
68 1092-3063/99/$10.00 © 1999 IEEE IEEE Concurrency

From Active Objects to
Autonomous Agents

facilities for implementing agent commu-
nication, and the concept of encapsulating
objects lets us combine various agent gran-
ularities. Furthermore, the inheritance
mechanism enables knowledge specializa-
tion and factorization.

The concept of an active object—inte-
grating an object and activity (namely a
thread or process)—provides some degree
of autonomy in that it does not rely on
external resources for activation. Thus, it
provides a good basis for implementing
agents. However, an active object’s behavior
still remains procedural and only reacts to
message requests. More generally, we con-
sider that to be autonomous, agents must be
able to perform numerous functions or
activities without external intervention over
extended time periods. To achieve auton-
omy, several researchers have proposed
adding to an active object a function that
controls message reception and processing
by considering its internal state.2,3

There are two basic questions regard-
ing how to build a bridge between imple-
menting and modeling multiagent-system
requirements4,5 and the facilities and tech-
niques OOCP provides:6

• How can a generic structure define an
autonomous agent’s main features?

• How do we accommodate the highly
structured OOCP model in this generic
structure?6

Here we attempt to answer these two
questions. We deal with multiagent-system
modeling requirements by providing a
generic and modular agent architecture.
We also discuss extending OOCP’s imple-
mentation and modeling facilities. More
concretely, we describe how to extend an
active object’s model (the Actalk—actors in
smalltalk—framework)2 towards a generic
and modular agent architecture (the
DIMA—Development and Implementa-
tion of MultiAgent systems—platform).

Active objects

Carl Hewitt introduced the active-object
(or actor) concept to describe a set of enti-
ties that cooperate and communicate
through message passing. This concept
brings the benefits of object orientation (for
example, modularity and encapsulation) to
distributed environments and provides

The authors describe

how they extended a

framework of active

objects, named Actalk,

into a generic multiagent

platform, named DIMA.

They discuss how they

implemented this

extension and report on

one DIMA application

that simulates economic

models.

Actors & Agents

O
bject-oriented concurrent programming (OOCP) is the most

appropriate and promising technology for implementing

agents. Combining the agent concept and the object par-

adigm leads to the notion of agent-oriented program-

ming.1 The uniformity of objects’ communication mechanisms provides

Zahia Guessoum and Jean-Pierre Briot
Objects and Agents for Simulation and Information Systems (OASIS)

July–September 1999 69

object-oriented languages with some of
the characteristics of open systems.7 Based
on these characteristics, various active-
object models have been proposed,8 and
to facilitate implementing active-object
systems, several frameworks have been
proposed. Actalk is one example.

ACTALK
Actalk is a framework for implementing
and computing various active-object
models into a single programming envi-
ronment based on Smalltalk, an object-
oriented programming language. Actalk
implements asynchronism, a basic prin-
ciple of active-object languages, by queu-
ing the received messages into a mailbox,
thus dissociating message reception from
interpretation. In Actalk, an active object
is composed of three component classes
(see Figure 1), which are instances of the
classes.

• Addressencapsulates the active object’s
mailbox. It defines how to receive and
queue messages for later interpretation.

• Activity represents the active object’s
internal activity and provides autonomy
to the actor. It has a Smalltalk process
and continuously removes messages
from the mailbox, and the behavior
component interprets the messages.

• ActiveObject represents the active
object’s behavior—that is, how indi-
vidual messages are interpreted.

To build an active object with Actalk,
we must describe its behavior as a stan-
dard Smalltalk object. The active object
using that behavior is created by sending
the message active to the behavior:

active

“Creates an active object

with self as corresponding

behavior”

^self activity: self

activityClass address:

self addressClass

The activityClass and address-
Class methods represent the default
component classes for creating the activ-
ity and address components (along the
factory method design pattern).

Customizing the Actalk framework
means defining subclasses of the three
component classes. This lets the user
define specific models of active objects—
various communication protocols as sub-
classes of the Address class and various
models of activity and synchronization
as subclasses of the Activity class (see
Figure 2).

LIMITATIONS
OOCP provides powerful foundations
for modeling and implementing agents.
However, these foundations do not
really provide a generic agent structure.
Active objects are monolithic and have
procedural behavior. In spite of their
communicating subjects’ appearances,

active objects do not reason about their
behavior, relations, or interactions with
other active objects. Also, if an active
object does not receive messages from
other objects, it stays inactive.

To cope with these limitations, several
researchers have enriched the active-
object concept to define a generic agent
structure.1,3 These are very interesting
proposals; however, they do not offer a
generic agent structure that matches the
whole spectrum of multiagent-system
requirements.6 To clarify this, we quickly
summarize required agent properties that
active objects fail to provide.9

Various behaviors
An agent is not monolithic. It can have

Message

MailboxSelection

Reception

Process

Actual computation
Activity

(an Activity)

Behavior
(an ActiveObject)

Address
(an Address)

Figure 1. Components of an Actalk active object.

Activity

GuardsActivity ConcurrentActivity

SynchroConcurrentActivity

EnabledSetsActivity

CountersActivity

GenericInvocationsCountersActivityEnabledSetsCountersActivity

EnabledSetsGenericInvocationsCountersActivity

AlwaysEnabledSetsActivity

FullGenericInvocationsCountersActivity

Figure 2. A sample hierarchy of the activity and synchronization classes.

70 IEEE Concurrency

several behaviors: communication, per-
ception, deliberation, and so forth. Each
behavior can be procedural but can also
include symbolic representations and
substantial reasoning mechanisms. For
example, the communication behavior
can integrate knowledge about agent
acquaintances (other agents) and a rea-
soning mechanism for its interactions
with these acquaintances.

Autonomy
An agent operates without direct human
or agent intervention. Therefore, it must
have some control over its behaviors
and internal state4—each agent needs
autonomous behaviors. For example, the
communication behavior can reuse the
active object communication mechanism
but can integrate a message interpreter
to control message acceptance.

The following example shows an
interpretation rule that tests the agent’s
mailbox state and the received message
priority before performing this message:

rule1

|Message message|

conditions

self mailBox size < self

threshold1.

message priority >= self

threshold2.

actions

self perform: message

Proactivity
An agent has a goal; it does not simply
act in response to messages from other
agents. For example, in the application
we describe later, an agent does not com-
municate with other agents. It interacts

with its environment (made of nonagent
entities) and deliberates over the most
appropriate action in the current con-
text. Thus, it has two behaviors: percep-
tion and deliberation. The agent’s proac-
tivity manages these two behaviors.

Sociability
Agents are considered to form groups, but
active objects rarely provide a notion of
group. Moreover, agents can interact by
speaking different languages. For exam-
ple, in agent communication languages
such as KQML (Knowledge Query and
Manipulation Language),10 the message’s
language is indicated in an attribute of the
received performative. This language can
be object oriented (such as Smalltalk or
Java) or an interchange representation
language (for example, KIF).

Adaptability
The agent’s world (its environment and
other agents) continuously evolves. So,
some behaviors must enable the agent to
sustain performance. For example, in our
experiments, the results show that it is
difficult to improve a firm’s performance
without predicting the competitor’s per-
formance. Furthermore, our results indi-
cate that using case-based reasoning to
predict the competition-model changes
improve agent performance.

A generic agent
architecture
In an attempt to define a generic archi-
tecture that addresses the previously
mentioned properties, we propose
extending an active object’s single behav-
ior into a set of behaviors. This archi-

tecture (see Figure 3) relies on a first
layer made of interactive modules.

These modules represent different
concurrent agent behaviors, such as com-
municating, reasoning, and perceiving.
They can provide the agent with the
required properties described earlier. For
example, the communication module
manages the agent’s interaction with the
system’s other agents. A higher-level
supervision module represents agent
metabehavior. It lets the agent manage
the different behaviors.

AGENT BEHAVIOR
To model complex systems, agents must
combine cognitive abilities to reason
about complex situations and reactive
(stimulus-response) abilities. So, an agent
can have two kinds of behaviors: reactive
and cognitive.

Each behavior encapsulates a set of
data that defines the behavior’s state and
a set of methods (see Figure 3). The
behavior methods or some asynchronous
events can update the data. For example,
the method scan of the perception behav-
ior manages the interactions between the
agent and its environment. It monitors,
sensors, and translates sensed data to
define a set of beliefs, which can repre-
sent a model of the agent’s acquaintances
and environment.

The methods can be either procedural
(such as standard object-oriented meth-
ods) or knowledge-based (a method that
executes a knowledge base—for example,
production rules). A behavior that only
contains procedural methods is called a
reactive behavior. Otherwise, it contains
knowledge-based methods and is called a
cognitive behavior. Each behavior has its
own engine controlling the activation of
various methods. A procedural-behavior
engine is a simple automaton. For exam-
ple, the agent firm’s perception-behavior
engine defines an infinite loop of activat-
ing this behavior’s single method scan.

A knowledge-based-behavior engine
is an inference engine. To implement
the knowledge bases, we use the frame-
work NéOpus,11 which realizes a neat
integration of rule-based programming
with Smalltalk. One of its prominent fea-
tures is declarative specification of con-

Supervision module

Behavior l

Data

Methods

. . .

.

aThread

ATN (states, transactions)

anEngine

Behavior n

Data

Methods

. . .

anEngine

Behavior i

Data

Methods

. . .

anEngine

Data
Control

Figure 3. The proposed architecture.

July–September 1999 71

trol with metarules. Metarules are rules
that operate on so-called control objects.
A metabase that controls the firing of its
rules is associated with a rule base. NéO-
pus users have designed several meta-
bases to define standard types of control.
We have adapted some of them to our
needs by changing a few individual
metarules to control firing the set of pro-
cedural and knowledge-based methods
(we later give an example).

Agents often own a deliberation be-
havior, and a communication or percep-
tion behavior. Moreover, using a modu-
lar approach facilitates the integration of
new modules such as a learning module.
We list three examples of modules that
seem sufficient for several application
domains (discussed later):

• a perception module (procedural be-
havior) manages the interactions be-
tween the agent and its environment.

• a deliberation module (knowledge-
based behavior) represents beliefs,
intentions, and knowledge of the
agent. It is responsible for generating
adequate responses to the messages
transmitted by the communication
module or to the changes the per-
ception module detects, and for
achieving the agent’s goals.

• a communication module (which can be
either procedural or knowledge-
based) manages the interactions
between the agent and other agents
in its group, no matter what machine

they are running on. It defines the
agent’s mailbox and how messages
are received and queued for later
interpretation.

AGENT METABEHAVIOR
Several hybrid architectures have been
proposed to build agents out of two or
more components, which can be either
reactive or cognitive.13,14 The reactive
components are given precedence over
the cognitive ones, and the scheduling
of these components is static. More-
over, each component can invoke a ser-
vice in the underlying system, blocking
the agent until the action has been
completed.

A key problem in such architectures is
what kind of control can be used to man-
age the interactions between these fun-
damentally different components. Let’s
consider a simple firm with two behav-
iors: perception and decision compo-
nents. Static scheduling implicitly used
in most existing architectures12 involves
agent activity that can be summarized by
a perception-then-decision loop.

To underline this problem of control,
consider the following scenario:

At time t, Firm 1 has a model of its
competitor Firm 2, which has a
higher price and lower quality. Firm
1 activates its decision process. Par-
allel to this process, Firm 2 decreases
its price and improves the quality of
its product. If Firm 1 does not deal

rapidly with these modifications, its
product will not be consumed.

To avoid this problem, we can dynami-
cally focus control. Each agent must
rapidly adapt its scheduling to changes
in its world (other agents and the envi-
ronment). So, the agent scheduler can-
not be static, as most existing architec-
tures propose.

Many systems have emphasized the
need for explicit and separate control
representation or the reflexive aspect of
metalevel architectures. Following this
traditional representation of control, we
propose a metabehavior in our agent
architecture that lets each agent make
appropriate decisions about control or
adapt its behaviors over time to new cir-
cumstances. It provides the agent with a
self-control mechanism to dynamically
schedule its behaviors in accordance to
its internal state and internal represen-
tation of its world.

Procedural behaviors have a time
granularity of a single procedural me-
thod call, and knowledge-based be-
haviors have a time granularity of a sin-
gle rule firing. In other words, at the
knowledge-based methods level, sched-
uling is performed after each rule firing.
This solution is acceptable in many
industrial applications.14

Our proposed metabehavior relies on
two fundamental notions: states and
transitions, which naturally build up an
Augmented Transition Network. Figure 4a

if true
then activatePerception

if importantChange or
 decisionTerminated
then activatePerception

if no importantChange and
 suspendedDecision
then activateDecision

if true
then activateDecision

State1 State2 State3

if true
then activatePerception

if importantChange or
 decisionTerminated
then activatePerception

if stopCondition
then kill

if stopCondition
then kill

if stopCondition
then kill

(a)

(b)

if no ImportantChange and
 suspendedDecision
then activateDecision

if true
then activateDecision

State1 State2 State3

FinalState

Figure 4. An example of an ATN (a) describing an economic agent metabehavior and (b) using stopCondition and kill.

72 IEEE Concurrency

gives an example of an ATN that can
describe an economic agent metabehav-
ior. States represent decision points, and
they are used to choose the next transi-
tion among the associated transitions.
Each transition is labeled: if condition
then action. A transition represents a
step of the global scheduling of the
agent and links an input state with an
output state.

The transition conditions test the oc-
currence of an asynchronous event (urgent
message reception, new data, and so forth).
These asynchronous events often operate
changes on the behaviors data. For exam-
ple, importantChange tests for new data
to see if it provides an important change
according to the previous data. Transition
actions let the metabehavior manage the
first-layer behaviors (activate reasoning,
terminate reasoning, activate communi-
cation, activate perception, and so on), so

the metabehavior must choose which
behavior to activate.

Moreover, the metabehavior can eval-
uate its behaviors and stop it when needed.
It has a (virtual method) condition stop-
Condition and an action kill (the
whole agent). Figure 4b gives an example
of an ATN that uses stopCondition
and kill. The metabehavior also has
aListofBehaviors, which it can
update. For example, it can remove a
behavior or add a new one.

At each state, the ATN-based meta-
behavior evaluates the transition condi-
tions (representing new events) to select
the most appropriate behavior. After ver-
ifying these conditions, the metabehavior
executes the associated transition’s actions
and modifies the agent state. The meta-
behavior thus represents the agent’s self-
control mechanism. This self-control
provides the agent with control over its

behaviors and internal state. It defines
agent proactivity, which is not restricted
to receiving and sending messages.
Therefore, it makes the agent auto-
nomous by allowing it to operate without
direct intervention by humans or other
agents. Moreover, it makes the agent
adaptive by allowing it to rapidly deal with
new events.

Implementing DIMA with
Actalk
In DIMA, a multiagent system is a set of
agents and possibly a set of objects repre-
senting the agents’ environment. To
implement a multiagent system, we must
implement the environment—a collection
of simple Smalltalk objects—and imple-
ment the agents by customizing DIMA.

Using an object-oriented language
provides the inheritance mechanism’s
benefits, so customizing DIMA means
using or subclassing the class hierarchies
(see Figure 5). This lets us define the
agent’s behavior, metabehavior, and
engine.

AGENT METABEHAVIOR
In DIMA, we decouple the agent
metabehavior (described by an ATN)
and the agent engine (which interprets
the ATN). As for expert systems that
decouple knowledge bases with the
inference engine, this achieves declara-
tivity and modularity.

As the agent metabehavior represents
the analog of an active object’s behav-
ior, it is implemented as class Meta-
Behavior and defined as a subclass of
Actalk class ActiveObject. The agent
engine represents the agent’s activity and
thus is implemented by class Agent
Engine, defined as a subclass of Actalk
class Activity (see Figure 5).

The class Meta-Behavior has an
attribute anATN that defines the meta-
behavior and an attribute aListofBe-
haviors describes the defined agent’s
collection of behaviors. This class imple-
ments the ATN transitions’ conditions,
actions, and one or several methods for
creating agents.

The main steps to describe an agent
are to

uses

is-defined-by

activates

uses-a-list-of

name: symbol
listOfBehaviors
anATN: ATN

initialState
finalState
listOfTransitions

aMeta-Behavior: Meta-Behavior

condition:Symbol
action:Symbol

Behaviors

Perception
Behavior

Deliberation
Behavior

KnowledgeBased
Behavior

ActivityActiveObject

Meta-Behavior

ATN

AgentEngine

Transition

Address

ReasoningBehavior

RealTime
ReasoningBehavior

CaseBased
ReasoningBehavior

ProceduralBehavior

CommunicationBehavior

KQMLKnowledge
Behavior

Figure 5. Classes describing the agent components.

July–September 1999 73

1. determine agent behaviors;
2. implement the classes describing its

behaviors by using or subclassing
existing classes (see Figure 5);

3. implement the agent ATN by instan-
tiating the class ATN; and

4. create the agent by using an appro-
priate method defined in the class
Meta-Behavior:

agent := Meta-Behavior

newAgent: aSymbol

listofBehaviors:

(OrderedCollection

with:

aDeliberationBehavior

with:

aPerceptionBehavior)

atn: anATN.

After completing steps 1 through 4, we
can activate the agent engine (agent
resume).

AGENT ENGINE
In Actalk, the class Activity repre-
sents the active object’s internal activity.
The instance method body, used by
createProcess, defines the active
object’s basic loop, which serially pro-
cesses messages of the mailbox:

!Activity methodsFor:

‘activity setting’!

body

[true] WhileTrue: [self

acceptNextMessage]

createProcess

[self body] newProcess

To implement the agent engine, we
have subclassed the class Activity of
Actalk to define the class Agent-
Engine. In the latter, the method body
has been redefined (see Figure 6).

In agent-oriented programming, as
defined by Yoav Shoham,1 the cycle
of knowledge inference implements
the cycle of message acceptance.
Agent activity is limited to receiving
and sending messages. In DIMA, an
ATN interpreter represents the agent
activity and makes it explicit to the
programmer.

Advantage of the proposed
agent architecture
Thanks to its modularity, the proposed
architecture helps decompose an agent’s
arbitrarily complex behavior into a col-
lection of small specialized behaviors,
and helps supervise these various behav-
iors with a metabehavior.

This architecture’s advantages match
the agent properties discussed earlier.
The architecture can express agents of
various granularities (size, internal be-
haviors, knowledge), and multigranular-
ity is very important in the design of
complex systems. It goes further than the
classical dichotomy between reactive and
cognitive agents.

Also, agents can be dynamically created
or killed. They can integrate new behav-
iors and change their acquaintances along
with the information they receive or per-
ceive. The agent metabehavior can create
and integrate behaviors according to
required new skills. In addition, our archi-
tecture implements an agent-based model
of reflection in which each agent has its
own metabehavior that governs its various
behaviors—that is, to make appropriate
decisions about control or adapt its behav-
iors over time to new circumstances.

Finally, heterogeneity is a very impor-
tant issue in multiagent systems. How-
ever, most existing systems do not accept
heterogeneous agents such as agents
implemented with or speaking different
languages. The proposed architecture is
mainly characterized by separating the
agent communication behavior from the
deliberation behavior. Also, each com-
munication behavior has a message inter-
preter to translate the received message’s
language to an internal agent language.
These two characteristics allow more
than one language in the same multiagent
system.

Experiments

To validate the operational platform
(DIMA), we developed several applica-
tions—for example, a manufacturing
process simulator15 and a multiagent sys-
tem to control mechanical ventilation.14

Here we report on an application that
simulates a population of firms within a
shared market.

The economic model we chose is the
result of extensive research conducted on
a representative sample of manufactur-
ing firms. The French National Bank
(Banque de France) collected the database.
In this application, we consider a set of
firms in competition with each other
within a shared market. Again, these
agents have two behaviors: perception
and deliberation.

THE FIRM’S PERCEPTION
BEHAVIOR
The perception behavior lets the firm
observe the market and build a competi-
tion model. The observable data are the
ones shown in the market such as the
data representing the performances of
the various firms.

To represent this behavior, we im-
plemented a class FirmPerception-
Behavior (a subclass of Perception-
Behavior). This behavior has only one
method (called scan) that aims to build
a competition model by observing data
changes in the market.

scan

“yCollection is a collection

of performances of the

other firms”

yCollection := self scanMarket.

self updateMemory.

self buildCompetitionModel

Therefore, an elementary competition

!AgentEngine methodsFor: ‘activity setting’!

body

self atnInterpreter

!AgentEngine methodsFor: ‘atn’!

atnInterpreter

|atn state|

atn := self metaBehavior atn.

state := atn initialState.

state = atn finalState whileFalse:[state := atn

transitionAt: state]

Figure 6. Implementation of the agent egnine.

74 IEEE Concurrency

model can define data such as the best,
average, and worst performances:

buildCompetitionModel

ymax := yCollection max.

yave := yCollection average.

ymin := yCollection min.

This class also implements a set of
conditions that are used in the ATN. For
example, the method importantChange
(see Figure 4b) means that the new
observed collection of data is different
from the previous one.

noimportantChange

^self testSimilarityOfData

This similarity is defined by

,

where e is a constant (~ 0.05) and Wi are
weights associated with each Yi perfor-
mance variable. An economist expert
from HEC (Ecole des Hautes Etudes
Commerciales) in Paris with whom we
worked defined these weights. Note that

.

THE FIRM’S DELIBERATION
BEHAVIOR
The following main properties define a
firm:

• The state variables (x vector) repre-
sent the different types of resources
(for example, funds, people, or equip-
ment) the firm owns.

• The y variables represent the firm’s
performances. They are directly in-
fluenced by the x vector.

• A firm is characterized by the strategy
it follows to allocate its resources. In
our model, a strategy is an order of
priority for changing resources (such
as hiring new people). For instance,
the cost strategy concentrates on the x
vector variables that are related to the
production resources.

Figure 7 describes the firm deliberation
behavior methods—each box describes a
method. For example, ComputeV is a pro-
cedural method. On the other hand,
StrategyChoiceAndApplication is a
knowledge-based method that chooses a
strategy. This method is implemented as
a simple knowledge base with NéOpus.11

The following is an example rule:

!FirmRuleBase methodsFor:

‘init’!

cchhoooosseeSSttrraatteeggyy11

ccoonnddiittiioonnss

|FirmDeliberationBehavior b|

b v decreases.

aaccttiioonnss

b applyStrategy1

Class FirmDeliberationBehavior
is a subclass of ReasoningBehavior. As
we underlined earlier, this behavior’s
engine is the inference engine of the sys-
tem that we use to implement the knowl-
edge base. This system is based on a set
of metarules. Figure 8 gives two exam-
ples of metarules of this behavior.

SIMULATION EXPERIMENTS
The aim of these experiments is to under-
line some properties of the proposed
agent architecture. The first property we
try to underline is that agents can be
added dynamically and can leave the sys-
tem. So, an agent metabehavior (see Fig-
ure 4b) can have one or more transitions
with the condition stopCondition,
which is related to the application domain
(for an economic agent, it is defined by

Wi

i

n
=

=
∑ 1

1

W Y Y

Y Y

i t i t i
i

n

t i t i
i

n

, ,

, ,

−

− <

−
=

−
=

∑

∑

1
1

1
1

e

Internal parameters modification

Strategy choice and application

Modification of parameters

Competition model

Send the new parameters
to transaction zone

x

y
Compute v

Figure 7. Firm deliberation behavior.

!FirmMetaBase methodsFor: ‘firm engine’!

iinniittNNooOObbjjeeccttss

| Evaluator e |

ccoonnddiittiioonnss e status = #init.

e context exists not.

aaccttiioonnss

self computeV.

e status: #modifyInternalParameters.

e modified

(a)

!FirmMetaBase methodsFor: ‘firm engine’!

ssttrraatteeggyyCChhooiicceeEEnndd

| Evaluator e|

ccoonnddiittiioonnss

e status = #strategyChoice.

e hasSucceeded. aaccttiioonnss e strategyChoice

e status: #modifyParameters.

e modified

(b)

Figure 8. Two examples of metarules: (a) the first activates the method
ComputeVbefore all the other methods, so it tests that no other method is
active; (b) the second tests that the method strategyChoice has been
activated and activates modifyParameters.

July–September 1999 75

the expression: capital <= 0) or by the
action kill, which kills all the agent
behaviors and its metabehavior.

In this first series of simulation, we
considered three firms with the same cap-
ital and initial resource set. We tested the
effects of entry on a market; three new
firms entered the simulation and only one
has left the market (see Figure 9).

In this second simulation series, we
show that in DIMA, we can define het-
erogeneous sets of agents. We defined a
second kind of firm that uses case-based
reasoning to choose a strategy (behavior
CaseBasedReasoningBehavior). So, we
have now two kinds of agents: those with
a fixed decision process implemented as a
knowledge base and those that build their
case base by studying the evolutionary
paths. The fixed decision process uses a
set of rules to choose a strategy, and the
reasoning process cannot modify these
rules. However, in the case-based deci-
sion process, the set of cases is dynami-
cally built by selecting the best cases. The
set of cases is thus dynamically modified.
To choose a strategy in a given context,
the case-based reasoning chooses the
most similar case of the base and then it
adapts this case to the new context.

These simulations show that the firms
with the case-based decision are more
efficient than the ones with a fixed deci-
sion process (see Figure 10). These
results show the merits of adaptive
behaviors.

DIMA PROVIDES THE USER with sev-
eral facilities to implement multiagent
systems. These facilities improve the
development time. For example, the
firms’ simulation systems were imple-
mented in a few days. Furthermore,
using the inheritance mechanism lets us
specialize existing classes to introduce
new behaviors. For example, to imple-
ment agents with learning abilities, we
reused the class ReasoningBehavior
describing simple decisions (see Figure
5). In the new class (CaseBasedReason-

ing-Behavior), we redefined the
method activateDecision that imple-
ments the strategy choice to use case-
based reasoning. Implementing the
agents with case-based decisions has not
required any other change. For instance,
the ATN of the new agents is the same
as the old one (see Figure 4b).

Our architecture offers an interesting
framework for studying multiagent
problems. For instance, to describe real-
time agents, we’re studying an anytime
reasoning technique. The realized exper-
iments offer promising results. However,
we have limited our study of real-time
aspects to the agent level. Real-time
agents are necessary to most real-life
applications but they are not sufficient
to build real-time multiagent systems.
We hope to study how the agent’s soci-
ety cooperates to solve a global problem
in real time.

References
1. Y. Shoham, “Agent-Oriented Program-

ming,” Artificial Intelligence, Vol. 60, No.
1, 1993, pp. 139–159.

2. J.-P. Briot, “An Experiment in Classifica-
tion and Specialization of Synchronization
Schemes,” Lecture Notes in Computer Sci-
ence, No. 1107, Springer-Verlag, New
York, 1996, pp. 227–249.

3. T. Maruichi, M. Ichikawa, and M. Tokoro,
“Decentralized AI,” Modeling Autonomous
Agents and Their Groups, Elsevier Science,
Amsterdam, 1990, pp. 215–134.

4. C. Castelfranchi, “A Point Missed in Multi-
Agent, DAI and HCI,” Lecture Notes in
Artificial Intelligence, No. 890, Springer-
Verlag, New York, 1995, pp 49–62.

5. L. Gasser, “An Overview of DAI,” Distrib-
uted Artificial Intelligence, N.A. Avouris
and L. Gasser, eds., Kluwer Academic,
Boston, 1992, pp. 1–25.

6. L. Gasser and J.-P. Briot, “Object-Oriented
Concurrent Programming and Distributed
Artificial Intelligence,” Distributed Artifi-

1

30

25

20

15

10

5

0
3 5 7 Time9 11 13 15

Pe
rf

or
m

an
ce

s
17 19 21 23 25 27 29

InitialFirm1
InitialFirm2
InitialFirm3
NewFirm1
NewFirm2
NewFirm3

Figure 9. Market evolution

1

1.8

1.6

1.4

1.2

1.0

0.8

0.6 4 7 10 Time13 16 19 22

Pe
rf

or
m

an
ce

s

25 28 31 34

Case-based reasoning
Simple decision

Figure 10. Performance evolution of firms with learning abilities.

76 IEEE Concurrency

cial Intelligence, N.A. Avouris and L.
Gasser, eds., Kluwer Academic, Boston,
1992, pp. 81–108.

7. G. Agha and C. Hewitt, “Concurrent Pro-
gramming Using Actors: Exploiting Large
Scale Parallelism,” Lecture Notes in Com-
puter Science, No. 206, S.N. Maheshwari,
ed., Springer-Verlag, New York, 1985, pp.
19–41.

8. Object-Oriented Concurrent Program-
ming, A. Yonezawa and M. Tokoro, eds.,
The MIT Press, Cambrige, Mass., 1987.

9. M.J. Wooldridge and N.R. Jennings,
“Agent Theories, Architectures, and Lan-
guages: A Survey,” Knowledge Eng.
Review, Vol. 10, No. 2, June 1995, pp.
115–152.

10. T. Finin et al., “KQML as an Agent Com-
munication Language,” Third Int’l Conf.
Information and Knowledge Manage-
ment, ACM Press, New York, 1994.

11. F. Pachet, “On the Embeddability of Pro-
duction Rules in Object-Oriented Lan-
guages,” J. Object-Oriented Program-
ming, Vol. 8, No. 4, 1995, pp. 19–24.

12. I.A. Ferguson, TouringMachines: An Archi-
tecture for Dynamic, Rational, Mobile
Agents, PhD thesis, Computer Laboratory,

Univ. of Cambridge, 1992.

13. J. Müller and M. Pischel, “Modelling Reac-
tive Behaviour in Vertically Layered Agent
Architectures,” 11th European Conf. Arti-
ficial Intelligence (ECAI’94), G. Cohen, ed.,
Wiley & Sons, New York, 1994, pp.
709–713.

14. Z. Guessoum and M. Dojat, “A Real-Time
Agent Model in an Asynchronous Object
Environment,” Agent Breaking Away, W.
Van de Velde and J. Perram, eds., Springer-
Verlag, New York, 1996, pp. 190–203.

15. Z. Guessoum and P. Deguenon, “A Multi-
Agent Approach for Distributed Discrete-
Event Simulation,” DISMAS’95, Develop-
ment and Implementation of MultiAgent
Systems, 1995, pp. 183–190.

Zahia Guessoum is an assistant professor at
the University of Reims. Her research inter-
ests include hybrid multiagent architectures
(reactive/deliberative integration), architec-
tures for real-time agents, and applications that
control dynamic systems (Process Control
Man-Machine Systems) and simulate eco-

nomics models. She received her PhD in com-
puter science from University Paris 6, France.
She is a member of the “Objects and Agents
for Simulation and Information Systems”
(OASIS) research team headed by Jean-Pierre
Briot. Contact her at Zahia.Guessoum@lip6.fr;
http://wwwpoleia.lip6.fr/oasis/~guessoum.

Jean-Pierre Briot is a senior researcher at
the Centre National de la Recherche Scien-
tifique (CNRS) in France. His general
research interests include object-based and
agent-based models, and architectures and
techniques for high-level and adaptive con-
current and distributed computing. His appli-
cation fields of interest include information
systems, simulation, mobile computing, col-
lective robotics, and computer music. He
received his PhD in computer science from
University Paris 6, France. He is a member
of the “Laboratoire d’Informatique de Paris
6” (LIP6), where he heads the OASIS re-
search team. Contact him at LIP6, Paris 6 -
Case 169, 4 place Jussieu, 75252 Paris Cedex
05, France; Jean-Pierre.Briot@lip6.fr; http://
www.lip6.fr/oasis/~briot.

Scientists, engineers, and mathematicians can learn much from each other about advances in
computing. In a groundbreaking development, the IEEE Computer Society has joined forces with the
American Institute of Physics to jointly produce Computing in Science & Engineering magazine. This
new magazine bridges a broad range of scientific and engineering disciplines to explore both the scientific
and the practical aspects of computers and computation.

This new bimonthly publication continues the strong tradition of focused theme issues and topical articles in
the spirit of IEEE CS&E, augmented by the comprehensive departments that have long been the hallmark
of Computers in Physics.

As a subscriber, you now get new coverage on
Lab Applications • Algorithms • Scientific Programming
Computer Simulations • Web Mechanics • Practical Visualizations
Essays from the Top • Education • Computing Perscriptions

To subscribe, check out our Web site at http://www.computer.org
for special pricing options or contact our Customer Service office at
membership@computer.org

IEEE COMPUTATIONAL SCIENCE & ENGINEERING
+ COMPUTERS IN PHYSICS

= CCOOMMPPUUTTIINNGG IINN SSCCIIEENNCCEE && EENNGGIINNEEEERRIINNGG

Both Worlds!
Best
THE

OF

THE

OF

1999 Editorial Calendar
January Computation in Communication

March Cosmology and Computation

May Computational Biology

July Massive Data Visualization

September Dynamic Fracture

November Computational Finance

