
A Governance Framework Implementation for Supply Chain
Management Applications as Open Multi-Agent Systems

Gustavo Carvalho1, Carlos Lucena1, Rodrigo Paes1, Jean-Pierre Briot2, Ricardo Choren3

1 PUC-Rio – Marquês de São Vicente 225
4º Andar RDC – Gávea RJ, Brazil

{guga,lucena}@inf.puc-rio.br
2 LIP6 – Univ. Paris 6 - CNRS

8 rue du Capitaine Scott - 75015 PARIS , France
Jean-Pierre.Briot@lip6.fr

3 SE/8 – IME – Pça Gen Tibúrcio 80 - Urca RJ, Brazil
choren@de9.ime.eb.br

Abstract. Governance means that specifications are enforced dynamically at application run-time.
Governance framework is a technique to design and implement an extensible interaction specifica-
tion for a family of open systems. This specification can be refined for particular applications. We
based this proposal on object-oriented framework concepts and adapted them for distributed agents
and interactions. A governance framework structures the extensions of open system instances as
variations in interactions among agents, defined as templates. Templates are used to gather a core
implementation and extension points. Extension points are “hooks” that will be customized to im-
plement an instance of the governance framework. During framework instantiation, templates are
refined to concrete interaction specification. As a proof of concept experiment, in this paper we pro-
pose a framework for instantiating supply chain management applications as open systems.

1 Introduction
Nowadays, software permeates every aspect of our society, and it is increasingly becoming a distributed
and open asset. Distribution means that it is possible to integrate different software solutions from dif-
ferent sources or machines and they work cooperatively to achieve system requirements. Openness is
crucial for software. Open systems are software systems where autonomous distributed components
interact and may enter and leave the environment at their will [11]. Auction systems and virtual enter-
prises are examples of such open and distributed applications [21].

The greater the dependence of our society on open distributed systems, the greater will be the demand
for dependable applications and also for new solutions that are variations of previously existing ones.
Firstly, we should guarantee that errors in specific components will not be propagated to others. An
error occurs when any component is not conforming to an existent specification. Secondly, one of the
challenges of software development is to produce software that is designed to evolve, and so be extend-
ed, therefore reducing the maintenance efforts.

Software agent technology is considered a promising approach for the development of open system
applications [20]. We believe that the specification of open multi-agent systems (open MAS) includes
the definition of agent roles and any other restrictions that the environment imposes on an agent to enter
and participate in conversations. Agents will only be permitted to interact if they conform to the specifi-
cations of the open MAS. Since open system components are often autonomous [22], sometimes they
behave unpredictably and unforeseen situations arise. Taming this uncertainty is a key issue for open
software development. The establishment of laws over interaction specification and their enforcement
over software agents might create a boundary of tolerated autonomous behavior and can be used to fos-
ter the development of trusted systems.

In open software systems, the rules that enforce the relationships between agents are not always fully
understood early in the development life cycle. Still, many more rules are not applied because of the
lack of systems support for changing specifications or the complexity of the specifications. Inspired by
object-oriented frameworks [10], governance frameworks are proposed to deal with this complexity,
reifying proven software designs and implementations in order to reduce the cost and improve the quali-
ty of software.

We believe that open MAS should be specified and developed to facilitate extensions. Since software
systems need to be customized according to different purposes and peculiarities, the authors think that it
is possible to express evolution as variations related to interactions of open systems and to components
that inhabit the environment. Following this hypothesis, we propose to design open systems using exten-
sion points [7] to annotate interaction specification and using laws to customize the agents’ expected
behavior. One of the challenges of this paper is to argue that some specification elements can be reused
and that some predefined “hooks” can be refined to develop a set of open MAS applications in a specific
domain.

We are proposing governance frameworks based on some object-oriented framework concepts. An
object-oriented framework [10] metaphor provides the necessary modeling capabilities for constructing
reusable implementations of open systems. Governance frameworks may demonstrate in practice the
ability to apply enforcement (or, when needed, to relax enforcement) for both complex and changing
specifications. Besides customizations, the compliance of the system to the specification must continue
to be analyzed by a mechanism that governs the laws of interactions in open MAS. We use the XMLaw
description language [17] to map the specification of interaction rules into a governance mechanism.

A proof of concept prototype has been developed based on the specification of the Trading Agent
Competition - Supply Chain Management (TAC SCM) [3][9][19]. In this example, we discuss how the
changes to the laws of open MAS applications can be represented as templates that structurally “hook”
the extension points into the interaction protocol. The goal of this study is to approach the TAC SCM
structure by considering it an open system and, through the analysis of its specifications, we aim to learn
about how to extend the interaction specification and compliance verification in open system applica-
tions. The main purpose of the current investigation is not to contribute to TAC SCM evolution as a
realistic open system for B2B trading, but rather to show that it is possible to specify, analyze and de-
velop open software systems using extension points.

The contributions of this paper are threefold. First, we jointly apply variations and laws to specify,
implement and maintain extension points in open systems. Second, we support the implementation of
these variations using a law-governed mechanism. Third, we specified and implemented a framework
for supply chain management applications based on TAC-SCM’s specifications. The organization of
this paper is as follows. Section 2 briefly describes the law-governed mechanism. In Section 3, we dis-
cuss the governance framework approach as a means to design open system for extensions. Section 4
maps the variations identified in TAC-SCM’s editions into a governance framework for supply chain
management. Section 5 partly describes two instances of the TAC SCM using our approach. Related
work is described in Section 6. Finally, we describe our conclusions in Section 7.

2 Governing Interactions in Open Systems
We consider that the software agents in open MAS are heterogeneous, i.e., the development is done
without a centralized control, possibly by different parties, with different purposes and preferences. The
only restriction this work imposes is that the agents communicate using ACL. We also assume that eve-
ry agent developer may have an a priori access to the open system specification, including protocol
descriptions and interaction laws.

Law governed architectures are designed to guarantee that the specifications will be obeyed. We de-
veloped an infrastructure that includes a modification of a basic communication infrastructure [5] that is
provided to agent developers. This architecture intercepts messages and interprets the laws previously
described. Whenever necessary, a software support [18] permits extending this basic infrastructure to
fulfill open system requirements or interoperability concerns regarding law monitoring.

In this paper, we use the description language XMLaw [17] to represent the interaction rules of an
open system specification. XMLaw (Figure 1) specifies interaction protocols using time restrictions,
norms, or even time sensitive norms. The composition and interrelationship among elements is done by
events. One law element can generate events to signal something to other elements. Other elements can
sense events for many purposes — for instance, activating or deactivating themselves. Some enhance-
ments on XMLaw proposed in [6][7] will be applied here, including the proposal of extension points.
Those elements are represented in an XML structure like (Code 1).

Figure 1 Conceptual Model

<Laws>
 <LawOrganization id="…" name="…">
 <Scene id="…" time-to-live="…">
 <Creators>…</Creators>
 <Entrance>
 <Participant role="…" limit="…"/>
 </Entrance>
 <Messages>…</Messages>
 <Protocol>
 <States> … </States>
 <Transitions>…</Transitions>
 </Protocol>
 <Norms>... </Norms>
 <Clocks>...</Clocks>
 <Actions>...</Actions>
 </Scene>
 </LawOrganization>
</Laws>

Code 1: XMLaw elements’ structure

2.1 Refinement Operators to Specify Laws in Open Multi-Agent Systems
We argue that the interaction laws of open MAS should also be specified and developed to facilitate

extensions to deal with changing requirements. In this sense, it is necessary to have an instrument to
specify which law elements can be customized and so defined as extension points. The extension points
are a means of representing knowledge about the place where modifications and enhancements in laws
can be made. pointing our context, it is useful to permit the inclusion of norms, constraints and actions
into a pre-defined law specification.

XMLaw has two elements that can be easily plugged into the specification of interaction laws: ac-
tions and constraints. Actions are used to plug services in open systems. Services are domain specific
functionalities. The first attempt to define extension points was deferring the definition of the class im-
plementation [7]. We enhanced this notion with the proposal of refinements operators in XMLaw (ref).
Below, we explain how the interaction specification with extension points can be prepared to further
refinements. The examples below details laws applied on sales that are customized according to the
period of the year (e.g. summer and winter). Discounts are given according to the period of the year. The
actions will calculate and apply the discount and the constraint badClient identifies this kind of clients.

<Actions>
 <Action id="giveDiscount">
 <Element ref="payment"
 event-type="transition_activation"/>
 </Action>
</Actions>

Listing 1: Action hook

<Constraints>
 <Constraint id="badClient"/>
</Constraints>

Listing 2: Constraint hook

It is useful to indicate in XMLaw code when we have “hooks” or even when the existing laws must be
better defined to be used. The abstract attribute defines when a law element is not completely imple-
mented. If no value for the abstract attribute is determined, the element is a concrete one (default ab-
stract=”false”). If the law designer wants to specify that a law element needs some refinements to be
used he has to explicitly specify the attribute abstract with the value true (abstract=”true”). If a law is
defined as concrete, it can not leave any element to be further refined, all elements must be fully imple-
mented, otherwise, the interpreter will indicate an error. An abstract operator can define law elements
with some gaps to be filled further. It is a means to achieve extension point idea, defining clearly the
context where the extensions are expected. Until now, we can defer the definition of the implementation
of actions and constraints classes or the inclusion of any law element.

As laws can be defined as abstract, with some elements to be further detailed, we still need instru-
ments to describe at implementation time the modifications to turn laws concrete. The completes attrib-
ute is an operator that is useful to fill the elements that were left unspecified when a law element was
defined as abstract. It is a simple operator to realize extensions as it can just be used to define action and
constraints class implementations. The completes operator turns an abstract element into a complete one
and can not leave any element unspecified unless it also redefines this element as an abstract one. The

completes operator can not include any new element to the abstract law, it is limited to the definition of
class implementations.

The extends attribute is a more powerful operator and it is similar to the specialization operation in
object-oriented languages. Basically, an extends operator reuses the description of law elements and
includes any modifications that are necessary to customize the law element to users needs, including the
redefinition of law elements. For example, this operator can include new activation references, new
action elements, and new norm elements and can also superpose any element that was previously speci-
fied. The extends operator also turns an abstract element into a complete one and can not leave any
element unspecified unless it redefines this element as an abstract one.
<Permission id=“Sale“ abstract=”true”>
 <Owner>…</Owner>
 <Activations> … </Activations>
 <Deactivations> … </Deactivations>
 <Constraints>
 <Constraint id=“badClient"/>
 </Constraints>
 <Actions>
 <Action id=“ad“ class=“…">…</Action>
 <Action id=“giveDiscount">…</Action>
 </Actions>
</Permission>

Listing 3: abstract operator

<Permission id=“SummerSale”
 completes=“Sale">

 <Constraint id=“badClient“
 class=“BadCustomers"/>
 <Action id=“giveDiscount“
 class=“Percentage10“/>

</Permission>

Listing 4: completes operator

<Permission id=“WinterSale” extends=“Sale">
 <Constraints>
 <Constraint id=“badClient“ class=“BadPayers"/>
 </Constraints>
 <Actions>
 <Action id=“giveDiscount“ class=“Percentage15“/>
 <Action id=“giveSuperDiscount“ class=“ChristimasDiscount">
 <Element ref=“christimas“
 event-type=“clock_activation"/>
 </Action>
 </Actions>
</Permission>

Listing 5: extends operator

3 The Object-Oriented Framework Metaphor for Open Systems
Suppose that it is possible to specify and implement the kernel of a general solution and this kernel can
be customized to different purposes (Figure 2). In this kernel, you have the exact points that can be modi-
fied and enhanced. In our context, this approach can be used to derive a family of governance mecha-
nisms that share a core specification and implementation. The customization is used for two purposes.
Firstly, different governance mechanisms can be derived for different purposes and application scenari-
os. Secondly, different versions of the same governance mechanism can be instantiated during its lifecy-
cle. For this reason, we reuse some object-oriented framework concepts. An object-oriented framework
is a reusable, semi-complete application that can be specialized to produce custom applications [10], i.e.,
a framework is a collection of abstract entities that encapsulate common algorithms of a family of appli-
cations [11].

In this paper, we focus on understanding how interaction specification enhanced by laws can be de-
signed to support extensions. A governance framework is an extensible design for building open multi-
agent systems. A solution for open system development is achieved by relaxing the boundary between a
framework (the common part of the family of applications) and its instantiations (the application-
specific part). In a governance framework, certain laws of the open system are abstract, because they are
left either unspecified or incompletely specified because they would expose details that would vary
among particular executable implementations.

A governance framework is flexible by design. Flexibility works in opposition to the concept of static
interaction specification or enforcement. Customizability ensures the framework may receive new law
elements or adapt the existing ones. For this purpose, a governance framework provides “hooks” for its
instances; we define abstract definitions for interactions as templates. The realization of abstract interac-
tions is deferred to instantiation time. Governance functionalities that have specificities according to
their applications are fully implemented later, but all common definition and implementation are present
in general specifications.

In MAS, the collaboration structure defines the agent roles and their relationships. Roles are useful to
specify general descriptions for agents’ responsibilities in an organization [22] and they are bound to
real software agents in open system execution. While playing roles, agents acquire the obligation to
obey the law that is specified for their responsibilities and it is possible to enforce the laws prescribed in
the protocol. Our main purpose is not to discuss how to structure the component reuse as agent roles
[13] [21], which will be realized by external software agents. Rather, we intend to use an agent role at
the design level as a means to describe agents’ responsibilities in a collaboration. The definition of how
roles interact is very important to understand the open MAS. The interaction elements comprehend the
specification of dynamical concerns of an open system, including the protocol and law specification.
The interaction specification is composed of interaction laws and interaction protocols. Interaction pro-
tocols define the context and the sequence of messages of a conversation between agent roles. The fixed
part of interaction specifications is called general interaction. General interactions (Figure 3) can be de-
rived by analyzing the application domain. If any interaction element is common to all intended instanc-
es, this element is attached to the core definition of the framework.

Figure 2 Hypothesis Scenario Illustration

Governance Mechanism

Governance Frameworks for Open
SystemsInteraction Elements

 Provided Interaction Specification

General
Interaction Templates

Customized Interaction
Specification

Refinement

Figure 3 Governance Framework Structure Overview

Concerning interactions, the variability implies a more flexible protocol specification to include some
alternatives and options to the design of a family of similar open MAS. Each interaction element in the
open MAS is a potential extension point. The specification of interaction protocols can be made flexible
enough to include new elements like norms, constraints and actions that define the desired behavior for
the open MAS applications. Templates (Figure 3) are part of the flexibility of the open MAS interactions
[7]. In governance frameworks, templates are defined as “hooks” for elements of the interaction specifi-
cation that will be refined during open system instantiation.

Even with extension points, we still need to monitor the entire application; to gather information
about its execution, and also to analyze the compliance of the system components with the desired be-
havior. This means that the governance mechanism must support this peculiarity.

4 Governance Framework for Open Supply Chain Management
An important characteristic of a good framework is that it provides mature runtime functionality and
rules within the specific domain in which it is to be applied [10]. Hence, we based our proof of concept
prototype on the specification of the Trading Agent Competition - Supply Chain Management (TAC
SCM) [3][9][19]. The TAC SCM System [3] has been designed with a simple set of rules to capture the
complexity of a dynamic supply chain. The rules of the game have been updated over the last three
years. This evolution was achieved by the observation of the behavior of different agents during the last
editions and their consequences (e.g. interaction rules were defined to protect agents from malicious
participants). In our prototype, each set of rules can be used to configure a different instance of a
framework for instantiating an open supply chain management system.

In TAC SCM, assembler agents need to negotiate with supplier agents to buy components to produce
PCs. A bank agent is used to monitor the progress of the agents. In the real TAC SCM architecture,
there is a TAC Server that simulates the behavior of the suppliers, customers, and factories. We convert-
ed part of the simulation components present in TAC SCM to external agents or the open system’s ser-
vices of a prototypical version [6]. We continue to have the TAC SCM Server, but this server aims to
monitor and to analyze the compliance of agents’ behavior to laws that were previously established.

Analyzing the variability of the negotiation between suppliers and assemblers over TAC SCM edi-
tions we depict the architecture below. The kernel of this framework is composed of a scene for negotia-
tion, a scene for payment, the definition of interaction steps (transitions), states and messages, and a
permission to restrict the offer values of a RFQ. The extension points that will be described here in-

cludes the permission granted to assemblers to issue requests during one day (number of permitted re-
quests and how to count them), the constraint to verify the date in which a request is valid, and the pay-
ment method implemented by actions inside the obligation.

4.1 Kernel Description
In the negotiation, assemblers buy supplies from suppliers to produce PCs. Besides these two roles,
there is the bank role. There are six assembler agents that produce PCs participating in each TAC SCM
instance. These participants interact with both suppliers and a bank agent. There are eight different sup-
plier agents in each supply chain. Only one bank agent is responsible for managing payments accounts.
The ANote’s agent class diagram [8] (Figure 4) depicts the roles and their relationships.

We decided to organize this scenario into two scenes: one for the negotiation process between assem-
blers and suppliers, and the other for the payment involving the assembler and the bank agent. Code 2
details the initial specification of the scene that represents the negotiation between the supplier and the
assembler. Each negotiation scene is valid over the duration of the competition, which is 3300000ms
(220 days x 15000ms). The Code 3 describes the payment process. We decided not to specify any time
out to the payment scene and this is represented by the “infinity” value of the attribute time-to-live.

Figure 4 - Roles, relationships and cardinalities

<Scene id="negotiation"
 time-to-live="3300000">
 <Creators>
 <Creator role="assembler"/>
 </Creators>
 <Entrance>
 <Participant role="assembler"
 limit="6"/>
 <Participant role="supplier"
 limit="8"/>
 </Entrance>
</Scene>

Code 2: Negotiation scene structure

<Scene id="payment"
 time-to-live="infinity">
 <Creators>
 <Creator role="any"/>
 </Creators>
 <Entrance>
 <Participant role="assembler"
 limit="1"/>
 <Participant role="bank"
 limit="1"/>
 </Entrance>
</Scene>

Code 3: Payment scene structure
Analyzing the evolution of TAC SCM’s requirements, we can perceive evidences that interaction proto-
cols have a core definition. We can also identify some extension points in this specification and then
they can be customized to provide different instances of the supply chain. As mentioned before, exten-
sion points can specify templates that will be “hooked” into the “stable” conversation among agents.
The results of this observation are presented below.

The negotiation between assemblers and suppliers is related to the interaction between the assembler
role and the bank role. Basically, a payment is made through a payment message sent by the assembler
to the bank and the bank’s reply with a confirmation response, represented by the receipt message (Code
4, Code 5, Figure 5). Figure 5 is based on ANote’s interaction diagram [8].

Figure 5 Payment Interaction

<Messages>
 <Message id="payment"
 template="..."/>
 <Message id="receipt"
 template="..."/>
</Messages>

Code 4: Payment messages description

<Protocol>
 <States>
 <State id="p1" type="initial"/>
 <State id="p2" type="execution"/>
 <State id="p3" type="success"/>
 </States>
 <Transitions>
 <Transition id="payingTransition" from="p1" to="p2" message-ref="payment"/>
 <Transition id="paymentConcludedTransition" from="p2" to="p3" message-ref="receipt"/>
 </Transitions>

</Protocol>

Code 5: Payment interaction protocol description

The negotiation between assemblers and suppliers is carried out in five steps, four messages (Figure 6,
Code 6) and six transitions. Below (Code 6, Code 7), we describe this scene in detail using XMLaw.
Figure 6 is based on ANote’s interaction diagram [8].

Figure 6 Negotiation diagram

<Messages>
 <Message id="rfq" template="..."/>
 <Message id="offer" template="..."/>
 <Message id="order" template="..."/>
 <Message id="delivery"
 template="..."/>
</Messages>

Code 6: Negotiation interaction protocol: Messages

<Protocol>
 <States>
 <State id="as1" type="initial"/>
 <State id="as2" type="execution"/>
 <State id="as3" type="execution"/>
 <State id="as4" type="execution">
 <State id="as5" type="success"/>
 </States>
 <Transitions>
 <Transition id="rfqTransition" from="as1" to="as2"
 message-ref="rfq">...</Transition>
 <Transition id="newRFQTransition" from="as2" to="as2"
 message-ref="rfq">...</Transition>
 <Transition id="otherRFQTransition" from="as3" to="as2"
 message-ref="rfq">...</Transition>
 <Transition id="offerTransition" from="as2" to="as3"
 message-ref="offer">...</Transition>
 <Transition id="orderTransition" from="as3" to="as4"
 message-ref="order"/>
 <Transition id="deliveryTransition" from="as4" to="as5"
 message-ref="delivery">...</Transition>
 </Transitions>
</Protocol>

Code 7: Negotiation interaction protocol description

4.1.1 General Interaction Specification
To illustrate the use of general specifications, we identified the stable interactions in the last three edi-
tions of TAC SCM and we implemented it using XMLaw. This specification is reused in every instance
of our governance framework. This law defines the relation between a request for quote (RFQ) sent by
an assembler and an offer that will be sent by a supplier. Below, we briefly describe the specification
according to [3][9][19].

“On the following day of the arrival of a request for quotation, the supplier sends back to each agent
an offer for each RFQ, containing the price, adjusted quantity, and due date. The supplier may respond
by issuing up to two amended offers, each of which relaxes one of the two constraints, quantity and due
date: (i) a partial offer is generated with the quantity of items relaxed; or (ii) an earliest complete offer
is generated with the due date relaxed. Offers are received the day following the submission of RFQs,
and the assembler must choose whether to accept them. In the case an agent attempts to order both the
partial offer and the earliest complete offer, only the order that arrives earlier will be considered and
the others will be ignored.”

The implementation of this rule in XMLaw is illustrated in the Code 8 and Code 9. A permission was
created to define a context in the conversation that is used to control when the offer message is valid,
considering the information sent by an RFQ. For this purpose, two constraints were defined into the
permission context, one determining the possible configurations of offer attributes that a supplier can
send to an assembler, while the other constraint verifies if a valid offer message was generated — that
is, if the offer was sent one day after the RFQ. This permission is only valid if both of the constraints are

true. Below, we illustrate the offerTransition (Code 8) and describe the permission RestrictOfferValues
and its XMLaw specification (Code 9).

<Transition id="offerTransition"
 from="as2" to="as3"
 message-ref="offer">
 <ActiveNorms>
 <Norm
 ref="RestrictOfferValues"/>
 </ActiveNorms>
</Transition>

Code 8: General Transition Specification

 <Permission id="RestrictOfferValues">
 <Owner>Supplier</Owner>
 <Activations>
 <Element ref="rfqTransition"
 event-type="transition_activation"/>
 </Activations>
 <Deactivations>
 <Element ref="offerTransition"
 event-type="transition_activation"/>
 </Deactivations>
 <Actions>
 <Action id="keepRFQInfo"
 class="tacscm.norm.actions.KeepRFQAction">
 <Element ref="rfqTransition"
 event-type="transition_activation"/>
 </Action>
 </Actions>
 <Constraints>
 <Constraint id="checkDates"
 class="tacscm.norm.constraints.CheckValidDay"/>
 <Constraint id="checkAttributes"
 class="tacscm.norm.constraints.CheckValidMessage"/>
 </Constraints>
 </Permission>

Code 9: General Norm specification

XMLaw includes the notion of context. Elements in the same context share the same local memory to
share information, i.e., putting, getting and updating any value that is important for other law elements.
Code 9 depicts one example of context usage. The keepRFQInfo Action preserves the information pre-
sent in the rfq message to be later used by the checkAttributes and checkDates contraints.

4.2 Extension Point Descriptions
Code 10 is an example of a template. In this example, we opted to keep the attribute class of the con-
straint checkDueDate not specified, that is, it will be set during framework instantiation. The constraint
checkDueDate verifies if the date attribute is according to the restrictions imposed by the edition of the
environment. It means that if the verification is not true the transition will not be fired. This constraint is
associated with the transition rfqTransition and this transition is specified as abstract to clearly docu-
ment the extension point.
<Transition id="rfqTransition" from="as1" to="as2" message-ref="rfq" abstract=”true”>
 <Constraints>
 <Constraint id="checkDueDate"/>
 </Constraints>
 <ActiveNorms>
 <Norm ref="AssemblerPermissionRFQ"/>
 </ActiveNorms>
</Transition>

Code 10: Permission and Constraint over RFQ message Templates

According to TAC SCM specifications [3][9][19], each day each agent may send up to a maximum
number of RFQs. But the precise number of RFQs has changed over the last editions of TAC SCM, so it
is possible to defer this specification to instantiation time. We use a template for this purpose and we
have created a permission to encapsulate this requirement (Code 11); in the template some hooks will
guide the specialization of an instance of this framework. This permission is about the maximum num-
ber of requests for quotation that an assembler can submit to a supplier. To implement this sort of verifi-
cation, the constraint checkCounter is associated with the permission AssemblerPermissionRFQ. It
means that if the verification is not true the norm will not be valid, even if it is activated. The action
ZeroCounter is defined under the permission AssemblerPermissionRFQ and it is triggered by a clock-
tick every day, turning to zero the value of the counter of the number of requests issued by the assembler
during this day. The other action orderID is activated by every transition transitionRFQ and is used to
count the number of RFQs issued by the assembler, updating a local counter. The class that implements
this action was not specified because its implementation varies according to TAC SCM editions. Finally,

a clock nextDay is used to mark the day period, and this mark is used to zero the counter of RFQs by the
action ZeroCounter. In this paper, we do not describe the clock nextDay specification.

<Norms>
 <Permission id="AssemblerPermissionRFQ" abstract=”true”>
 <Owner>Assembler</Owner>
 <Activations>
 <Element ref="negotiation" event-type="scene_creation"/>
 </Activations>
 <Deactivations>
 <Element ref="orderTransition" event-type="transition_activation"/>
 </Deactivations>
 <Constraints>
 <Constraint id="checkCounter"/>
 </Constraints>
 <Actions>
 <Action id="permissionRenew" class="tacscm.norm.actions.ZeroCounter">
 <Element ref="nextDay" event-type="clock_tick"/>
 </Action>
 <Action id="orderID">
 <Element ref="rfqTransition" event-type="transition_activation"/>
 </Action>
 </Actions>
 </Permission>
</Norms>

Code 11: Norm description Template

Another extension point is used to specify the relationship between orders and offers of the negotiation
protocol. According to [3], agents confirm supplier offers by issuing orders. After that, an assembler has
a commitment with a supplier, and this commitment is expressed as an obligation. It is expected that
suppliers receive a payment for its components. But when they will receive the payment is not com-
pletely specified in this law. Another template was used to map variations on TAC SCM editions. This
template only specifies the structure of the ObligationToPay obligation, defining that it will be activated
by an order message and that it will be deactivated with the delivery of the components and also with
the payment. A supplier will only deliver the product if the assembler has the obligation to pay for them
(Code 13). The assembler can only enter into the payment scene if it has an obligation to pay for the
products (Code 14). An assembler cannot enter into another negotiation if it has obligations that were
not fulfilled (Code 15).
<Obligation id="ObligationToPay"
 abstract=”true”>
 <Owner>Assembler</Owner>
 <Activations>
 <Element ref="orderTransition"
 event-type="transition_activation"/>
 </Activations>
 <Deactivations>
 <Element ref="payingTransition"
 event-type="transition_activation"/>
 </Deactivations>
</Obligation>

Code 12: Obligation to pay

<Transition id="orderTransition"
 from="as3" to="as4"
 message-ref="order"/>

<Transition id="deliveryTransition"
 from="as4" to="as5"
 message-ref="delivery">
 <ActiveNorms>
 <Norm ref="ObligationToPay"/>
 </ActiveNorms>
</Transition>

Code 13: Negotiation Scene and the Payment Scene

<Scene id="payment"
 time-to-live="infinity">
 <ActiveNorms>
 <Norm ref="ObligationToPay"/>
 </ActiveNorms> ...
</Scene>

Code 14: Payment scene and ObligationToPay norm

<Scene id="negotiation"
 time-to-live="3300000">
 <DeActivatedNorms>
 <Norm ref="ObligationToPay"/>
 </DeActivatedNorms>
 ...
</Scene>

Code 15: Negotiation scene and ObligationToPay norm

5 TAC SCM editions as Framework's Instances
In this section, we present two examples of instantiations of the framework for open supply chain man-
agement. In this section, we instantiated the TAC SCM 2004 and 2005 editions. Below, we explain the
refinements proposed to the templates described above.

5.1 TAC SCM 2004
According to [3], supplier will receive assembler’s payment after the delivery of components and at this
time the cost of the order placed before will be fully charged. We implemented the payment as an action
where the system forces the agent to pay the entire debit at the end of the negotiation (Code 20). Ac-

cording to [3], on each day each agent may send up to ten RFQs to each supplier. An RFQ with
DueDate beyond the end of the negotiation will not considered by the supplier. For this purpose, we
implemented the constraint class ValidDate (Code 16). The constraint class CounterLimit (Code 18)
checks if the local attribute for controlling the number of RFQs is below the limit of 10. The
RFQCounter action increments the same attribute when receiving new messages of RFQ.

5.2 TAC SCM 2005
According to [9], suppliers wishing perhaps to protect themselves from defaults will bill agents immedi-
ately for a down payment on the cost of each order placed. The remainder of the value of the order will
be billed when the order is shipped. In TAC SCM 2005, the down payment ratio is 10%. We imple-
mented the payment process as two actions, one for the down payment and the other for the remainder
of the debit at the end of the negotiation (Code 21). On each day each agent may send up to five RFQs
to each supplier for each of the products offered by that supplier, for a total of ten RFQs per supplier [9].
Another action named RFQCounter2005 is provided (Code 19). It counts the number of RFQs according
to the type of component. The CounterLimit2005 was also updated to consider a specific counter for
each type of component that a supplier provides; (ii) An RFQ with DueDate beyond the end of the game
will not be considered by the supplier. RFQs with due dates beyond the end of the game, or with due
dates earlier than two days in the future, will not be considered. It is implemented by the constraint
ValidDate2005 (Code 17).

<Transition id="rfq2004"
 completes=”rfqTransition”>
 <Constraint id="checkDueDate"
 class="tacscm.constraints.ValidDate2004"/>
</Transition>

Code 16: checkDueDate instance for TAC SCM 2004

<Transition id="rfq2005"
 completes=”rfqTransition”>
 <Constraint id="checkDueDate"
 class="tacscm.constraints.ValidDate2005"/>
</Transition>

Code 17: checkDueDate instance for TAC SCM 2005

<Permission id=”AssemblerPermissionRFQ2004”
 completes="AssemblerPermissionRFQ">
 <Constraint id="checkCounter"
 class="tacscm.constraint.CounterLimit"/>
 <Action id="orderID"
 class="tacscm.norm.actions.RFQCounter">
</Permission>

Code 18: AssemblerPermissionRFQ instance for TAC
SCM 2004

<Permission id=”AssemblerPermissionRFQ2005”
 completes="AssemblerPermissionRFQ">
 <Constraint id="checkCounter"
 class="tacscm.constraint.CounterLimit2005"/>
 <Action id="orderID"
 class="tacscm.norm.actions.RFQCounter2005">
...</Action>
</Permission>

Code 19: AssemblerPermissionRFQ instance for TAC SCM 2005

<Obligation id="ObligationToPay2004"
 extends="ObligationToPay">

 <Actions>
 <Action id="supplierPayment"
 class="tacscm.actions.SupplierPayment100">
 <Element ref="deliveryTransition"
 event-type="transition_activation"/>
 </Action>
 </Actions>

</Obligation>

Code 20: ObligationToPay instance for TAC SCM 2004

<Obligation id="ObligationToPay2005"
 extends="ObligationToPay">
 <Actions>
 <Action id="supplierDownPayment"
 class="law.tacscm.actions.SupplierPayment10">
 <Element ref="orderTransition"
 event-type="transition_activation"/>
 </Action>
 <Action id="supplierPayment"
 class="law.tacscm.actions.SupplierPayment90">
 <Element ref="deliveryTransition"
 event-type="transition_activation"/>
 </Action>
 </Actions>
</Obligation>

Code 21: ObligationToPay instance for TAC SCM 2005

6 Related Work
Ao and Minsky [2] propose an approach that enhances their Law Governed Interaction (LGI) with the
concept of policy-hierarchy to support that different internal policies or laws are formulated inde-
pendently of each other, achieving a flexibility support by this means. Different from our approach, Ao
and Minsky consider confidentiality as a requirement for their solution. The goal of the extensions that
we have presented until now is to support the maintenance of governance mechanisms, rather than flexi-
bility for the purpose of confidentiality.

Singh [16] proposes a customizable governance service, based on skeletons. His approach formally
introduces traditional scheduling ideas into an environment of autonomous agents without requiring
unnecessary control over their actions, or detailed knowledge of their designs. Skeletons are equivalent
to state based machines and we could adapt and reuse their formal model focusing on the implementa-
tion of a family of applications. But [16] has its focus on building multi-agent systems instead of moni-
toring and enforcement purpose.

All approaches presented below are useful instruments to promote reuse; they can be seen as instru-
ments for specifying extendable laws in governance frameworks. COSY [12] views a protocol as an
aggregation of primitive protocols. Each primitive protocol can be represented by a tree where each
node corresponds to a particular situation and transitions correspond to possible messages an agent can
either receive or send, i.e., the various interaction alternatives. In AgenTalk [15], protocols inherit from
one another. They are described as scripts containing the various steps of a possible sequence of interac-
tions. Koning and Huget [14] deal with the modeling of interaction protocols for multi-agent systems,
outlining a component-based approach that improves flexibility, abstraction and protocol reuse.

7 Conclusions
In open multi-agent systems, in which components are autonomous and heterogeneous, trust is crucial.
This paper presented an approach to ensure trust and augment reliability on customizable open systems.
The approach is based on governing the interactions in the system. This is a non-intrusive method,
which allows the independent development of the agents of the open system – they are only required to
follow the protocols specified for the system.

The purpose of governance frameworks is to facilitate extensions on governance mechanisms for
open systems. Interaction and roles are first order abstractions in open system specification reuse. We
can also conclude that while analyzing the open software system domain, it is possible to distinguish
two kinds of interaction specification: fixed (stable) and flexible (extensible). The challenge to develop-
ers is to deliver a specification that identifies the aspects of the open MAS that will not change and cater
the software to those areas. Stability is characterized by the interaction protocol and some general rules
that are common to all open MAS instances. Extensions on interaction rules will impact the open MAS
and the agents and extensions are specified. The main contribution of this work is to provide a technique
to design software to evolve, therefore reducing the maintenance efforts.

With this proposal we aim to improve the engineering of distributed systems, providing a customiza-
ble conformance verification mechanism. We are also targeting the improvement on the quality in gov-
ernance mechanisms of open systems; this will be achieved by facilitating the extension of governance
mechanisms. We propose to use variations and laws to specify, implement and maintain extension
points. We also support the implementation of these variations using a law-governed mechanism.

The purpose of this paper was to derive an approach that could be useful to facilitate extensions on
governance mechanisms for open systems. Interaction is the first order abstraction in open system speci-
fication reuse. Here, we illustrated how interaction could be easily designed for reuse. We can also con-
clude that while analyzing the open software system domain, it is possible to distinguish two kinds of
interaction specification: fixed (stable) and flexible (extensible). The challenge to developers is to deliv-
er a specification that identifies the aspects of the open MAS that will not change and cater the software
to those areas. Stability is characterized by the interaction protocol and some general rules that are
common to all open MAS instances. The experiment showed that this is an interesting and promising
approach; it improves the open system design by incorporating reliability aspects that can be customized
according to application requirements and it improves maintainability. The application development
experience showed us that it is possible to obtain benefits from the use of proper engineering concepts
for its specification and construction. However, more experiments with real-life MAS applications are
needed to evaluate and validate the proposed approach.

8 References
[1] Agha, G. A. Abstracting Interaction Patterns: A Programming Paradigm for Open Distributed Sys-

tems, In (Eds) E. Najm and J.-B. Stefani, Formal Methods for Open Object-based Distributed Sys-
tems IFIP Transactions, Chapman & Hall, 1997.

[2] Ao, X. and Minsky, N. Flexible Regulation of Distributed Coalitions. In Proc. of the 8th European
Symposium on Research in Computer Security (ESORICS). Gjøvik Norway, October, 2003.

[3] Arunachalam, R; Sadeh, N; Eriksson, J; Finne, N; Janson, S. The Supply Chain Management Game
for the Trading Agent Competition 2004. CMU-CS-04-107, July 2004

[4] Batory, D; Cardone, R. and Smaragdakis, Y. “Object-Oriented Frameworks and ProductLines”, 1st
Software Product-Line Conference, Denver, Colorado, August 2000.

[5] Bellifemine, F; Poggi, A; Rimassa, G. (2001) Jade: a fipa2000 compliant agent development envi-
ronment, in: Proceedings of the fifth international conference on Autonomous agents, ACM Press,
2001, pp. 216–217

[6] Carvalho, Gustavo; Paes, Rodrigo; Lucena, Carlos. Governing the Interactions of an Agent-based
Open Supply Chain Management System. MCC nº 29/05, Dpto de Informática, PUC-Rio, 2005.

[7] Carvalho, Gustavo; Paes, Rodrigo; Lucena, Carlos. Extensions on Interaction Laws in Open Multi-
Agent Systems. In: First Workshop on Software Engineering for Agent-oriented Systems (SEAS
05), 19th Brazilian Symposium on Software Engineering. Uberlândia, Brasil

[8] Choren, R. and Lucena, C.J.P. Modeling Multi-agent systems with ANote. Software and Systems
Modeling 4(2), 2005, p. 199 - 208.

[9] Collins, J; Arunachala,R; Sadeh,N; Eriksson,J; Finne,N; Janson,S. (2005) The Supply Chain Man-
agement Game for the 2005 Trading Agent Competition. CMU-ISRI-04-139.

[10] Fayad, M; Schmidt, D.C.; Johnson, R.E. Building application frameworks : object-oriented founda-
tions of framework design. ISBN 0471248754, New York: Wiley, 1999.

[11] Fredriksson M. et al. First international workshop on theory and practice of open computational
systems. In Proceedings of twelfth international workshop on Enabling technologies: Infrastructure
for collaborative enterprises (WETICE), Workshop on Theory and practice of open computational
systems (TAPOCS), pp. 355 - 358, IEEE Press, 2003.

[12] Haddadi, A. Communication and Cooperation in Agent Systems: A Pragmatic Theory, volume
1056 of Lecture Notes in Computer Science. Springer Verlag, 1996.

[13] Kendall, E. “Role Modelling for Agent Systems Analysis, Design and Implementation”, IEEE Con-
currency, 8(2):34-41, April-June 2000.

[14] Koning, J.L. and Huget, M.P.. A component-based approach for modeling interaction protocols. In
H. Kangassalo and E. Kawaguchi (eds) 10th European-Japanese Conference on Information Model-
ling and Knowledge Bases, Frontiers in Artificial Intelligence and Applications.IOS Press, 2000

[15] Kuwabara, K; Ishida, T; and Osato, N. AgenTalk: Coordination protocol description for multiagent
systems. In First International Conference on MultiAgent Systems (ICMAS-95), San Francisco,
June 1995. AAAI Press. Poster.

[16] Singh, M. P., "A Customizable Coordination Service for Autonomous Agents," Intelligent Agents
IV: Agent Theories, Architectures, and Languages, Munindar P. Singh et al. ed., Springer, Berlin,
1998, pp. 93-106.

[17] Paes, R. B.; Carvalho G. R.; Lucena, C.J.P.; Alencar, P. S. C.; Almeida H.O.; Silva, V. T. Specify-
ing Laws in Open Multi-Agent Systems. In: Agents, Norms and Institutions for Regulated Multi-
agent Systems (ANIREM), AAMAS2005, 2005.

[18] Paes, R.B; Lucena, C.J.P; Alencar, P.S.C. A Mechanism for Governing Agent Interaction in Open
Multi-Agent Systems MCC nº 30/05, Depto de Informática, PUC-Rio, 31 p., 2005

[19] Sadeh, N; Arunachalam, R; Eriksson, J; Finne, N; Janson, S. TAC-03: a supply-chain trading com-
petition, AI Mag. 24 (1) 92–94, 2003.

[20] Wooldridge, M; Weiss, G; Ciancarini, P. (Eds.) Agent-Oriented Software Engineering II, Second
International Workshop, AOSE 2001, Montreal, Canada, May 29, 2001, Revised Papers and Invited
Contributions, Vol. 2222 of Lecture Notes in Computer Science, Springer, 2002.

[21] Yu, L; Schmid, B.F. “A conceptual framework for agent-oriented and role-based workflow model-
ling”, the 1st International Workshop on Agent-Oriented Information Systems, Heidelberg, 1999.

[22] Zambonelli, F, Jennings, N; Wooldridge, M. Developing multiagent systems: The gaia methodolo-
gy, ACM Trans. Softw. Eng. Methodol. 12 (3) 317–370, 2003.1.1 LNCS Online

