constructs has also been
demonstrated by other platforms, such as Simtalk (for modeling various sim-
ulation schemes [B~z87]) as well as others (Classtalk, Prototalk...). A generic
scheduler has also been developed, as part of the Actalk project, by Loi'c Lescau-
dron to classify and parameterize various scheduling policies [LBB91, Bri93].

Alternatives to represent various OOCP designs are some more formal ap-
proaches, as the object calculus proposed by Oscar Nierstrasz [Nier93]. Note
that our pragmatic approach allows experiments with actual programs within a
sophisticated programming environment (Smalltalk-80 based) to help at devel-
oping and monitoring them [LBB91].

247

The component-based architecture of an Actalk active object is close to the
component-based meta-architecture of CodA, designed by Jeff McAffer [McA95].
CodA provides finer grain components and more refined interface between them,
but at the cost of more complexity. We definitely intend to study the porting of
our synchronization libraries into CodA in order to cross-fertilize both projects.

There are also other alternatives to components and methods decomposition,
as for instance with parameterizing the invocation of some methods via argu-
ments, as advocated by the Hermes/ST architecture [FHR94]. This is also related
to the issue of having a minimal kernel and extending it with more complex pro-
tocols and mechanisms versus having a bigger kernel offering more protocols not
necessarily all used at the kernel level. In the case of Actalk, the kernel has been
designed a while ago to be simple and efficient, as its initial motivation was
mainly didactic [Bri89]. The scope of Actalk has also been restricted as it does
not address distribution aspects (as for CodA) or fault-tolerance aspects (as for
Hermes/ST) but concentrates on OOCP language design.

4.3 P u t u r e W o r k

Besides the areas and directions for future work already mentioned, an impor-
tant and general issue is the combination of various aspects/descriptions of a
computational behavior. The decomposition of the Actalk architecture in or-
thogonal components, and their further decomposition in parameter methods,
help at such combination. Meanwhile, it reaches some limitations when combin-
ing differents versions of a same component (in the context o f this paper, the
activity/synchronization component). The programmer may have then to rely
on some amount of explicit combination. A finer grain decomposition of compo-
nents, as proposed by C o d a [McA95], brings more independence and modularity,
but it also still relies on a single component to cover activity and synchroniza-
tion concerns. Our belief is that it is difficult anyway to further decompose a
complex aspect, such as activity/synchronization, in fully orthogonal pieces. (In
other words, we ultimately reach some atoms or even quarks.) Therefore, we be-
lieve that we cannot avoid the general problem of composing non fully orthogonal
components, and that we should develop some rationale and methodology for
doing so. Some starting propositions may for instance he found in [McA95] and
in [MMC95]. Another more fundamental and long term approach is in defining
a general pat tern language (based on a process calculus) as a foundation to de-
fine arbitrary composable software patterns (from computation model to actual
application software) [Nier93].

Conclus ion

In this paper we have described the pros of using a platform for classifying and
specializing various synchronization schemes for object-oriented concurrent pro-
grams. We first introduced the key architectural aspects of the Actalk architec-
ture/platform. We then implemented successive refinements and combinations

248

of synchronization schemes in order to show the expressive power of our plat-
form. We finally evaluated our experience, related it to other works, and pointed
future areas of investigations.

Access

Last version of the Actalk prototype testbed (with some documentation) is avail-
able through anonymous ftp:
" f t p c a m i l l e , i s . s . u - t o k y o , ac. j p ; cd p u b / a c t a l k " ,
and WWW/Mosaic:
"ht t p : / / w e b , y l . i s . s. u - tokyo , ac . j p / ' b r i o t / a c t a l k / a c t a lk . html".

A c k n o w l e d g e m e n t s

We would like to thank Jeff McAffer for many general discussions on OOCP
and reflection subjects, and for his helpful comments on the presentation of this
paper. We also thank the anonymous reviewers for some suggestions for further
improvements.

References

[AS83] G.R. Andrews and F.B. Schneider, "Concepts and Notations for Concurrent
Programming," ACM Computing Surveys, Vol. 15, No 1, pages 3-43, March 1983.

[BSz87] J. B6zivin, "Some Experiments in Object-Oriented Simulation," Proc. of OOP-
SLA'87, Special Issue of ACM SIGPLAN Notices, Vol. 22, No 12, pages 394-405,
December 1987.

[BFSgl] T. Bouron, J. Ferber, and F. Samuel, "MAGES: a Multi-Agent Testbed for
Heterogeneous Agents," Decentralized Artificial Intelligence, Vol. II, edited by Y. De-
mazeau and J.-P. Muller, North-Holland, 1991.

[Bri89] J.-P. Briot, "Actalk: a Testbed for Classifying and Designing Actor Languages
in the Smalltalk-80 Environment," Proc. of ECOOP'89, edited by S. Cook, Cam-
bridge University Press, U.K., pages 109-129, July 1989.

[Bri93] J.-P. Briot, "Object-oriented design of a generic scheduler," Object-Oriented
Computing H (Proc. of JSSST WOOC'93), edited by A. Yonezawa, S. Matsuoka,
and W. Kato, Lecture Notes/Software Science, No6, Kindai-Kagaku-Sha, Japan,
pages 73-81, 1994.

[Bri94] J.-P. Briot, "Mod$1isation et Classification de Langages de Programmation
Concurrente k Objets : l'Exp6rience Actalk," LITP Research Report 94/59, Insti-
rut Blaise Pascal, France, October 1994. (Also in Proc. of Conference "Langages
et ModUles k Objets (LMO'94)," INRIA/IMAG/PRC-IA, Grenoble, France, pages
153-165, October 1994.)

[BG95] J.-P. Briot and R. Guerraoui, "A Classification of Various Approaches for
Object-Based Parallel and Distributed Programming," submitted for publication,
December 1995.

[Cas92] E. Casais, "An Incremental Class Reorganization Approach," Proc. of
ECOOP'9P, edited by O. Lehrmann Madsen, LNCS, No 615, Springer-Verlag, pages
133-152, June 1992.

249

[FHR94] M. Fazzolare, B.G. Humm, and R.D. Ranson, "Object-Oriented Extendibility
in Hermes/ST, a Transactional Distributed Programming Environment," Proc. of
the ECOOP'93 Workshop on Object-Based Distributed Programming, edited by R.
Guerraoui, O. Nierstrasz, and M. Riveill, LNCS, No 791, Springer-Verlag, pages 241-
261, 1994.

[KG84] M. Kang and D.D. Grant, "A Kernel Mechanism for Simulating an Object-
Oriented Process Sensitive Software Engineering Environment," Proc. of TOOLS
Pacific'94 (TOOLS 15), ISE - Prentice-Hall, pages 57-67, Fall 1994.

[LBB91] L. Lescaudron, J.-P. Briot, and M. Bouabsa, "Prototyping Programming En-
vironments for Object-Oriented Concurrent Languages: a Smalltalk-Based Experi-
ence," Proc. of TOOLS USA'91, ISE - Prentice-Hall, page 449-462, August 1991.

[MY93] S. Matsuoka and A. Yonezawa, "Analysis of Inheritance Anomaly in Object-
Oriented Concurrent Programming Languages," Research Directions in Concurrent
Object-Oriented Programming, edited by G. Agha, P. Wegner, and A. Yonezawa,
Mit-Press, pages 107-150, 1993.

[McA95] J. McAffer, "Meta-level Programming with CodA," Proc. of ECOOP'95,
edited by W. Olthoff, LNCS, No 952, Springer-Verlag, pages 190-214, August 1995.

[MBW+94] C. McHale, S. Baker, B. Walsh, and A. Donnelly, "Synchronization Vari-
ables," Technical Report, TCD-CS-94-01, Dept. of Computer Science, University of
Dublin, January 1994.

[MMC95] P. Mulet, J. Malenfant, and P. Cointe, "Towards a Methodology for Ex-
plicit Composition of Meta-Objects," Proc. of OOPSLA'95, Special Issue of ACM
SIGPLAN Notices, Vol. 30, No 10, pages 316-330, October 1995.

[Nier93] O. Nierstrasz, "Composing Active Objects," Research Directions in Concur-
rent Object-Oriented Programming, edited by G. Agha, P. Wegner, and A. Yonezawa,
Mit-Press, pages 151-171, 1993.

[OOCP87] Object-Oriented Concurrent Programming, edited by A. Yonezawa and M.
Tokoro, Computer Systems Series, MIT-Press, 1987.

[RV77] P. Robert and J.-P. Verjus, "Towards Autonomous Descriptions of Synchro-
nization Modules," Proc. of 1FIP'77, edited by B. Gilchrist, North-Holland, pages
981-986, August 1977.

[Tho94] L. Thomas, "Inheritance Anomaly in True Concurrent Object Oriented Lan-
guages: A Proposal," in Proc. o] IEEE TENCON'94, pages 541-545, August 1994.

