
Applying the Governance Framework Technique
to Promote Maintainability in Open

Multi-Agent Systems

Gustavo Carvalho1, Carlos J.P. de Lucena1, Rodrigo Paes1,
Ricardo Choren2, and Jean-Pierre Briot3

1 PUC-Rio - Marqus de So Vicente 225,
4 Andar RDC - Gvea RJ, Brazil

{guga,lucena,rbp}@inf.puc-rio.br
2 SE/8 - IME

Pa Gen Tibrcio 80 - Praia Vermelha,
RJ, Brazil

choren@de9.ime.eb.br
3 LIP6, Université Pierre et Marie Curie (Paris 6)

8 rue du Capitaine Scott, 75015 Paris, France
Jean-Pierre.Briot@lip6.fr

Abstract. Governance means that specifications are enforced dynam-
ically at application runtime. Governance framework is a technique to
design and implement an extensible interaction specification for a family
of open systems. This specification can be refined for particular appli-
cations. We based this proposal on object-oriented framework concepts
and adapted them for distributed agents and interactions. A governance
framework structures the extensions of open system instances as vari-
ations in interactions among agents, defined as templates. Templates
are used to gather core implementation and extension points. Extension
points are ”hooks” that will be customized to implement an instance of
the governance framework. During framework instantiation, templates
are refined to concrete interaction specification. As a proof of concept
experiment, in this paper we propose a framework for instantiating sup-
ply chain management applications as open systems.

Keywords: Interaction protocol, Reuse, Law-enforcement.

1 Introduction

Nowadays, software permeates every aspect of our society, and it is increasingly
becoming a distributed and open asset. Distribution means that it is possible
to integrate different software solutions from different sources or machines and
they work cooperatively to achieve system requirements. Openness is crucial for
software. Open systems are software systems in which autonomous distributed
components interact and may enter and leave the environment at their will
[10]. Auction systems and virtual enterprises are examples of such open and

L. Padgham and F. Zambonelli (Eds.): AOSE 2006, LNCS 4405, pp. 64–83, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Applying the Governance Framework Technique to Promote Maintainability 65

distributed applications [19]. Software agent technology is considered a promising
approach for the development of open system applications [19].

The specification of open multi-agent systems (open MAS) includes the defi-
nition of agent roles and any other restrictions that the environment imposes on
an agent to enter and participate in conversations. Agents will only be permitted
to interact if they conform to the specification of the open MAS. Since open sys-
tem components are often autonomous, sometimes they behave unpredictably
and unforeseen situations arise. Taming this uncertainty is a key issue for open
software development. The establishment of laws over interaction specification
and their enforcement over software agents create a boundary of tolerated au-
tonomous behavior and can be used to foster the development of reliable systems.

In open software systems, rules that enforce the relationships between agents
are not always fully understood early in the development life cycle. Still, many
more rules are not applied because of the lack of system support for changing
specifications or the complexity of the specifications. Inspired by object-oriented
frameworks [9], governance frameworks are proposed to deal with this complex-
ity, reifying proven software designs and implementations in order to reduce the
cost and improve the quality of software.

Since software systems need to be customized according to different purposes
and peculiarities, it should be possible to express evolution as variations related
to interactions of open systems and to components that inhabit the environment.
Following this hypothesis, we propose to design open systems using extension
points [5] to annotate interaction specification and using laws to customize the
agents’ expected behavior. We argue that some specification elements can be
reused and that some predefined ”hooks” can be refined to develop a set of open
MAS applications in a specific domain.

We are proposing governance frameworks based on some object-oriented frame-
work concepts [9]. This approach provides the necessary modelling capabilities for
constructing reusable implementations of open systems. Governance frameworks
may demonstrate in practice the ability to apply enforcement (or, when needed,
to relax enforcement) for both complex and changing specifications. Besides cus-
tomizations, the compliance of the system to the specification must continue to be
analyzed by a mechanism that governs the laws of interactions in open MAS. We
use the XMLaw description language [16] to map the specification of interaction
rules into a governance mechanism. The purpose of governance frameworks is to
provide an approach to support the development of governance mechanisms.

A proof of concept prototype has been developed based on the specification of
the Trading Agent Competition - Supply Chain Management (TAC SCM) [2, 8,
18]. In this example, we discuss how the changes to the laws of open MAS appli-
cations can be represented as templates that structurally ”hook” the extension
points into the interaction protocol. The goal of this study is to approach the
TAC SCM structure by considering it an open system and, through the analy-
sis of its specifications, we aim to learn about how to extend the interaction
specification and compliance verification in open system applications. The main
purpose of the current investigation is not to contribute to TAC SCM evolution

66 G. Carvalho et al.

as a realistic open system for B2B trading, but rather to show that it is possible
to specify and develop open software systems using extension points.

The contributions of this paper are threefold. First, we jointly apply variations
and laws to specify, implement and maintain extension points in open systems.
Second, we support the implementation of these variations using a law-governed
mechanism. Third, we specified and implemented a governance framework for
supply chain management applications based on TAC-SCM’s specifications.

The organization of this paper is as follows. Section 2 briefly describes the
law-governed mechanism. In Section 3, we discuss the governance framework
approach as a means to design open system for extensions. Section 4 maps the
variations identified in TAC-SCM’s editions into a governance framework for
supply chain management. Section 5 partly describes two instances of the TAC
SCM using our approach. Related work is described in Section 6. Finally, we
describe our conclusions in Section 7.

2 Governing Interactions in Open Systems

Software agents in open MAS are heterogeneous, i.e., the development is done
without a centralized control, possibly by different parties, with different pur-
poses and preferences. The only restriction an open MAS imposes is that the
agents communicate through a common language. In this work we assume that
every agent developer may have an a priori access to the open system speci-
fication, including protocol descriptions and interaction laws and that agents
communicate using ACL.

Law-governed architectures are designed to guarantee that the specifications
will be obeyed. We developed an infrastructure that includes a modification

Fig. 1. Conceptual Model of XMLaw

Applying the Governance Framework Technique to Promote Maintainability 67

of a basic communication infrastructure [4] that is provided to agent develop-
ers. This architecture intercepts messages and interprets the laws previously
described. Whenever necessary, a software support [17] permits extending this
basic infrastructure to fulfill open system requirements or interoperability con-
cerns regarding law monitoring. In this paper, we use the description language
XMLaw [16] to represent the interaction rules of an open system specification.
XMLaw (Fig.1) specifies interaction protocols using time restrictions, norms, or
even time sensitive norms.

Those elements are represented in an XML structure like (Listing 1.1). The
composition and interrelationship among elements is done by events. One law ele-
ment can generate events to signal something to other elements. Other elements
can sense events for many purposes - for instance, activating or deactivating
themselves.

<Laws>
<LawOrganization id =” . . . ” name=”...”>

<Scene id =” . . . ” time−to− l i v e =”...”>
<Creators > . . .</ Creators>
<Entrance>

<Par t i c i pan t r o l e =” . . . ” l im i t =”...”/ >
</Entrance>
<Messages > . . .</Messages>
<Protocol>

<States> . . . </State s>
<Trans i t ions > . . .</ Trans i t ions >

</Protocol>
<Norms > . . . </Norms>
<Clocks > . . .</Clocks>
<Actions > . . .</Actions>

</Scene>
</LawOrganization>

</Laws>

Listing 1.1. XMLaw structure

2.1 Refinement Operators to Specify Laws in Open Multi-Agent
Systems

To design the interaction laws of open MAS to facilitate extensions to deal with
changing requirements, it is necessary to have an instrument to specify which law
elements can be customized and so described as extension points. The extension
points are a means of representing knowledge about the place where modifications
and enhancements in laws can be made. In our context, it is useful to permit the
inclusion of norms, constraints and actions into a pre-defined law specification.

XMLaw [16] has two elements that can be easily plugged into the specification
of interaction laws: actions and constraints. Actions are used to plug services into
open systems. Services are domain specific functionalities that can be triggered
while the mediator monitors agents’ interactions. The first attempt to define
extension points was deferring the definition of the class implementation [5]. We
enhanced this notion with the proposal of refinements operators in XMLaw [6].
Below, we explain how the interaction specification with extension points can be

68 G. Carvalho et al.

prepared to further refinements. The examples below detail laws applied on sales
that are customized according to the period of the year (e.g. discounts are given
in summer and winter). The action giveDiscount (Listing 1.2) will calculate and
apply the discount and the constraint badClient (Listing 1.3) restricts discounts
to this kind of client.

<Actions>
<Action id=”giveDiscount”>

<Element r e f=”payment”
event−type=”t r a n s i t i o n a c t i v a t i o n ”/>

</Action>
</Actions>

Listing 1.2. Action hook

<Constra ints>
<Constra int id=”badClient”/>

</Constra ints>

Listing 1.3. Constraint hook

The abstract attribute defines when a law element is not completely imple-
mented. If no value for the abstract attribute is determined, the element is a
concrete one (default abstract = ”false”). If the law designer wants to specify
that a law element needs some refinements to be used he has to explicitly specify
the attribute abstract with the value true (abstract = ”true”). If a law is de-
fined as concrete, it cannot leave any element to be further refined; all elements
must be fully implemented, otherwise, the interpreter will indicate an error. An
abstract operator can define law elements with some gaps to be filled further
(Listing 1.4). This is the extension point idea, defining clearly the context where
the extensions are expected. Until now, we can defer the definition of the imple-
mentation of actions and constraints classes or the inclusion of any law element.
Below, we structure the usage of the badClient constraint and giveDiscount ac-
tion inside the permission Sale. If this permission active during the enforcement
process, this discount action and verification constraint can be triggered.

<Permiss ion id=”Sale ” ab s t r ac t=”true”>
<Owner> . . .</Owner>
<Act ivat ions> . . . </Act ivat ions>
<Deact ivat ions> . . . </Deact ivat ions>
<Constra ints>

<Constra int id=”badClient”/>
</Constra ints>

<Actions>
<Action id=”ad” c l a s s =”. . .” > . . . </ Action>

<Action id=”giveDiscount ”>...</Action>
</Actions>

</Permission>

Listing 1.4. Abstract operator

Applying the Governance Framework Technique to Promote Maintainability 69

The completes attribute is an operator that is useful to fill the elements that
were left unspecified when a law element was defined as abstract (Listing 1.5). It
is a simple operator to realize extensions as it can just be used to define action
and constraints class implementations. The completes operator turns an abstract
element into a complete one and cannot leave any element unspecified unless it
also redefines this element as an abstract one. The completes operator is limited
to the definition of class implementations.

<Permiss ion id=”SummerSale” completes=”Sale”>
<Constra int id=”badClient ” c l a s s=”BadCustomers”/>
<Action id=”giveDiscount” c l a s s=”Percentage10”/>

</Permission>

Listing 1.5. Completes operator

The extends attribute is a more powerful operator and it is similar to the
specialization operation in object-oriented languages. Basically, an extends op-
erator reuses the description of law elements and includes any modifications that
are necessary to customize the law element to users’ needs, including the rede-
finition of law elements. For example, this operator can include new activation
references, new action elements, and new norm elements and can also superpose
any element that was previously specified. The extends operator also turns an
abstract element into a complete one and cannot leave any element unspecified
unless it redefines this element as an abstract one (Listing 1.6).

<Permiss ion id=”WinterSale” extends=”Sale”>
<Constra ints>

<Constra int id=”badClient ” c l a s s=”BadPayers”/>
</Constra ints>
<Actions>

<Action id=”giveDiscount” c l a s s=”Percentage15”/>

<Action id=”giveSuperDiscount”
c l a s s=”Chr i st imasDiscount”>

<Element r e f=”ch r i s t imas ”
event−type=”c l o c k a c t i v a t i o n ”/>

</Action>
</Actions>

</Permission>

Listing 1.6. Extends operator

3 Improving Governance Mechanism Maintainability

Suppose that it is possible to specify and implement the kernel of a general solu-
tion and this kernel can be customized to different purposes. In this kernel, you
have the exact points that can be modified and enhanced. In our context, this ap-
proach can be used to derive a family of governance mechanisms that share a core

70 G. Carvalho et al.

specification and implementation. The customization is used for two purposes.
First, different governance mechanisms can be derived for different purposes and
application scenarios. Second, different versions of the same governance mecha-
nism can be instantiated during its lifecycle. To realize this scenario, we propose
to use some object-oriented framework concepts. An object-oriented framework
is a reusable; semi-complete application that can be specialized to produce cus-
tom applications [9], i.e., it is a collection of abstract entities that encapsulate
common algorithms of a family of applications [3].

In this work, we focus on understanding how interaction specification en-
hanced by laws can be designed to support extensions. A governance framework
is an extensible design for building governance mechanisms for open MAS. A
solution for open system development is achieved by relaxing the boundary be-
tween a framework (the common part of the family of applications) and its in-
stantiations (the application-specific part). In a governance framework, certain
laws of the open system are abstract, because they are left either unspecified or
incompletely specified because they would expose details that would vary among
particular executable implementations.

A governance framework is flexible by design. Flexibility works in opposition
to the concept of static interaction specification or enforcement. In design time,
customizability ensures the framework may receive new law elements or adapt
the existing ones. For this purpose, a governance framework provides ”hooks”
for its instances; we define abstract definitions for interactions as templates.
Governance functionalities that have specificities according to their applications
are fully implemented later, but all common definitions and implementations
are present in general specifications. The realization of abstract interactions is
deferred to instantiation time.

In MAS, the collaboration structure defines the agent roles and their relation-
ships. Roles are useful to specify general descriptions for agents’ responsibilities
in an organization [20] and they are bound to real software agents in open sys-
tem execution. While playing roles, agents acquire the obligation to obey the law
that is specified for their responsibilities and it is possible to enforce the laws
prescribed in the protocol. Our main purpose is not to discuss how to structure
the component reuse as agent roles [12, 20], which will be realized by external
software agents. We intend to use an agent role at the design level as a means
to describe agents’ responsibilities.

Our main concern is over how agents interact in the open MAS. The inter-
action elements comprehend the specification of dynamical concerns of an open
system. The interaction specification is composed of interaction laws and in-
teraction protocols. Interaction protocols define the context and the sequence
of messages of a conversation between agent roles. The fixed part of interac-
tion specifications is called general interaction. General interactions (Fig. 2) can
be derived by analyzing the application domain. If any interaction element is
common to all intended instances, this element is attached to the core defini-
tion of the framework. Concerning interactions, the variability implies a more

Applying the Governance Framework Technique to Promote Maintainability 71

flexible protocol specification to include some alternatives and options to the
design of a family of similar open MAS. Each interaction element in the open
MAS is a potential extension point. The specification of interaction protocols
can be made flexible enough to include new elements like norms, constraints
and actions that define the desired behavior for the open MAS applications.
Templates (Fig. 2) are part of the flexibility of the open MAS interactions [5].
In governance frameworks, templates are defined as ”hooks” for elements of the
interaction specification that will be refined during the governance mechanism
instantiation.

GovernanceMechanism

GovernanceFrameworks for OpenSystems

InteractionElements

Provided Interaction Specification

General

Interaction
Templates

Customized Interaction

Specification

Refinement

Fig. 2. Governance Framework Overview

Even with extension points, we still need to monitor the entire application; to
gather information about its execution, and also to analyze the compliance of the
system components with the desired behavior. This means that the governance
mechanism must support this peculiarity.

4 Governance Framework for Open Supply Chain
Management

An important characteristic of a good framework is that it provides mature
runtime functionality and rules within the specific domain in which it is to be
applied [9]. Hence, we based our proof of concept prototype on the specification
of the TAC SCM [2, 8, 18]. The game rules have been updated over the last
three years. This evolution was achieved by observing the behavior of differ-
ent agents during the last editions and their consequences (e.g. interaction rules
were defined to protect agents from malicious participants). In our prototype,

72 G. Carvalho et al.

each set of rules can be used to configure a different instance of a framework for
instantiating governance mechanisms in open supply chain management domain.

In TAC SCM, assembler agents need to negotiate with supplier agents to buy
components to produce PCs. A bank agent is used to monitor the progress of the
agents. In the real TAC SCM architecture, there is a TAC Server that simulates
the behavior of the suppliers, customers, and factories. We converted part of
the simulation components present in TAC SCM to external agents or the open
system’s services of a prototypical version. We continue to have the TAC SCM
Server, but this server aims to monitor and to analyze the compliance of agents’
behavior to laws that were previously established.

Analyzing the variability of the negotiation between suppliers and assemblers
over TAC SCM editions we depict the architecture below. The kernel of this
framework is composed of a scene for negotiation, a scene for payment, the defi-
nition of interaction steps (transitions), states and messages, and a permission to
restrict the offer values of an RFQ. The extension points that will be described
here include the permission granted to assemblers to issue requests during one
day (number of permitted requests and how to count them), the constraint to
verify the date in which a request is valid, and the payment method implemented
by actions inside the obligation.

4.1 Kernel Description

In the negotiation, assemblers buy supplies from suppliers to produce PCs. Be-
sides these two roles, there is the bank role. There are six assembler agents that
produce PCs participating in each TAC SCM instance. These participants in-
teract with both suppliers and a bank agent. There are eight different supplier
agents in each supply chain. Only one bank agent is responsible for managing
payments accounts. The agent class diagram [7] (Fig. 3) depicts the roles, their
relationships and their cardinalities.

Fig. 3. Roles, relationships and cardinalities

We decided to organize this scenario in two scenes: one for the negotiation
process between assemblers and suppliers, and the other for the payment in-
volving the assembler and the bank agent. Listing 1.7 details the initial speci-
fication of the scene that represents the negotiation between the supplier and the

Applying the Governance Framework Technique to Promote Maintainability 73

assembler. Each negotiation scene is valid over the duration of the competition,
which is 3300000ms (220 days x 15000ms). Listing 1.8 describes the payment
process. We decided not to specify any time out to the payment scene and this
is represented by the ”infinity” value of the attribute time-to-live.

<Scene id=”nego t i a t i on ” time−to−l i v e =”3300000”>
<Creators>

<Creator r o l e=”assemble r”/>
</Creators>
<Entrance>

<Par t i c i pan t r o l e=”assemble r” l im i t=”6”/>
<Par t i c i pan t r o l e=”supp l i e r ” l im i t=”8”/>

</Entrance>
</Scene>

Listing 1.7. Negotiation scene structure

<Scene id=”payment” time−to−l i v e=” i n f i n i t y ”>
<Creators>

<Creator r o l e=”any”/>
</Creators>
<Entrance>

<Par t i c i pan t r o l e=”assemble r” l im i t=”1”/>
<Par t i c i pan t r o l e=”bank” l im i t=”1”/>

</Entrance>
</Scene>

Listing 1.8. Payment scene structure

Analyzing the evolution of TAC SCM’s requirements, we can observe evi-
dences that interaction protocols have a core definition. In this specification we
can also identify some extension points, which can be customized to provide
different instances of the supply chain. The negotiation between assemblers and
suppliers is related to the interaction between the assembler role and the bank
role. Basically, a payment is made through a payment message sent by the assem-
bler to the bank and the bank’s reply with a confirmation response, represented
by the receipt message ((Listing 1.9 and 1.10, Fig. 4). Fig. 4 is based on the
interaction diagram [7].

Fig. 4. Payment interaction

74 G. Carvalho et al.

<Messages>
<Message id=”payment” template =”...”/ >
<Message id=”r e c e i p t ” template =”...”/ >

</Messages>

Listing 1.9. Payment messages description

<Protocol>
<States>

<State id=”p1” type=” i n i t i a l ”/>
<State id=”p2” type=”execut ion”/>
<State id=”p3” type=”suc c e s s ”/>

</State s>
<Trans i t ions >

<Tran s i t i on id=”pay ingTrans i t ion ”
from=”p1” to=”p2” message−r e f=”payment”/>

<Tran s i t i on id=”paymentConcludedTrans”
from=”p2” to=”p3” message−r e f=”r e c e i p t ”/>

</Trans i t ions >
</Protocol >

Listing 1.10. Payment interaction protocol description

The negotiation between assemblers and suppliers is carried out in five steps,
four messages (Fig. 5, (Listing 1.11) and six transitions. Below ((Listing 1.11
and 1.12), this scene is described in detail using XMLaw. Fig. 5 is based on the
interaction diagram [7].

<Messages>
<Message id=”r f q ” template =”...”/ >
<Message id=” o f f e r ” template =”...”/ >
<Message id=”order ” template =”...”/ >
<Message id=”de l i v e r y ” template =”...”/ >

</Messages>

Listing 1.11. Negotiation interaction protocol: messages

Fig. 5. Negotiation protocol diagram

Applying the Governance Framework Technique to Promote Maintainability 75

<Protocol>
<States>

<State id=”as1 ” type=” i n i t i a l ”/>
<State id=”as2 ” type=”execut ion”/>
<State id=”as3 ” type=”execut ion”/>
<State id=”as4 ” type=”execut ion”>
<State id=”as5 ” type=”suc c e s s ”/>

</State s>
<Trans i t ions >

<Trans i t i on id=”r f qTrans i t i on ” from=”as1”
to=”as2 ” message−r e f=”r f q ”>...</ Trans i t ion>

<Tran s i t i on id=”newRFQTransition” from=”as2”
to=”as2 ” message−r e f=”r f q ”>...</ Trans i t ion>

<Tran s i t i on id=”otherRFQTransition ” from=”as3 ”
to=”as2 ” message−r e f=”r f q ”>...</ Trans i t ion>

<Tran s i t i on id=”o f f e rT r an s i t i o n ” from=”as2 ”
to=”as3 ” message−r e f=”o f f e r ” >...</ Trans i t ion>

<Tran s i t i on id=”orde rTran s i t i on” from=”as3 ”
to=”as4 ” message−r e f=”order”/>

<Tran s i t i on id=”d e l i v e r yTr an s i t i on” from=”as4 ”
to=”as5 ” message−r e f=”d e l i v e r y ” >...</ Trans i t ion>

</Trans i t ions >
</Protocol >

Listing 1.12. Negotiation interaction protocol description

To further illustrate the use of general specifications, we identified the stable
interaction laws in the last three editions of TAC SCM and we implemented it
using XMLaw. This specification is reused in every instance of our governance
framework. This law defines the relation between a request for quote (RFQ) sent
by an assembler and an offer that will be sent by a supplier. Below, we briefly
describe the specification according to [2,8, 18].

”On the following day of the arrival of a request for quotation, the supplier
sends back to each agent an offer for each RFQ, containing the price, adjusted
quantity, and due date. The supplier may respond by issuing up to two amended
offers, each of which relaxes one of the two constraints, quantity and due date: (i)
a partial offer is generated with the quantity of items relaxed; or (ii) an earliest
complete offer is generated with the due date relaxed. Offers are received the
day following the submission of RFQs, and the assembler must choose whether
to accept them. In the case an agent attempts to order both the partial offer and
the earliest complete offer, only the order that arrives earlier will be considered
and the others will be ignored.”

The implementation of this rule in XMLaw is illustrated in Listings 1.13 and
1.14. A permission was created to define a context in the conversation that is used
to control when the offer message is valid, considering the information sent by an
RFQ. For this purpose, two constraints were defined into the permission context,
one determining the possible configurations of offer attributes that a supplier can
send to an assembler, while the other constraint verifies if a valid offer message
was generated - that is, if the offer was sent one day after the RFQ. This per-
mission is only valid if both of the constraints are true. Below, we illustrate the

76 G. Carvalho et al.

offerTransition (Listing 1.13) and describe the permission RestrictOfferValues
and its XMLaw specification (Listing 1.14).

<Tran s i t i on id=”o f f e rT r a b s i t i o n ” from=”as2 ”
to=”as3 ” message−r e f=” o f f e r ”>

<ActiveNorms>
<Norm r e f=”Re s t r i c tO f f e rVa lue s ”/>

</ActiveNorms>
</Trans i t ion>

Listing 1.13. General Transition Specification

<Permiss ion id=”Re s t r i c tO f f e rVa lu e s”>

<Owner>Suppl i e r</Owner>
<Act ivat ions>

<Element r e f=”r f qTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Act ivat ions>

<Deact ivat ions>

<Element r e f=”o f f e rT r an s i t i o n ” event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Deact ivat ions>

<Actions>
<Action id=”keepRFQInfo” c l a s s=”norm . ac t i on s . KeepRFQAction”>

<Element r e f=”r f qTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Action>

</Actions>

<Constra ints>

<Constra int id=”checkDates” c l a s s=”norm . c on s t r a i n t s . CheckValidDay”/>

<Constra int id=”checkAttr ibute s ” c l a s s=”norm . c on s t r a i n t s .
CheckValidMessage”/>

</Constra ints>

</Permission>

Listing 1.14. General Norm specification

XMLaw includes the notion of context. Elements in the same context share the
same local memory to share information, i.e., putting, getting and updating any
value that is important for other law elements. Listing 1.14 depicts one example
of context usage. The keepRFQInfo Action preserves the information present
in the RFQ message to be later used by the checkAttributes and checkDates
contraints.

4.2 Extension Point Descriptions

The constraint checkDueDate verifies if the date attribute is according to the
restrictions imposed by the edition of the environment. It means that if the ver-
ification is not true the transition will not be fired. This constraint is associated
with the transition rfqTransition and this transition is specified as abstract to
clearly document the extension point. Listing 1.15 is an example of a template.
In this example, we opted to keep the attribute class of the constraint check-
DueDate not specified, that is, it will be set during framework instantiation.

Applying the Governance Framework Technique to Promote Maintainability 77

<Trans i t i on id=”r f qTrans i t i on ” from=”as1 ” to=”as2”
message−r e f=”r f q ” ab s t r ac t=”true”>

<Constra ints>
<Constra int id=”checkDueDate”/>

</Constra ints>
<ActiveNorms>

<Norm r e f=”AssemblerPermissionRFQ”/>
</ActiveNorms>

</Trans i t ion>

Listing 1.15. Permission and Constraint over RFQ message Templates

According to TAC SCM specifications [2, 8, 18], every day each agent may send
up to a maximum number of RFQs. But the precise number of RFQs has changed
over the last editions of TAC SCM, so it is possible to defer this specification
to instantiation time. We use a template for this purpose and we have created a
permission to encapsulate this requirement (Listing 1.16); in the template some
hooks will guide the specialization of an instance of this framework.

This permission is about the maximum number of requests for quotation that
an assembler can submit to a supplier. To implement this sort of verification,
the constraint checkCounter is associated with the permission AssemblerPer-
missionRFQ. It means that if the verification is not true the norm will not be
valid, even if it is activated. The action ZeroCounter is defined under the per-
mission AssemblerPermissionRFQ and it is triggered by a clock-tick every day,
turning to zero the value of the counter of the number of requests issued by
the assembler during this day. The other action orderID is activated by every
transition transitionRFQ and is used to count the number of RFQs issued by the
assembler, updating a local counter. Finally, a clock nextDay is used to mark
the day period, and this mark is used to zero the counter of RFQs by the action
ZeroCounter. In this paper, we do not describe the clock nextDay specification.

<Permiss ion id=”AssemblerPermissionRFQ” abs t rac t=”true”>
<Owner>Assembler</Owner>
<Act ivat ions>

<Element r e f=”nego t i a t i on ” event−type=”s c e ne c r e a t i o n ”/>
</Act ivat ions>
<Deact ivat ions>

<Element r e f=”orde rTran s i t i on” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Deact ivat ions>
<Constra ints>

<Constra int id=”checkCounter”/>
</Constra ints>
<Actions>

<Action id=”permissionRenew” c l a s s=”tacscm . norm . ac t i on s .
ZeroCounter”>

<Element r e f=”nextDay” event−type=”c l o c k t i c k ”/>
</Action>
<Action id=”orderID”>

<Element r e f=”r f qTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Action>
</Actions>

</Permission>

Listing 1.16. Norm description Template

78 G. Carvalho et al.

Another extension point is used to specify the relationship between orders and
offers of the negotiation protocol. According to [2], agents confirm supplier offers
by issuing orders. After that, an assembler has a commitment with a supplier,
and this commitment is expressed as an obligation. It is expected that suppliers
receive a payment for its components. But when they will receive the payment is
not completely specified in this law. Another template specifies the structure of the
ObligationToPay obligation (Listing 1.17), defining that it will be activated by an
order message and it will be deactivated with the delivery of the components and
also with the payment. A supplier will only deliver the product if the assembler has
the obligation to pay for them (Listing 1.18). The assembler can only enter into
the payment scene if it has an obligation to pay for the products (Listing 1.19).
An assembler cannot enter into another negotiation if it has obligations that were
not fulfilled (Listing 1.20).

<Obl igat ion id=”ObligationToPay” ab s t r ac t=”true”>
<Owner>Assembler</Owner>
<Act ivat ions>

<Element r e f=”orde rTran s i t i on ” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Act ivat ions>
<Deact ivat ions>

<Element r e f=”pay ingTrans i t ion ” event−type=” t r a n s i t i o n a c t i v a t i o n
”/>

</Deact ivat ions>
</Obl igat ion>

Listing 1.17. Obligation to pay

<Tran s i t i on id=”orde rTran s i t i on” from=”as3” to=”as4 ” message−r e f=”
order”/>

<Tran s i t i on id=”d e l i v e r yTr an s i t i o n” from=”as4 ” to=”as5 ” message−r e f=”
d e l i v e r y”>

<ActiveNorms>
<Norm r e f=”ObligationToPay”/>

</ActiveNorms>
</Trans i t ion>

Listing 1.18. Negotiation and Payment Scene

<Scene id=”payment” time−to−l i v e=” i n f i n i t y ”>
<ActiveNorms>

<Norm r e f=”ObligationToPay”/>
</ActiveNorms>
. . .

</Scene>

Listing 1.19. Payment scene and ObligationToPay norm

<Scene id=”nego t i a t i on ” time−to−l i v e =”3300000”>
<DeActivatedNorms>

<Norm r e f=”ObligationToPay”/>
</DeActivatedNorms>
. . .

</Scene>

Listing 1.20. Negotiation scene and ObligationToPay norm

Applying the Governance Framework Technique to Promote Maintainability 79

5 TAC SCM Editions as Framework’s Instances

In this section, we present two examples of instantiations of the framework
for open SCM, explaining the refinements proposed to the templates described
above.

In TAC SCM 2004 and according to [2], a supplier will receive an assembler’s
payment after the delivery of components and at this time the cost of the order
placed before will be fully charged. We implemented the payment as an action
where the system forces the agent to pay the entire debit at the end of the
negotiation (Listing 1.23). According to [2], on each day each agent may send
up to ten RFQs to each supplier. An RFQ with DueDate beyond the end of the
negotiation will not considered by the supplier. For this purpose, we implemented
the constraint class ValidDate (Listing 1.21). The constraint class CounterLimit
(Listing 1.22) checks if the local attribute for controlling the number of RFQs
is below the limit of 10. The RFQCounter action increments the same attribute
when receiving new messages of RFQ.

<Tran s i t i on id=”r fq2004 ” completes=”r f qTran s i t i on ”>
<Constra int id=”checkDueDate”

c l a s s=”con s t r a i n t s . ValidDate2004 ”/>
</Trans i t ion>

Listing 1.21. checkDueDate instance for TAC SCM 2004

<Permiss ion id=”AssemblerPermissionRFQ2004 ”
completes=”AssemblerPermissionRFQ”>

<Constra int id=”checkCounter”
c l a s s=”c on s t r a i n t . CounterLimit”/>

<Action id=”orderID” c l a s s=”norm . ac t i on s . RFQCounter”>
</Permission>

Listing 1.22. Permission instance for TAC SCM 2004

<Obl igat ion id=”ObligationToPay2004 ” extends=”ObligationToPay”>
<Actions>

<Action id=”suppl ierPayment”
c l a s s=”ac t i on s . SupplierPayment100”>

<Element r e f=”d e l i v e r yTr an s i t i o n”
event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Action>
</Actions>

</Obl igat ion>

Listing 1.23. Obligation instance for TAC SCM 2004

In TAC SCM 2005, suppliers wishing perhaps to protect themselves from
defaults will bill agents immediately for a down payment on the cost of each
order placed [8]. The remainder of the value of the order will be billed when the
order is shipped. In 2005, the down payment ratio is 10.

80 G. Carvalho et al.

<Tran s i t i on id=”r fq2005 ” completes=”r f qTran s i t i on ”>
<Constra int id=”checkDueDate”

c l a s s=”c on s t r a i n t s . ValidDate2005 ”/>
</Trans i t ion>

Listing 1.24. checkDueDate instance for TAC SCM 2005

<Permiss ion id=”AssemblerPermissionRFQ2005 ”
completes=”AssemblerPermissionRFQ”>

<Constra int id=”checkCounter”
c l a s s=”c on s t r a i n t . CounterLimit2005 ”/>
<Action id=”orderID”

c l a s s=”norm . ac t i on s . RFQCounter2005”> . . . </ Action>
</Permission>

Listing 1.25. Permission instance for TAC SCM 2005

<Obl igat ion id=”ObligationToPay2005 ” extends=”ObligationToPay”>
<Actions>

<Action id=”supplierDownPayment”
c l a s s=”ac t i on s . SupplierPayment10”>

<Element r e f=”orde rTran s i t i on”
event−type=” t r a n s i t i o n a c t i v a t i o n ”/>

</Action>
<Action id=”suppl ierPayment”

c l a s s=”ac t i on s . SupplierPayment90”>
<Element r e f=”d e l i v e r yTr an s i t i on”

event−type=” t r a n s i t i o n a c t i v a t i o n ”/>
</Action>

</Actions>
</Obl igat ion>

Listing 1.26. Obligation instance for TAC SCM 2005

6 Related Work

Ao and Minsky [1] propose an approach that enhances their Law Governed
Interaction (LGI) with the concept of policy-hierarchy to support that different
internal policies or laws are formulated independently of each other, achieving
a flexibility support by this means. [1] consider confidentiality as a requirement
for their solution. However, the extensions presented here intend to support the
maintenance of governance mechanisms, rather than flexibility for the purpose
of confidentiality.

Singh [15] proposes a customizable governance service, based on skeletons. His
approach formally introduces traditional scheduling ideas into an environment of
autonomous agents without requiring unnecessary control over their actions, or
detailed knowledge of their designs. Skeletons are equivalent to state based ma-
chines and we could adapt and reuse their formal model focusing on the implemen-
tation of a family of applications. But [15] has its focus on building multi-agent
systems instead of providing support for monitoring and enforcement purpose.

Below we describe some useful instruments to promote reuse; they can be seen
as instruments for specifying extendable laws in governance frameworks. COSY

Applying the Governance Framework Technique to Promote Maintainability 81

[11] views a protocol as an aggregation of primitive protocols. Each primitive pro-
tocol can be represented by a tree where each node corresponds to a particular sit-
uation and transitions correspond to possible messages an agent can either receive
or send, i.e., the various interaction alternatives. In AgenTalk [14], protocols in-
herit from one another. They are described as scripts containing the various steps
of a possible sequence of interactions. Koning and Huget [13] deal with the model-
ing of interaction protocols for multi-agent systems, outlining a component-based
approach that improves flexibility, abstraction and protocol reuse.

7 Conclusions

In open MAS, in which components are autonomous and heterogeneous, gov-
ernance is crucial. This paper presented an approach to augment reliability on
customizable open systems. The approach is based on governing the interactions
in the system. This is a non-intrusive method, allowing the independent devel-
opment of the agents of the open system - they are only required to follow the
protocols specified for the system.

The purpose of governance frameworks is to facilitate extensions on gover-
nance mechanisms for open systems. Interaction and roles are first order abstrac-
tions in open system specification reuse. Besides, it is possible to distinguish two
kinds of interaction specification: fixed (stable) and flexible (extensible). The
challenge to developers is to deliver a specification that identifies the aspects of
the open MAS that will not change and cater the software to those areas. Stabil-
ity is characterized by the interaction protocol and some general rules that are
common to all open MAS instances. Extensions on interaction rules will impact
the open MAS and the agents and extensions are specified. The main contri-
bution of this work is to provide a technique to design software that evolves,
therefore reducing maintenance efforts.

With this proposal we aim to improve the engineering of distributed systems,
providing a customizable conformance verification mechanism. We are also tar-
geting improvement in the quality of governance mechanisms of open systems;
this will be achieved by facilitating the extension of governance mechanisms.
We propose to use variations and laws to specify, implement and maintain ex-
tension points. We also support the implementation of these variations using a
law-governed mechanism. The experiment showed that this is an interesting and
promising approach; it improves the open system design by incorporating relia-
bility aspects that can be customized according to application requirements and
it improves maintainability. The application development experience showed us
that it is possible to obtain benefits from the use of proper engineering concepts
for its specification and construction. However, more experiments with real-life
MAS applications are needed to evaluate and validate the proposed approach.

Acknowledgments. We gratefully acknowledge the financial support provided
by the CNPq as part of individual grants and of the ESSMA project (552068/2002-
0) and by CAPES as part of the EMACA Project (CAPES/COFECUB 482/05
PP 016/04).

82 G. Carvalho et al.

References

1. Ao, X. and Minsky, N. Flexible Regulation of Distributed Coalitions. In Proc.
of the 8th European Symposium on Research in Computer Security (ESORICS).
Gjvik Norway, October, 2003.

2. Arunachalam, R; Sadeh, N; Eriksson, J; Finne, N; Janson, S. The Supply Chain
Management Game for the Trading Agent Competition 2004. CMU-CS-04-107,
July 2004

3. Batory, D; Cardone, R. and Smaragdakis, Y. ”Object-Oriented Frameworks and
ProductLines”, 1st Software Product-Line Conference, Denver, Colorado, August
2000.

4. Bellifemine, F; Poggi, A; Rimassa, G. Jade: a fipa2000 compliant agent develop-
ment environment, in: Proceedings 5th international conference on Autonomous
agents, ACM Press, 2001, pp. 216-217

5. Carvalho, Gustavo; Paes, Rodrigo; Lucena, Carlos. Extensions on Interaction Laws
in Open Multi-Agent Systems. In: First Workshop on Software Engineering for
Agent-oriented Systems (SEAS 05), 19th Brazilian Symposium on Software Engi-
neering. Uberlndia, Brasil

6. Carvalho, G.; Lucena, C.; Paes, R.; Briot, J.P.; Refinement Operators to Facilitate
the Reuse of Interaction Laws in Open Multi-Agent Systems, International Work-
shop on Software Engineering for Large-scale Multi-Agent Systems (SELMAS’06),
5th, at ICSE 2006, Shanghai, China. In: Proceedings of the Fifth International
Workshop on Software Engineering for Large-scale Multi-agent Systems, p. 75-82,
May 21-22, 2006.

7. Choren, R. and Lucena, C.J.P. Modeling Multi-agent systems with ANote. Software
and Systems Modeling 4(2), 2005, p. 199 - 208.

8. Collins, J; Arunachala,R; Sadeh,N; Eriksson,J; Finne,N; Janson,S. (2005) The Sup-
ply Chain Management Game for the 2005 Trading Agent Competition. CMU-
ISRI-04-139.

9. Fayad, M; Schmidt, D.C.; Johnson, R.E. Building application frameworks : object-
oriented foundations of framework design. ISBN 0471248754, New York: Wiley,
1999.

10. Fredriksson M. et al. First international workshop on theory and practice of open
computational systems. In Proceedings of twelfth international workshop on En-
abling technologies: Infrastructure for collaborative enterprises (WETICE), Work-
shop on Theory and practice of open computational systems (TAPOCS), pp. 355
- 358, IEEE Press, 2003.

11. Haddadi, A. Communication and Cooperation in Agent Systems: A Pragmatic
Theory, volume 1056 of Lecture Notes in Computer Science. Springer Verlag, 1996.

12. Kendall, E. ”Role Modeling for Agent Systems Analysis, Design and Implementa-
tion”, IEEE Concurrency, 8(2):34-41, April-June 2000.

13. Koning, J.L. and Huget, M.P.. A component-based approach for modeling interac-
tion protocols. In H. Kangassalo and E. Kawaguchi (eds) 10th European-Japanese
Conference on Information Modeling and Knowledge Bases, Frontiers in Artificial
Intelligence and Applications.IOS Press, 2000

14. Kuwabara, K; Ishida, T; and Osato, N. AgenTalk: Coordination protocol descrip-
tion for multiagent systems. In First International Conference on MultiAgent Sys-
tems (ICMAS-95), San Francisco, June 1995. AAAI Press. Poster.

15. Singh, M. P., ”A Customizable Coordination Service for Autonomous Agents,”
Intelligent Agents IV: Agent Theories, Architectures, and Languages, Springer,
Berlin, 1998, pp. 93-106.

Applying the Governance Framework Technique to Promote Maintainability 83

16. Paes, R. B.; Carvalho G. R.; Lucena, C.J.P.; Alencar, P. S. C.; Almeida H.O.;
Silva, V. T. Specifying Laws in Open Multi-Agent Systems. In: Agents, Norms and
Institutions for Regulated Multi-agent Systems (ANIREM), AAMAS2005, 2005.

17. Paes, R.B; Lucena, C.J.P; Alencar, P.S.C. A Mechanism for Governing Agent Inter-
action in Open Multi-Agent Systems MCC n 30/05, Depto de Informtica, PUC-Rio,
31 p., 2005

18. Sadeh, N; Arunachalam, R; Eriksson, J; Finne, N; Janson, S. TAC-03: a supply-
chain trading competition, AI Mag. 24 (1) 92-94, 2003.

19. Wooldridge, M; Weiss, G; Ciancarini, P. (Eds.) Agent-Oriented Software Engineer-
ing II, Second International Workshop, AOSE 2001, Montreal, Canada, May 29,
2001, Revised Papers and Invited Contributions, Vol. 2222 of Lecture Notes in
Computer Science, Springer, 2002.

20. Yu, L; Schmid, B.F. ”A conceptual framework for agent-oriented and role-based
workflow modelling”, the 1st International Workshop on Agent-Oriented Informa-
tion Systems, Heidelberg, 1999.

	Introduction
	Governing Interactions in Open Systems
	Refinement Operators to Specify Laws in Open Multi-Agent Systems

	Improving Governance Mechanism Maintainability
	Governance Framework for Open Supply Chain Management
	Kernel Description
	Extension Point Descriptions

	TAC SCM Editions as Framework's Instances
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

