
Providing Contextual Norm Information in Open 
Multi-Agent Systems 

Carolina Felicíssimo1, 3, Ricardo Choren2, Jean-Pierre Briot1, 3, Carlos Lucena1, 
Caroline Chopinaud3 and Amal El Fallah Seghrouchni3 

1 DI, PUC-Rio: Rua M. de São Vicente, 225, Gávea Rio de Janeiro, RJ, 22453-900, Brasil 
{cfelicissimo,lucena}@inf.puc-rio.br 

2 SE-8, IME: Pca General Tiburcio 80, 22290-270, Rio de Janeiro RJ, Brazil 
choren@de9.ime.eb.br 

3 LIP6, Paris VI: 104 Avenue Kennedy, 75016, Paris, France 
{jean-pierre.briot,caroline.chopinaud,amal.elfallah}@lip6.fr  

Abstract. Agents can freely migrate among open MASs in order to obtain 
resources or services not found locally. In this scenario, agent actions should be 
guided for avoiding unexpected behavior. However, open MASs are extremely 
dynamic and, thus, a solution for guiding agent actions is non-trivial. This work 
details DynaCROM, our solution for continuously supporting agents in open 
MASs with updated norm information. The main asset of DynaCROM is that it 
decreases the complexity of norm representation by using contexts. DynaCROM 
proposes (i) a top-down modeling of contextual norms, (ii) an ontology to 
explicitly represent norm semantics and (iii) a rule inference engine to 
customize different compositions of contextual norms. Thus, DynaCROM 
offers a solution for both developers to enhance their open MASs with norm 
information and agents to be continuously supported with precise norm 
information. 

1 Introduction 

Multi-agent systems (MASs) have emerged as a promising approach to develop in-
formation systems that clearly require several goal-oriented problem-solving entities 
[21]. Following this direction, we believe that near information systems will be im-
plemented as open MASs, which will be composed of many sets of heterogeneous 
self-interested agents. These agents will be mobile agents, i.e. they will have the ca-
pability to freely migrate among MASs for obtaining resources or services not found 
locally. An MAS can be considered an open system when it presents the following 
characteristics [13]: 

 

Heterogeneity: agents are possibly developed by different parties, in different 
programming languages, with different purposes and preferences. 

 

Accountability: agent actions must be monitored to detect the execution of behaviors 
that may not be according to the overall expected functioning of the system. 

 

Social change: agent societies are not static; they may evolve over time by updating 
their information. So, future changes should be easily accommodated. 



In open MASs, agents may be heterogeneous, but they all must know how to as-
similate provided information for effective execution. In this sense, information 
should be expressed in a meaningful way for agents, avoiding misunderstandings. 
Moreover, the intrinsic dynamics of open MASs should be supported by a flexible 
mechanism that easily permits data updates. Regarding these points, we developed a 
solution for continuously providing contextual norm information to agents in open 
MASs. In our opinion, open MASs should be enhanced with norm information for 
guiding agent actions. Our solution, called DynaCROM (meaning dynamic contextual 
regulation information provision in open MASs)[8-11], proposes (i) a top-down mod-
eling of contextual norms, (ii) an ontology to explicitly represent norm semantics and 
(iii) a rule inference engine to customize different compositions of contextual norms.  

DynaCROM allows for accountability since MASs and their agents continuously 
have information about which norms they should follow. DynaCROM also allows for 
social changes since information is defined in a central resource (an ontology) that 
can easily have its data composed (thanks to a rule support) and updated.  

It is important to stress here that, in this work, we make no assumptions about 
whether agents decide or not to be compliant with norms. DynaCROM allows the 
modeling and representation of customized compositions of contextual norms, 
offering precise norm information for agents to consider in a given context. Thus, 
DynaCROM provides the way for agents to reason about norm compliance and for 
developers to implement normative MASs. Norm-aware agents are more likely to 
perform correctly and, consequently, to achieve their goals faster. 

The remainder of this paper is organized as follows. Section 2 details DynaCROM, 
including its top-down modeling, use of ontology and rules, and implementation. 
Section 3 describes a case study. Section 4 briefly presents how DynaCROM answers 
(contextual norm information) can be used. Section 5 compares DynaCROM with 
two related works. Finally, Section 6 concludes the paper and outlines future works. 

2 Contextual Norm Information Provision in Open MASs  

MASs are generally made up of environments, organizations and agents [20]. Envi-
ronments [36] are discrete computational locations (similar to places in the physical 
world) that provide conditions for agents to inhabit it. Environments can have refine-
ment levels, such as a specialization relationship (e.g., country, state, etc.), but there 
cannot be overlaps (e.g., there cannot be two countries in the same place). An envi-
ronment also can have many organizations. Organizations [12] are social locations 
inside which groups of agents play roles. Furthermore, an organization can have 
many sub-organizations, but each organization belongs to only one environment [28]. 
An agent can be in different organizations; and, agents with the mobility characteris-
tic can migrate among environments or organizations. Roles [32] are abstractions that 
define a set of related tasks for agents achieving their designed goals. Agents interact 
with other agents from the same or different environments, organizations and roles. 
Environments, organizations, roles and agent interactions suggest different contexts 
(implicit situational information [7]) found in open MASs. 



2.1 Modeling Contextual Norms 

Research in context-aware applications suggests top-down architectures for modeling 
contextual information [22,18]. Thus, DynaCROM defines that norms of MASs 
should be modeled according to the following four levels of abstractions: Environ-
ment, Organization, Role and Interaction contexts. We call these contexts regulatory 
contexts and they are differentiated by the boundaries of their data (norms). Environ-
ment Norms are applied to all agents in a regulated environment; Organization Norms 
are applied to all agents in a regulated organization; Role Norms are applied to all 
agents playing a regulated role; Interaction Norms are applied to all agents involved 
in a regulated interaction. 

Fig. 1 illustrates the boundaries of environment, organization, role and interaction 
norms. There, agents are regulated by compositions of contextual norms. For in-
stance, the agents on the left side of the figure are regulated by compositions of com-
mon environment and interaction norms and by compositions of different organiza-
tion and role norms; the agents on the right side of the figure are regulated by compo-
sitions of common environment, organization and interaction norms and by composi-
tions of different role norms; the two agents interacting, from the different environ-
ments, are regulated by compositions of different environment, organization, role and 
interaction norms. 

  

 
Fig. 1. The boundaries of Environment, Organization, Role and Interaction Norms 

We believe that the four DynaCROM regulatory contexts are not targeted to a par-
ticular application domain, but rather they represent a minimum set for a general 
contextual norm information provision in open MASs. For more complex MASs, this 
set should be improved with additions and refinements of regulatory contexts for 
representing particular domain norms. 

Norms define which actions are permitted, obliged and prohibited to be executed 
by agents in an open MAS. A permitted norm defines that an act is allowed to be 
performed; an obliged norm defines that an act must be performed; a prohibited norm 
defines that an act must not be performed. These three types of norms described rep-
resent the three fundamental deontic statuses of an act [1] from Deontic Logic [37]. 
Deontic Logic makes it possible to address the issue of explicitly and formally defin-
ing norms and dealing with the possibility of violation. In normative (i.e., regulated) 
open MASs, agents need to be norm-aware entities for taking into account the exis-
tence of social norms in their decisions (either to follow them or to violate them) and 
to react to norm violations by other agents [5]. 



2.2 Representing Contextual Norms 

Norms should have their semantics explicitly expressed in a meaningful way for het-
erogeneous agents to process their contents. Regarding this, DynaCROM uses on-
tologies for representing its regulatory contexts and data. For the DynaCROM ontol-
ogy, the following definitions are valid: an ontology is a conceptual model that em-
bodies shared conceptualizations of a given domain [17]; a contextual ontology is an 
ontology that represents contextual information [3]; and, a contextual normative on-
tology is an ontology that represents contextual norm information, having the norm 
concept as a central asset. The DynaCROM contextual normative ontology, or simply 
the DynaCROM ontology, is illustrated in Fig. 2. 
 

 
Fig. 2. The DynaCROM ontology 

The DynaCROM ontology defines six related concepts (see Fig. 2), all at the same 
hierarchical level, for representing its environment, organization and role regulatory 
contexts. The Action concept encompasses all instances of regulated actions. The 
Penalty concept encompasses all instances of fines to be applied when norms are not 
fulfilled. The Norm concept encompasses all instances of norms from all regulatory 
contexts. The Environment concept encompasses all instances of regulated environ-
ments; and, each environment encompasses its associated norms and its owner envi-
ronment (the environment it belongs to). The Organization concept encompasses all 
instances of regulated organizations; and, each organization encompasses its associ-
ated norms, main organization (the organization to which it is associated) and envi-



ronment. The Role concept encompasses all instances of regulated roles; and, each 
role encompasses its associated norms and organization. The Norm and Penalty con-
cepts are specialized into sub-concepts according to the permitted, obliged and pro-
hibited statuses of an act from Deontic Logic.  

In order to effectively be used in an open MASs, the DynaCROM ontology should 
be instantiated and it probably should be extended with both particular domain con-
cepts and interaction norms. In the DynaCROM ontology, the interaction regulatory 
context should be implemented by following the representation pattern [26] from a 
Semantic Web Best Practices document. This pattern defines that the relation object 
itself must be represented by a created concept that links the other concepts from the 
relation (i.e. reification of relationship). Thus, in the DynaCROM ontology, an inter-
action norm should be represented by a new Norm sub-concept linking two Role 
concepts. For instance, suppose that a supplier deals with a customer and the interac-
tion between them is regulated by a norm describing the obligation to pay when a 
deal is done. The interaction norm in the DynaCROM ontology is represented by a 
new obligation concept, called for example “ObligationToPay”, linking the supplier 
and customer Role sub-concepts. 

2.3 Composing Contextual Norms 

After manually classifying and organizing user defined norms, according to a top-
down modeling, and explicitly representing these norms into an ontology instance, 
DynaCROM uses rules to automatically compose contextual norms. This process is 
simple and it can be summarized as follows: DynaCROM reads an ontology instance 
for getting data and the information about how concepts are structured; then, it reads 
a rule file for getting the information about how concepts have to be composed ac-
cording to activated rules; and, finally, it infers a new ontology instance based on the 
previous readings. Fig. 3 illustrates an overview of the DynaCROM process. 

 

 
Fig. 3. The DynaCROM process 

DynaCROM rules are ontology-driven rules, i.e. they are created according to the 
ontology structure and they are limited according to the number of related concepts to 
which each concept is linked. DynaCROM has four pre-defined rules for hierarch its 



regulatory contexts (e.g., every role has its norms composed with the norms of its 
organization). These rules, presented in Table 1, receive as input parameters instances 
of the Environment, Organization and Role concepts from a DynaCROM ontology. 

Rule1 (lines 1 – 4) states that a given environment will have its norms composed 
with the norms of its owner environment (the environment it is linked to by the “be-
longsTo” relationship). More precisely, the following process is executed: in (4), the 
owner environment (“?OEnv”) of the given environment (“?Env”) is discovered; in 
(3), the norms of the owner environment (“?OEnvNorms”) are discovered; finally, in 
(2), the norms of the owner environment are composed with the norms of the given 
environment. 

Rule2 (lines 5 – 8) states that a given organization will have its norms composed 
with the norms of its main organization (the organization it is linked to by the “has-
MainOrganization” relationship). More precisely, the following process is executed: 
in (8), the main organization (“?MOrg”) of the given organization (“?Org”) is discov-
ered; in (7), the norms of the main organization (“?MOrgNorms”) are discovered; 
finally, in (6), the norms of the main organization are composed with the norms of the 
given organization. 

Rule3 (lines 9 – 12) states that a given organization will have its norms composed 
with the norms of its environment (the environment it is linked to by the “isIn” rela-
tionship). More precisely, the following process is executed: in (12), the environment 
(“?OrgEnv”) of the given organization (“?Org”) is discovered; in (11), the norms of 
the environment (“?OrgEnvNorms”) are discovered; finally, in (10), the norms of the 
environment are composed with the norms of the given organization. 

Rule4 (lines 13 – 16) states that a given role will have its norms composed with 
the norms of its organization (the organization it is linked to by the “isPlayedIn” 
relationship). More precisely, the following process is executed: in (16), it is discov-
ered the organization (“?Org”) of the given role (“?Role”); in (15), the norms of the 
organization (“?OrgNorms”) are discovered; finally, in (14), the norms of the organi-
zation are composed with the norms of the given role. 

Table 1. Rules for hierarch the DynaCROM regulatory contexts by composing their norms 
   

(1)  Rule1- [ruleForEnvWithOEnvNorms: 
(2)          hasNorm(?Env,?OEnvNorms) 
(3)            <- hasNorm(?OEnv,?OEnvNorms), 
(4)               belongsTo(?Env,?OEnv)] 
   
(5)  Rule2- [ruleForOrgWithMOrgNorms: 
(6)          hasNorm(?Org,?MOrgNorms) 
(7)            <- hasNorm(?MOrg,?MOrgNorms), 
(8)               hasMainOrganization(?Org,?MOrg)] 
  
(9)  Rule3- [ruleForOrgWithEnvNorms: 
(10)         hasNorm(?Org,?OrgEnvNorms) 
(11)            <- hasNorm(?OrgEnv,?OrgEnvNorms), 
(12)               isIn(?Org,?OrgEnv)]  
  

(13) Rule4- [ruleForRoleWithOrgNorms: 
(14)         hasNorm(?Role,?OrgNorms) 
(15)           <- hasNorm(?Org,?OrgNorms), 
(16)              isPlayedIn(?Role,?Org)] 
    



Rules can compose data (e.g., norms) of concepts from the same type (e.g., Rule1) 
or from different types (e.g., Rule3), and they also can compose data of concepts 
directly related (hierarchical form) or indirectly related (non-hierarchical form). Table 
2 presents Rule5, which is an example of rule for composing the norms of concepts 
indirectly related (the Role and Environment concepts from the DynaCROM ontology). 

Table 2. A rule for composing the norms of two concepts indirectly related 
   

(17) Rule5- [ruleForRoleWithOrgEnvNorms: 
(18)         hasNorm(?Role,?OrgEnvNorms) 
(19)           <- hasNorm(?OrgEnv,?OrgEnvNorms),
(20)              isIn(?Org,?OrgEnv), 
(21)              isPlayedIn(?Role,?Org)]   
  

2.4 The DynaCROM Implementation 

In open systems, no centralized control is feasible. Their key characteristics are: agent 
heterogeneity, conflicting individual goals and limited trust [1]. Heterogeneity and 
autonomy rule out any assumption concerning the way agents are implemented and 
behave. Thus, a mechanism not hard coded inside agents’ original codes and whose 
data (e.g., norms) can be dynamically updated is the only viable solution for regula-
tions in open MASs [16]. Regarding this, the DynaCROM execution process (see Fig. 
3) was implemented as a self-contained JAVA [15] solution and encapsulated as a 
JADE [33] behavior. Thus, DynaCROM is a general solution that can be used in 
many application domains without the need of extra implementations. It is only nec-
essary to instantiate the DynaCROM ontology and, probably, to extend it with do-
main concepts. Domain rules can also be joined with DynaCROM rules. 

Table 3 presents the core of the DynaCROM implementation. The process starts 
when the “getOntModel()” method (see line 7) retrieves a DynaCROM ontology 
instance. This ontology instance represents the regulatory contexts (by the ontology 
structure) and user defined norms (by the ontology data) from an application domain. 
The customized compositions of contextual norms are specified by the rules defined 
in the “rulesToComposeNorms.rules” file (called in line 4). The “reasoner” variable 
(see line 5) represents the rule-based inference engine which, based on the retrieved 
ontology instance and active rules, automatically deduces the customized composi-
tions of contextual norms. This result is kept in the “inferredModel” variable (see line 
7), which will be continuously read by DynaCROM for keep informing agents about 
their updated contextual norms. 

Table 3. The core of the DynaCROM implementation 

   
(1) Model m = ModelFactory.createDefaultModel(); 

(2) Resource configuration =  m.createResource(); 

(3) configuration.addProperty ( ReasonerVocabulary.PROPruleSet, 

(4)                                               ontologyDir.concat ("rulesToComposeNorms.rules") );  

 



 

(5) Reasoner reasoner =    

(6)         GenericRuleReasonerFactory.theInstance().create(configuration); 

(7) InfModel inferredModel = ModelFactory.createInfModel(reasoner, this.getOntModel()); 

3 Case Study 

The domain of multinational organizations is used for presenting our case study. This 
domain was chosen because it well illustrates important implicit contextual informa-
tion found in open MASs. Fig. 4 illustrates our world, created as follows: USA is an 
environment that belongs to North America; Cuba is an environment that belongs to 
Central America; Brazil is an environment that belongs to South America. PUCie-Rio 
and Dellie Brazil are organizations located in Brazil; Dellie Cuba is an organization 
located in Cuba; Dellie Brazil and Dellie Cuba are branches of the Dellie headquar-
ters, which is located in USA. All Dellie organizations define the supplier and cus-
tomer roles; PUCie-Rio defines only the customer role. Dellie organizations sell 
computers; PUCie-Rio is a university. 

  

 

Fig. 4. The environments, organizations and roles created for our case study 

3.1. Examples of Environment, Organization, Role and Interaction Norms 

Usually, organizations do not make their norms public because they are of strategic 
importance to their businesses. Because of this, we created the following environ-
ment, organization, role and interaction norms based on the available information 
collected from several corporate Web sites. 



3.1.1. Examples of Environment Norms: 
 

a. In Central America, if the deliver address is outside one of its environments, every 
shipped order is obliged to have its price increased by 15% as taxes. 

b. In Cuba, all negotiations are obliged to be paid in Cuban pesos (CUP), its national 
currency. Negotiations outside Cuba are obliged to have their values converted from 
CUP to the national currency of the country in which the seller is located. 

c. In Brazil, all negotiations are obliged to be paid in Reais (R$), its national cur-
rency. Negotiations outside Brazil are obliged to have their values converted from R$ 
to the national currency of the country in which the seller is located. 

d. In USA, all negotiations are obliged to be paid in American dollars (USD), its 
national currency. Negotiations outside USA are obliged to have their values con-
verted from USD to the national currency of the country in which the seller is located. 

3.1.2. Example of Organization Norms: 
 

a. Dellie organizations are obliged to ask Dellie headquarters the prices of its prod-
ucts for every large order placed (more than 100 items). 

b. Dellie organizations are prohibited to deliver orders during holidays in their final 
destinations. 

3.1.3. Example of Role Norms: 
 

a. In Dellie Brazil, sellers are obliged to ship complete orders on their due dates. 
b. In Dellie Cuba, sellers are prohibited to offer more than 8% as discounts. 

3.1.4. Example of an Interaction Norm: 
 

a. In Dellie Cuba, customers are obliged to make a down payment of 10% for every 
order placed to a seller. 

3.2. Representing Our Created World 

The DynaCROM ontology was extended and instantiated, by using the Protégé Editor 
[31], for representing the world of our case study. As an example, the Environment 
(DynaCROM) concept was extended with the “Continent” and “Country” (domain) 
sub-concepts. Thus, “NorthAmerica”, “CentralAmerica”, and “SouthAmerica” were 
created as instances of the “Continent” concept; and, “USA”, “Cuba” and “Brazil” 
were created as instances of the “Country” concept. 

For explaining how domain contextual norms are represented, we will use the or-
ganization norm 3.1.2.b as motivation. For this norm, precise information about holi-
days is an important data. Environments can have both federal holidays, which are 
applied to all cities from a country, and city holidays, which are only applied for a 
city. Yet, these holidays can be in the same dates, as Christmas Day (December, 25) 
and New Year’s Day (January, 01), or in different dates, as Independence Day (e.g., 



September, 07 in Brazil and July, 04 in USA) and Labor Day (e.g., May, 05 in Brazil 
and in the first Monday of September in USA). For representing the information 
about holidays, the “Holiday” concept with its “FederalHoliday” and “CityHoliday” 
sub-concepts were created in a DynaCROM domain ontology. Then, these concepts 
were instantiated for supporting the organization norm 3.1.2.b. For instance, Fig. 5 
illustrates the city and federal holidays created for a city called “RioDeJaneiro” lo-
cated in “Brazil”.  

 

 
Fig. 5. Part of a DynaCROM domain ontology, extended and instantiated 

As previously mentioned, domain rules can be freely created and joined with Dy-
naCROM rules. Table 4 illustrates a domain rule (Rule6), which states that a given 
city will have its holidays composed with the holidays of its country. More precisely, 
the following process is executed: in (25), the country (?Country) of the given city 
(?City) is discovered; in (24), the holidays of the country (?FederalHolidays) are 
discovered; finally, in (23), the holidays from the country are composed with the 
holidays of the given city. For instance, regarding the organization norm 3.1.2.b and 
that PUCie-Rio is an organization in a city called “RioDeJaneiro” (located in “Bra-
zil”), Rule6 provides the information that Dellie suppliers are prohibited to deliver 
PUCie-Rio orders during the following holidays: "CariocaCityBirthday", "Christ-
masDay", "CorpusChristi", "NewYearsDay", "BrazilianIndependenceDay" and "Bra-
zilianLaborDay" (see these instances in Fig. 5). 



Table 4. A rule for composing city and federal holidays 
   

(22) Rule6- [ruleForCityWithFederalHolidays: 
(23)         hasHoliday(?City,?FederalHolidays) 
(24)           <- hasHoliday(?Country,?FederalHolidays), 
(25)              belongsTo(?City,?Country)] 
  

3.3. Implementation 

Our case study was implemented in JAVA, using JADE and the JENA API [19]. 
JADE containers were used for representing the abstractions of environments and 
organizations. Agents were implemented extending the JADE Agent class with both 
an attribute for agents’ locations and two specific behaviors. One behavior is called 
Migratory and it makes agents move randomly from one location to another. The 
other behavior is called Normative and it continuously informs agents about their 
current contextual norms, representing the DynaCROM core. Once an agent migrates, 
its location attribute is updated and, consequently, the answers from its Normative 
behavior change for informing its new contextual norms. Moreover, because Dy-
naCROM is implemented as an active JADE behavior, it always executes the process 
illustrated in Fig. 3. Thus, if any norm is updated in a DynaCROM ontology instance 
or if any new composition of contextual norms is done in a DynaCROM rule file, 
agents concerned with these changes will automatically receive different answers. 

Fig. 6 illustrates the JADE containers created for representing the USA, Cuba and 
Brazil environments and for representing the Dellie, Dellie Cuba and Dellie Brazil 
organizations. These containers offer possible locations for mobile agents to go. For 
instance, an agent called “*****MobileAgent”, which has the Migratory and Norma-
tive behaviors, is in Cuba. There, DynaCROM informs the agent about environment 
norms 3.1.1.a and 3.1.1.b. If the agent migrates to Dellie Brazil, then, DynaCROM 
informs the agent about environment norms 3.1.1.c and 3.1.1.d, organization norms 
3.1.2.a and 3.1.2.b, and role norm 3.1.3.a. All informed norms are in compliance with 
the norms of our case study, DynaCROM hierarchical form and agent contexts. 

 

 
Fig. 6. JADE containers for representing our environments and organizations 



4 Using Contextual Norm Information 

In the current version of DynaCROM, norms are not enforced. DynaCROM keeps 
informing them to agents, who are free to decide if they will or not use the informa-
tion. However, DynaCROM can have its output (agents’ updated contextual norms) 
used as a precise input for norm enforcement solutions and, in turn, it can make use 
of the outputs from these solutions (e.g., information about agents’ violated norms). 

4.1. Using DynaCROM Output as an Input for a Norm Enforcement Solution 

We are currently studying both how DynaCROM output can be used as a precise 
input for a norm enforcement framework and what DynaCROM can have back from 
this framework. The chosen framework is called SCAAR (meaning Self-Controlled 
Autonomous Agents geneRator) [6] and it enhances agents with a self-monitoring 
capability for avoiding norm violation. Because the current version of SCAAR is 
implemented in SICStus Prolog [29], we still could not use it as a fully norm en-
forcement mechanism for DynaCROM (implemented in JAVA). However, we are 
already being able to use SCAAR for informing DynaCROM about norm violations.  

Fig. 7 illustrates how DynaCROM and SCAAR are working together. DynaCROM 
is responsible for continuously informing SCAAR about the norms of agents, accord-
ing to their current contexts. SCAAR uses this information as a precise updated input 
instead of using general and pre-defined (outdated) information. SCAAR keeps veri-
fying norm compliance and, if a norm is violated, SCAAR informs it to DynaCROM. 

 

 
Fig. 7. DynaCROM and SCAAR working together 



4.2. Using a Norm Enforcement Solution for Detecting Norm Violation 

For exemplifying how DynaCROM and SCAAR can represent a powerful comple-
mentary solution while detecting norm violation in open MASs, a simple (not com-
pleted) scenario is proposed. The scenario is created according to the world and 
norms from Section 3 and it can be summarized by the following steps:  

a. A Dellie Brazil supplier receives a large order (1500 computers) from PUCie-Rio. 

b. Dellie Brazil does not have all the CPUs necessary to build the computers ordered. 
So, 500 more CPUs will need to be bought. 

c. The Dellie Brazil supplier decides to buy the missing 500 CPUs from Dellie Cuba.  

d. The Dellie Brazil supplier asks Dellie the price of each CPU.  

e. Dellie answers to the Dellie Brazil supplier the price of US$100 for each CPU.  

f. The Dellie Brazil supplier multiplies the value (in US$) of each CPU by 500 and 
converts the value to CUP (Cuban Pesos), the Cuban national currency. The final 
price for the order is: US$100 * 500 = US$5000 * CUP1 = CUP5000.  

g. The Dellie Brazil supplier (being a Dellie Cuba customer) sends the order to a Dellie 
Cuba supplier with the value of CUP500 as a down payment for the placed order.  

h. The Dellie Cuba supplier informs the Dellie Brazil supplier that the value for the 
down payment is wrong because it is necessary to increase the final price by 15% 
as taxes. The correct value for the down payment is: (CUP5000 +15%) *0.1 = 
(CUP5750) *0.1 = CUP575. 

 
After step 4.2.c from the scenario above, all the following steps have contextual 

norms associated to them. These norms are re-written by DynaCROM according to 
both SCAAR syntax and current agent contexts and send, in a sequence order one by 
one, from DynaCROM to SCAAR as different inputs (see Fig. 7).  

Table 5 presents the SCAAR contextual norms written for the proposed scenario. 
SCAARNorm1 (lines 1 – 4) represents the DynaCROM organization norm 3.1.2.a for 
regulating step 4.2.d. SCAARNorm2 (lines 5 – 9) represents the DynaCROM environ-
ment norm 3.1.1.d for regulating step 4.2.e. SCAARNorm3 (lines 10 – 13) represents 
the DynaCROM environment norm 3.1.1.b for regulating step 4.2.f. SCAARNorm4 
(lines 14 – 18) represents the DynaCROM interaction norm 3.1.4.a for regulating step 
4.2.g. SCAARNorm5 (lines 19 – 24) represents the DynaCROM environment norm 
3.1.1.a for regulating step 4.2.h. 

Table 5. SCAAR contextual norms  
   

(1)  SCAARNorm1-  
(2)  [(agt: aDellieSupplier) 
(3)    OBLIGED (agt do askPrice with receiver = Dellie) 
(4)    BEFORE  (agt do informPrice with quantity > 100)] 
 
(5)  SCAARNorm2-  
(6)  [(agt: aSupplier) 
 



 

(7)    FORBIDDEN (agt do informPrice with 
(8)                  currency # usDollars) 
(9)    IF (agt be location with country = USA)] 
 
(10)  SCAARNorm3-  
(11) [(agt: aSupplier) 
(12)   FORBIDDEN (agt do informPrice with currency # CUP) 
(13)   IF (agt be location with country = Cuba)] 
 
(14) SCAARNorm4-  
(15) [(agt: aDellieCubaCustomer) 
(16)   OBLIGED (agt do giveDownPayment with percent = 10) 
(17)   BEFORE  (agt do sendOrder with  
(18)             shipperOrganization = DellieCuba)] 
 
(19) SCAARNorm5-  
(20) [(agt: aDellieCubaCustomer) 
(21)   OBLIGED (agt do addTaxes with percent = 15) 
(22)   BEFORE  (agt do sendOrder with shipperCountry # C) 
(23)   IF (agt be location with 
(24)        situated = Central America and country = C)] 
 

 
SCAAR makes use of DynaCROM inputs (contextual norms) for regulating agent 

actions. These actions (e.g., “askPrice”, “informPrice”, “giveDownPayment”, “sen-
dOrder”, “addTaxes” from Table 5) are known a priori by SCAAR. Then, SCAAR 
adds in agent codes both control hooks and an enforcement core. These additions are 
completely transparent to agents. While an agent is executing, its control hooks 
(automatically) keep informing the enforcement core about the execution of regulated 
actions. Table 6 presents this algorithm. Then, the enforcement core (automatically) 
keeps verifying if each action is executing according to its norms. If not, it stops the 
execution of the action and informs the violation to DynaCROM. Verification of 
norm compliance is done by using Petri nets [25] for representing norms and by fol-
lowing the algorithm presented in Table 7. 

Table 6. The SCAAR algorithm for norm enforcement 
   

(1)  Let I be information about the agent behaviour. 
(2)  Let {t1,...,tn} be the set of transitions associated with I. 
(3)  Let {P1,...,Pm} be the set of Petri nets associated with the agent. 
(4)  Let {Pact1,...,Pactp} be the set of activated Petri nets (i.e. associated with the    
            norms to be manage) 
(5)  Let tij be the transition i of the net j. 
(6)  for all Pk in {P1,...,Pm} with t1k in {t1,...,tn}} 
(7)       Pact(p+1)<- create an instance of Pk 
(8)       add Pact(p+1) in {Pact1,...,Pactp} 
(9)  end for 
(10) Let {Pact1,...,Pactl} be the set of the activated Petri nets including a tij in 
           {t1,...,tn}, j in {1,...,l} 
(11) for all Pactj in {Pact1,...,Pactl} 
(12)      inform Pactj of the information associated with tij 
(13) end for 
 



Table 7. The SCAAR algorithm for verifying norm compliance 
   

(1) Let {t1,..,tn} be the set of transitions of the Petri net. 
(2) Let I be the sent information. 
(3) Let tI be the transition associated with the information I in {t1,...,tn} 
(4) A transition ti is activated if a token stands in all the previous places of ti (in  
          SCAAR Petri net, arcs are one-valuated). 
(5) if tI is activated then 
(6)      if tI is fireable then 
(7)                 fire the transition tI 
(8) else throw exception 
 

 
Returning to our example, SCAAR detects the norm violation that occurred in step 

4.2.h by using the algorithms presented in Table 6 and Table 7 as follows: the control 
hook for the action “sendOrder” of the Dellie Cuba supplier sends to the agent en-
forcement core that the action is being performed. Thus, the agent enforcement core 
creates instances of Petri nets for representing the norms of the action (SCAARNorm3, 
SCAARNorm4 and SCAARNorm5 from Table 5). For instance, P1 (see below) is the 
Petri net created for representing the norm SCAARNorm5. 

 

P1: <P, T, Pre, Post>: ((p1,p2,p3,p4), (tlocation, tsendOrder, taddTaxes),  (Pre(p1, tlocation), Pre(p2, 
taddTaxes), Pre*(p2, tsendOrder)), (Post(p2, tlocation), Post(p3, taddTaxes), Post(p4, tsendOrder))) 

 
*: it means an inhibitor arc between the transition and the previous place. A transition 

with an inhibitor arc can be fire when the previous place is empty. 
 

The enforcement core of the Dellie Cuba supplier keeps waiting the information 
about Ilocation, IaddTaxes and IsendOder  from the associated control hooks of the agent. 
When the agent arrives in Cuba, the enforcement core receives the information about 
Ilocation. Thus, the Petri net P1 is activated and the transition is fired by putting the 
Petri net token in the next place (p2). When the Dellie Brazil supplier tries to perform 
the action “sendOrder”, its enforcement core blocks the execution of the action, be-
cause the transition taddTaxes was not yet executed (the Petri net token didn’t pass 
through p2 before being in p3), and throws an exception.  

5 Related Work 

García-Camino et al. [14] propose a distributed architecture to endow MASs with a 
social layer, in which normative positions are explicitly represented and managed via 
rules. Every external agent from the architecture has a dedicated governor agent 
connected to it, enforcing the norms of executed events. DynaCROM also uses rules 
to manage normative agent positions, however, its focus is on executed actions in-
stead of executed events. Norm enforcement in DynaCROM can be done with few 
dedicated governor agents responsible for monitoring only executed actions. For 
instance, an open MASs from the traffic domain enhanced with DynaCROM can 
have only dedicated governor agents (e.g., playing the police officer role) for moni-



toring the speed of the cars that pass through regulated crossroads. Thus, it is not 
necessary to duplicate the number of agents for having the norm enforcement. More-
over, DynaCROM provides a more precise mechanism for norm representation while 
using contexts. 

Vázquez-Salceda et al. [34] propose the OMNI framework (Organizational Model 
for Normative Institutions) for modeling agent organizations. Comparing Dy-
naCROM with OMNI, both define a meta-ontology with a taxonomy for norm repre-
sentation. One difference between the works is that, in OMNI, enforcement is carried 
out by any internal agent from an MAS; in DynaCROM, enforcement is carried out 
only by specific trusted agents or by the own regulated agents. A second difference 
between the works, and the most important, is that, in OMNI, the idea of different 
levels of abstractions for norms is not explicit, especially for the environment and 
role levels. On the other hand, DynaCROM is entirely based on different levels of 
abstractions for norms (its regulatory contexts) for simplifying the tasks of norm 
management and evolution. For instance, the social structure of an organization in 
OMNI describes, at the same level of abstraction, norms for roles and groups of roles. 
Group of roles is used to specify norms that hold for all roles in the group. Dy-
naCROM uses the organization regulatory context to specify organization norms, 
which hold for all roles from an organization, and it uses the role regulatory context 
to specify role norms, both regulatory contexts from different levels of abstractions. 

6 Conclusion 

In this paper, we detail DynaCROM – our ongoing work for providing contextual 
norm information in open MASs. For agents, DynaCROM keeps informing updated 
norm information according to their contexts. Norm-aware agents can use the pro-
vided norm information for performing correctly and, thus, for achieving their goals 
faster. For developers, DynaCROM decreases the complexity of norm management in 
two different cases. The first case is when norms need to be added, updated or de-
leted. For this case, simply updating the ontology instance concludes the evolution. 
The second case is when new compositions of contextual norms are desired. For this 
case, simply activating or deactivating existing rules or creating new ones concludes 
the evolution. The dynamics for manually customizing several compositions of con-
textual norms is given by different activations and deactivations of rules, which can 
be modified at system run-time. 

DynaCROM has being used in three different application domains. For the domain 
of ubiquitous computing [18, 30], DynaCROM has being used in the implementation 
of context-aware pervasive mobile applications [35]. Instead of using JADE contain-
ers for simulating environments and organizations, we are using MoCA (Mobile 
Collaboration Architecture) [27] for delivering updated real location information of 
mobile devices. MoCA infers mobile devices’ locations based on the intensity of their 
signals to 802.11 network access points. DynaCROM uses MoCA answers (device 
locations) to continuously apply contextual norms in the agents from the mobile de-
vices. For the domain of next-generation wireless communications [2], DynaCROM 
has being used for automatically change prices and other parameter values (based on 



pre-defined rules) according to overloads in regulated networks. The idea is to keep 
balancing the use of network bandwidths by distributing clients in particular net-
works. Clients will be guided to always use a not overloaded network by following 
pricing discounts. Thus, clients can be better distributed in regulated networks by 
only changing domain rules and data. For the domain of Brazilian navy [4], Dy-
naCROM has been used for dynamically determining better routes for ships based on 
climate and other pre-defined conditions. 

The current version of DynaCROM has three main points that need improvement. 
The first improvement is that DynaCROM should deal with conflicts; the second 
improvement is that DynaCROM should detect norm violations; and, the third im-
provement is that DynaCROM should enforce norms for avoiding their violation. 
DynaCROM is not currently addressing the issue (general and difficult) of conflicts, 
but its modularization of norms helps to make this information more manageable. For 
the second and third improvements, the SCAAR solution for norm enforcement is 
being studied. We chose SCAAR instead of LGI (a well-known solution for norm 
enforcement) [23-24], mainly because SCAAR permits the enforcement of norms that 
are not related only to agent interactions. Thus, SCAAR will make it possible to en-
force DynaCROM environment, organization and role norms independent of the 
enforcement of interaction norms. For future work, we are planning to implement 
SCAAR in JAVA in order to fully integrate it with DynaCROM. We believe that 
DynaCROM and SCAAR can represent together a unique and powerful contextual 
norm enforcement solution for open MASs. 

Acknowledgments 
This work was partially funded by the ESSMA (CNPq 552068/2002-0) and EMACA 
(CAPES/COFECUB 482/05 PP 016/04) projects, and by CNPq individual grants. 

References 

1. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies. In 
Procs. of the AAMAS-2002. Part III. (2002) 1053–1061 

2. Berezdivin, R., Breinig, R., Topp, R.: Next-generation wireless communications concepts 
and technologies. In the IEEE Communications Magazine 40. (2002) 108–16 

3. Bouquet, P., Giunchiglia, F., Harmelen, F.v., Serafini, L., Stuckenschmidt, H.: C-OWL: 
Contextualizing Ontologies. In Procs. of the ISWC. LNCS 2870, Springer. (2003) 164–179 

4. Brazilian navy. In <https://www.mar.mil.br/>. (2006) 
5. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative Normative Agents: 

Principles and Architecture. In Procs. of the ATAL-99. (1999) 
6. Chopinaud, C., Seghrouchini, A.E.F., Taillibert, P.: Prevention of harmful behaviors within 

cognitive and autonomous agents. In Procs. of the ECAI'06. (2006) 205–209.  
7. Dey, A.: Understanding and using context. In Personal and Ubiquitous Computing. 5(1). 

(2001) 4–7. ISSN: 1617-4909 
8. Felicíssimo, C.H.: Dynamic Contextual Regulations in Open Multi-agent Systems. In 

Procs. of the ISWC. LNCS 4273, Springer. (2006) 974–975. ISSN: 0302-9743 
9. Felicíssimo, C.H., de Lucena, C.J.P., Briot, J.-P., Choren, R.: Regulating Open Multi-

Agent Systems with DynaCROM. In Procs. of the SEAS. (2006) 



10. Felicíssimo, C.H., de Lucena, C.J.P., Briot, J.-P., Choren, R.: An Approach for Contextual 
Regulations in Open MAS. In Procs. of the AOIS. (2006) 

11. Felicíssimo, C.H., de Lucena, C., Carvalho, G., Paes, R.: Normative Ontologies to Define 
Regulations over Roles in Open Multi-Agent Systems. In Procs. of the AAAI Fall Sympo-
sium TR FS-05-08. (2005). ISBN 978-1-57735-254-9 

12. Ferber, J., Gutknecht, O., Michael, F.: From Agents to Organizations: an Organization 
View of Multi-Agent Systems. In Procs. of the AOSE. (2003) 

13. Garcia-Camino, A., Noriega, P., Rodríguez-Aguillar, J.A.: Implementing Norms in Elec-
tronic Institutions. In Procs. of the AAMAS. (2005). 2:667–673  

14. García-Camino, A., Rodrígurez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Distributed 
Architecture for Norm-Aware Agent Societies. In Procs. of the DALT’05. (2005) 

15. Gosling, J., Joy, B., Junior, G.L.S., Bracha, G.: The Java Language Specification. In: 
<http://java.sun.com/>. (2006). ISBN 0-201-31008-2 

16. Grizard, A., Vercouter, L., Stratulat, T., Muller, G.: A peer-to-peer normative system to 
achieve social order. In Procs. of the COIN@AAMAS. (2006) 

17. Gruber, T. R.: A translation approach to portable ontology specifications. In Knowledge 
Acquisition, 5 (2). (1993). 199–220. ISSN: 1042-8143 

18. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications: 
models and approach. Pervasive and Mobile Computing, In Press, Elsevier (2005) 

19. Jena. In: <http://jena.sourceforge.net/>. (2006) 
20. Jennings, N. R.: On Agent-Based Software Engineering. In AI 117(2). (2000) 277–296 
21. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Develop-

ment. In the Journal of Agents and Multi-Agent Systems. (1998) 1:7-38 
22. Khedr, M, Karmouch, A.: ACAI: Agent-Based Context-aware Infrastructure for Spontane-

ous Applications. In Journal of Network & Computer Applications 28(1). (1995) 19–44 
23. Minsky, N.H.: The imposition of protocols over open distributed systems. In IEEE Trans-

actions on Software Engineering. (1991) 
24. Minsky, N.H.: LGI. In: <http://www.moses.rutgers.edu/>. (2006) 
25. Murata, T.: Petri nets: Properties, analysis and applications. In IEEE 77(4). (1989) 541–580  
26. Noy, N; Rector, A. (Eds.). Defining N-ary Relations on the Semantic Web: Use with Indi-

viduals. In: <http://www.w3.org/TR/swbp-n-aryRelations/>. (2006) 
27. Rubinsztejn, H. K., Endler, M., Sacramento, V., Gonçalves, K., Nascimento, F. N.: Support 

for context-aware collaboration. In Procs. of the MATA 5(10). (2004). 34–47 
28. Silva, V.T.da.: From a conceptual framework for agents and objects to a multi-agent sys-

tem modeling language. Ph.D. Thesis. Port. 252 p. PUC-Rio. (2004) 
29. SICStus Prolog. In: <http://www.sics.se/isl/sicstuswww/site/>. (2006) 
30. Soldatos, J., Pandis, I., Stamatis, K., Polymenakos, L., Crowley, J.L.: Agent based mid-

dleware infrastructure for autonomous context-aware ubiquitous computing services. In the 
Journal of Computer Communications. (2006) 

31. Stanford University School of Medicine: Protégé. In: <http://protege.stanford.edu/>. (2006) 
32. Thomas, G., Williams, A.B.: Roles in the Context of Multiagent Task Relationships. In 

Procs. of the AAAI Fall Symposium TR FS-05-08. (2005) ISBN 978-1-57735-254-9 
33. Tilab Co. JADE - Java Agent DEvelopment Framework. In: <http://jade.tilab.com> (2006) 
34. Vázquez-Salceda, J.; Dignum, V.; Dignum, F.: Organizing Multiagent Systems. In the 

Journal of Autonomous Agents and Multi-Agent Systems 11 (3). (2005) 307–360 
35. Viterbo, J., Felicissimo, C., Briot, J.-P., Endler, M., Lucena, C.: Applying Regulation to 

Ubiquitous Computing Environments. In Procs. of the SEAS. (2006) 
36. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for Multi-

agent Systems State-of-the-Art and Research Challenges. In Procs. of the E4MAS. (2004). 
LNCS 3374, Springer. (2005). 1–47. ISBN 3-540-24575-8 

37. Wright, G.H.v.: Deontic Logic. In Mind, New Series, Vol. 60, No. 237. (1951). 1–15 
 


