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Abstract

This paper describes the work achieved by the RXF/LITP team
during the two last years under the European Community Parallel
Computing Action. The goal of the project was the design and the im-
plementation of an environment based on object-oriented techniques
to program concurrent and distributed applications on parallel ma-
chines.

First, this paper introduces an execution environment written in
C++ dedicated to a parallel machine. This environment includes a
concurrent extension of C++ towards active objects, a system layer
for object allocation and execution, a class library to interface the
system layer and a high level tool to build distributed applications.
Then the paper presents Actalk, a concurrent extension of Smalltalk
to prototype and visualize programming environments on a standard
workstation. The integation of active objects in a sequential environ-
ment is discussed, particularly with regard to object visualization and
scheduling. An assessment of the project concludes the paper.



1 Introduction

This paper describes the work achieved by the RXF/LITP team during the
two last years under the European Community Parallel Computing Action.
Implementation, experience gained and assessment are expressed in relation
to the previous goals.

The overall goal of the project [Briot and Gautron 89] was the design and
the implementation of an environment based on object-oriented techniques
to program concurrent and distributed applications on parallel machines.
Rather than, for example, focusing on a formal approach, we advocate the
needs for specific environments (1) to help specifications, (2) to visualize
experimentations, and then (3) to translate applications on a parallel execu-
tion environment. Object-oriented techniques are the common denominator
to the different components of the project.

The environment we propose includes two different components: (1) an
execution environment written in C++ and running on a parallel computer,
and (2) a specification and experimentation environment running on top of
Smalltalk-80' on a standard workstation. These two components can be
stand-alone but were designed to be integrated in a distributed application
development chain.

An important characteristic of our project was to rely on existing stan-
dard languages (Smalltalk and C++), on a commercial machine dedicated to
parallel computation (T-NODE) and on an available operating system suit-
able to a parallel machine (Helios?). These choices ensure a certain durability
of our work in a domain where portability is an important issue. However,
the languages cited were fairly designed with sequential environment in mind.
This characteristic underlies the object model they supply: activation of pas-
sive objects within the executing environment of the whole application. On
the contrary, concurrent and parallel programming needs the support of ac-
tive objects with a separate executing environment attached to each running
object. Thus the first observation we can do about our project is that the
two components needed, at first, to extend the object model of Smalltalk

'Smalltalk-80 is a trademark of Parc Place Systems.
2Helios is a trademark of Perihelion Software.



and C++ to support active objects.

The rest of the paper is organized in two parts. Each part describes goals,
implementation and experience of one component of the project. An overall
assessment concludes the paper.

The hardware and software platform we used during the project include
SUN-4 workstations, a T-NODE machine with 16 transputers (4M), the He-
lios operating system version 1.[1-2], Smalltalk-80 version 2.[4-5] and C++
version 2.[0-1].

2 System Layer

2.1 Objectives

The objective of the system layer was to provide the foundations for running
concurrent and distributed applications on a parallel environment [Saleh and Gautron 91].
During the specifications, the following points were of specific interest:

e design and implementation of a concurrent extension of C++ towards
active objects.

e design and implementation of a minimal system layer and of a class
library in order to allocate and execute active objects on different nodes.

e extension of C++ to support object migration and persistence
e high level execution layer for building distributed applications.

Almost all these objectives have been reached, sometimes in a different man-
ner that we advocated. For example, with respect to migration, we found
unnecessary to extend the language and we decided to provide this service
through a class library, matching de facto the object-oriented paradigms. The
sections below describe the results of our work with regard to the objectives
listed above.



2.2 A Synchronization Mechanism for Concurrent Object-
Oriented Programming

This section focuses on the integration of concurrency in class-based object-
oriented languages. Many researchers have already pointed out the interfer-
ence between object-oriented features and concurrency control mechanism
[Saleh and Gautron 91]. Our goal was to implement a concurrency control
mechanism for C++ objects that does not interfere with other language fea-
tures. More precisely, our motivation was to address the following issues:

e it should be possible to design parallel object-oriented applications
by reusing sequential components as such. For example, ACT++
[Kafura and Lee] and Rosette
[Tomlinson and Singh 89] supply a concurrency control mechanism re-
quiring to re-write existing library components, thus restricting code
reusability.

e concurrency control model should not have to interfere with other lan-
guage behaviors. For example, Guide [Decouchant et al. 89] synchro-
nization constraints interfere with inheritance, thus restricting language
support.

e it should be possible to parameterize the concurrency control mecha-
nism with informations included in incoming messages. For example, in
the family of POOL languages [America 87, America 90|, synchroniza-
tion constraints can only be expressed according to the internal state
of the object. Methods arguments cannot be parameters of constraints,
thus restricting message acceptance policy.

We describe below how our concurrent extension of C++ copes with these
issues through an example, the readers and writers problem.

2.2.1 Reuse of Sequential Components

The class definition below describes the interface of a standard C+-+ class
with two member functions read and write that conform to the usual reader-
writer scheme:

// Item is an arbitrary user-defined type



class ReaderWriter {
// private stuff
public:
Item read (int position);
void write (Item, int position);
};

Our concurrent C++ compiler automatically generates code that makes
any operations to be executed in mutual exclusion by default. Thus, the class
above implements the reader-writer problem with only one writer active at
the same time.

2.2.2 Intra-Object Concurrency

Allowing different readers to be active at the same time requires a synchro-
nization mechanism for intra-object concurrency. The class definition below
introduces our model [Saleh and Gautron 92]: a derived class, NReaders_1Writer,
specifies the synchronization constraints allowing N readers to be active at

the same time:

class NReaders_1Writer : public ReaderWriter {
boolean false () { return FALSE; }
delay: // access specifier
false() delay read (int), read (int); // synchronization constraint
};

Readers and writers own the same priority and any reader waiting on the
head of the queue may be activated as soon as no writer is active.

The delay declaration within the delay specifier above defines a synchro-
nization condition attached to the member function read. In this example,
it states that a reader may be activated when another reader is already ac-
tive only if the condition false is not verified. In this trivial case, this is
always the case, and any reader may be activated even if another reader is
running. Operations are always mutually exclusive by default: two writers,
or one writer and one reader, cannot be active at the same time.

2.2.3 Message Acceptance Priority

We chose to implement message acceptance priority with a simple mecha-
nism. An identical priority is assigned by default to each member function.
This priority can be modified with a delay specification similar to the follow-
ing:



Reader Priority

class NReaders_1Writer_ReaderPrio : public NReaders_1Writer {
delay:
read (int) > write (Item, int);

};

Writer Priority

class NReaders_1Writer_WriterPrio : public NReaders_1Writer {
delay:
read (int) < write (Item, int);

};

By default, all the operations applied on a same object are put on a same
waiting queue and accepted for execution once their delay condition satisfied.
The usual C++ comparison operators are used to arrange the priority levels.
One queue per priority level is created and the object’s scheduler processes
a straighforward algorithm: high priority served first, FIFO mode within a
same priority.

The priorities obey a sequential order. This model is simple but efficient.
The number of queues is known at compile-time, simplifying implementation.
Any ambiguity in the priority order entails a compile-time error.

2.3 A Basic System Layer Support for Distribution
Management

Writing distributed applications amounts to define servers implementing ser-
vices. Our system layer provides a framework to define servers in an object-
oriented programming style. As first application to this system layer, our
class library implements basic distributed services. This section briefly de-
scribes different facilities supplied by the system layer through the class li-
brary:

e object allocation, local as well as remote

e server construction. A base class Server is provided. A user-defined
server simply inherits from this class and defines its public interface.
Inheritance allows safe code reusability: for example, the base class will
automatically creates the appropriate stream connections.
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e remote argument passing. A distributed application has to deal with
function argument encoding/decoding to send /receive requests to/from
the network. A simple external representation is provided to support
this task.

e remote pointers. Remote allocation means remote pointers in order to
execute operations on a remote object. Universal references are sup-
plied to support transparent synchronous and asynchronous remote /local
procedure calls. This last service is interfaced by different concurrent
classes.

e several other services such as early replies (also called futures) are pro-
vided for data flow and “wait-by-necessity” programming.

2.3.1 Object Allocation

Two primitives support object allocation and de-allocation:

void* remoteAllocation (char* sitename, size_t size);
void freeSpace (char* sitename, void* addr);

remoteAllocation allocates size bytes onthe remote site referred to
by sitename, the logical configuration name of the site (/Cluster/00 for
example). The following steps are processed:

e locate the memory server on the remote site. If not present, dynami-
cally load it and then open a connection between the local and remote
sites.

e send a request for memory allocation and return the remote reference.

e close the connection and keep in a local cache the waiting port of the
memory server so that future request be served faster.

Conversely, freeSpace frees the memory pointed to by addr on site sitename.

2.3.2 Server Construction

A user-defined server derives from the class Server. The derived class pro-
vides as constructor argument an array of pointers that describe its service.
For example:



// a code server for class X
class X_Server : public Server {
public:
// constructor arguments are passed to the base class constructor
X_Server (char* serverName, MemFctPtr* serverFct[])
: Server (serverName, serverFct) {}

};
serverFct is an array of functions (not described here) defined to encap-
sulate the calls to member functions of class X. This mechanical task can be
automatically achieved with the support of a high level tool such as a stub
generator (see section 2.5).

2.3.3 Remote Procedure Calls

Client-server communications are usually implemented with the support of
a remote procedure call (RPC) mechanism. Any RPC protocol requires the
client and the server to agree on argument passing format. In our library,
packing and unpacking of arguments are achieved through the medium of
the class Message. The following example outlines how the arguments of a
simple member function void X::m(Arg al, Arg a2) are encoded:

void X::m(Arg al, Arg a2) {

Connection connection ("X_CodeServer");
Message mess (2, 2*sizeof (Arg));

mess.set (opcode(m)); // built-in opcode
mess.insert (al, sizeof(Arg);
mess.insert (a2, sizeof(Arg);
connection.SendRequest (mess);

}

Again, this mechanical task can be automatically achieved with the sup-
port of a high level tool.

2.3.4 Remote Pointers

Remote pointers, as well as usual pointers, may be created from any arbitrary
type. Some kind of genericity must be thus provided for allowing the creation
of arbitrary remote pointers. Our library supplies a parameterized class®
Pointer, with the original type of the remote pointer as class argument:

3Template in C++ terminology.



template <class T> class Pointer<T> {
// private stuff

public:
Pointer (char* sitename = 0); // creates a remote pointer
T* operator->(); // operator overloading

};

The class constructor allocates a remote pointer (local by default) to an
instance of the class argument. This latter class must provide a constructor
without argument. For example:

class X {

public:
XO;
void initialize();
void mQ);

};

Pointer <X> rptr; // class instantiation and

// remote instance creation: call to X::X()
rptr->initialize(); // remote initialization
rptr->m(); // remote call to m

Remote pointers allow remote procedure calls to appear as local calls. In
the parameterized class declaration above, the message send operator “->”
is redefined. A call through a Pointer<T> object is the same whereas the
object is local or remote. The “->" operation returns a reference to the ob-
ject if the caller and the callee are located on the same site, a reference to a
stub connected to the code server of the remote object otherwise. This ap-
proach makes remote calls to appear local to the client code without language
extension or compiler modification.

2.4 Object Migration and Persistence

The migration issue has been addressed, but is not yet fully implemented.
The persistence issue has not been addressed. Our previous decision was to
provide migration through a language extension. We found it unnecessary
and, instead, we provide a library class: each potentially migrable object
inherits from the generic class Migrable. For example:

template <class T> class Migrable<T> {
// private stuff
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Figure 1: System layer object model.

public:
Pointer<T> Migrate (char* sitename);

};

// Object is an arbitrary type
class MigrableObject : public Migrable<Object> {

};

The particularity of this model is to consider migration not as a language
feature but as an object property. Indeed, making an object migrable only
requires a user class to inherit from the class Migrable.

2.5 High Level System Interface

Although our system layer is interfaced with a class library that significantly
reduces the complexity inherent to distributed applications, the programmer
still has to write mechanical and error-prone tasks. To face this issue, we
provide a high level tool, a stub generator, with the user code as input and
the different pieces necessary to build a distributed application as output.
This includes code servers, stub objects, encoding/decoding of arguments,
translation of local address to universal adresses when needed. This tool is
supplied as an independent C++ application.

2.6 Object Model

The figure 1 summarizes our object model as supplied by the system layer and
used by the stub generator. It shows three nodes referred to as /Cluster/0[0-1-2].
Three pointers are created from node 00, one local (ptr0) and two remote
(ptr[1-2]). A procedure call through ptr0 is just a local indirection to the
real object. ptrl and ptr2 are two stubs with each two fields, the object
address on a given site and the local address of the code server for the class
referred to by these pointers. Procedure calls through ptr1 and ptr2 are for-
warded to the remote site by the local and remote parts of the code server.
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2.7 Conclusion

Our class library supplies a clean, modular and efficient interface to the
system layer. The class library illustrates the power of taxonomy claimed
by the object-oriented technology and the expressiveness of the generic class
model. For example, the transparent localization eases porting applications
written on monoprocessor machine onto a distributed memory machine.
The system layer is independent of a specific architecture. Although
Helios was our privileged target, porting our implementation should only
require the underlying operating system to provide network communication
facilities, a server management support and a task system on each node.

3 Prototyping Programming Environments

3.1 Objectives

The second part of the project focuses on programming environments for
concurrent (and distributed) programs. It is obvious that because of the
multiple, complex, and non deterministic nature of concurrent programming,
sophisticated programming environments to describe, visualize, monitor, and
debug such programs are not a feature but a necessity. The nature and
computation models of concurrent programming are not fully mature yet.
Consequently it makes more sense for us to prototype programming environ-
ments for concurrent systems which should be modular and flexible enough
for further evolution. We advocate designing new programming environment
prototypes starting from existing sophisticated programming environments
that we can find in standard (sequential) programming languages. We keep
the same object-orientation for the whole project. Meanwhile, as opposed
to the system-layer sub-project (see Section 2) which chose C++ as the de-
velopment language, we chose Smalltalk-80 for its rich, flexible and reusable
programming environment.

Our starting point is a testbed for object-oriented concurrent program-
ming (OOCP) languages based on Smalltalk-80. This system (namely Actalk)
gives a good integration of active objects (we call them actors) into the
Smalltalk-80 environment. We will first introduce the Actalk system. Then
we will focus on the way we extend standard Smalltalk-80 programming
environment to provide a prototype programming environment for object-
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oriented concurrent systems. This will include: extension of the Smalltalk-80
user-interface framework (MVC), and design of a generic scheduler. Other
environment tools will also be discussed. This work focuses on the Smalltalk-
80 system, but we firmly believe that our experience and design of prototype
tools is general enough to be useful for other systems.

3.2 Overview of Actalk

Goals and Architecture Actalk is a testbed for modeling, classifying
and experimenting with OOCP languages. Actalk is based on Smalltalk-80
(referred to as ST80 in the following). It introduces active objects communi-
cating through asynchronous message passing in ST80. We call them actors
and Actalk stands for actors in Smalltalk.

The Actalk system started on a pedagogical basis, as a way to model
in a minimal way various kinds of actor-based languages (for instance the
Actor model of computation [Agha 86], and ABCL/1 [ABCL 90]). Such
descriptions are implemented as subclasses of the two classes composing the
Actalk minimal kernel, namely:

the class Actor, expressing the structure of actors and the semantics of
asynchronous message passing,

and the class ActorBehavior expressing the semantics of behaviors (of ac-
tors) handling incoming messages.

Actalk has been further described in [Briot 89).

Programming Environment Because Actalk actors are well integrated
into the ST80 system, they automatically benefit from the standard ST80
programming environment. We further extended this standard environment
to support the specificity of actors. Tools such as a user-interface generator
for actors, based on the ST80 MVC paradigm (in section 3.3), and a generic
scheduler (in section 3.4) have been developed.

Applications Actalk has been used within the Oks [Voyer 89] system in
order to compile production rules into concurrent demons. Actalk has been
also used in order to describe various Distributed Al systems, by extending
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the concept of actor into the concept of agent. Platforms for coarse grain
cognitive agents [Bouron et al. 90|, as well as for fine grain reactive agents
[Drogoul et al. 91], have been successfully developed on top of Actalk.

An Example: Generating Prime Numbers In order to give a taste of
the development and visualization of programs in the Actalk environment,
we shortly describe an example and show a display of its execution. This
example models the generation of prime numbers through an ordered chain
of filters (sieves), one filter for each prime number already found. Every
integer, until some limit, will be checked through this chain of filters. Each
filter checks if the incoming integer is a multiple of the prime number it
models. If so, the integer is rejected, otherwise it will be checked by (sent
to) next prime filter. If the filter is the last of the chain, this means that a
new prime number has been discovered. Consequently a new filter is created

for this new prime number and linked at the end of the chain.

Definition of class PrimeFilter is given below. n is the prime number
modeled by the filter, and next is the next filter in the chain. We omit
definition of method n: for initializing instance variable n.

ActorBehavior subclass: #PrimeFilter
instanceVariableNames: ’n next °’
classVariableNames: ’°’
poolDictionaries: ’’
category: ’Actalk-Examples’!

'PrimeFilter methodsFor: ’script’!

filter: i
i \\ n = 0 ifFalse: [next isNil
ifTrue: [next:= (self class new n: i) actor]
ifFalse: [next filter: i]]! !

!PrimeFilter class methodsFor: ’example’!

upTo: max
"PrimeFilter upTo: 100"
| two |
two := (self new n: 2) actor.

2 to: max do:[:i | two filter: i]! !
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A snapshot of the corresponding computation, introducing some of the
tools of the Actalk programming environment, is shown in Figure 2.

3.3 Actalk MVC

The Model View Controller (MVC) is the standard paradigm for developing
interactive applications in ST80. Three abstract classes are provided to take
over the operations related to a particular aspect of the user interface:

the model which holds the application’s state and behavior,
the view which is concerned with displaying the application’s state,

and the controller which coordinates user actions (or inputs) with the model
and the view [Krasner and Pope 88].

3.3.1 Lacks of the Standard MVC Model

The MVC paradigm provides, at the abstract level, a convenient methodol-
ogy for modular interface construction. However MVC is not directly usable
to visualize concurrent objects because it makes several assumptions about
the nature of objects (they are supposed to be passive objects, i.e., no ac-
tivity on their own). The use of the MVC interface may become frustrating
and error generating for the end-user because of the interferences that non-
passive objects (actors) generate on the screen. In the snapshot shown in
Figure 3, the user is currently interacting with the system browser, while
some Actalk simulation of Conway’s Life’s game is concurrently displaying
successive generations.

A careful study of the MVC abstract classes leads us to the following
observations:

e Models are supposed to be passive. In the standard MVC framework,
the state modification of a model is controlled by the user (via the
controller part of the interface).

As opposed to passive objects, active objects (actors) may change their
state independently of the user interaction. Actors may ask their views
for a redisplay in a window that could be inactive, or while the user
is moving or resizing it. This can lead to interferences and confusing
representations of objects on the screen.
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Figure 2: Example: generating prime numbers.
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Figure 3: Illustration of interferences: display of Life’s game.

e The original MVC uses bitmap images (caches) in order to restore
back contents of windows when they are moved, resized or closed. The
problem is that a window cached image is updated in only one case:
when the user disactivates it. A window image (accordingly to the ST80
MVC paradigm) cannot change while the window is inactive because
models are passive objects.

This assumption does not stand for actors because they can change
their state at arbitrary time. Activating a window in such a case may
have the effect of displaying the cached image which stores an obsolete
representation of the model state. Other subtle interference problems
may occur, and are described in [Bouabsa 90].

3.3.2 A New MVC Dedicated to Actors

Goals and Design As explained above, we have to extend the MVC in
order to provide a satisfying interactive interface for actors. Our extension
should ensure that:

e the user is able to take control over the representation (view) of an actor
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at any time: while the actor is computing, and even if it attempts to
update its view,

e the actor is not suspended while the view is accessed by the user in
order to keep a high level of concurrency.

We chose the following strategy: giving higher priority to control (inter-
action) over update. This means that the view will not be updated while the
user interacts with the controller. We also give higher priority to computation
over update. This means that the actor will keep computing concurrently
during interaction, and that consequently updates will be temporarily dis-
abled. At the end of the interaction, the view will be updated only once (the
updates during inhibition are not bufferized).

The MVC extension should also allow:

e the visualization of actors in partially overlapped windows,

e the co-existence of standard tools (such as browsers, inspectors, debug-
gers, ...) with the new Actalk tools: the end-user must keep benefits
of using the standard tools provided by Smalltalk-80.

Managing Visualization in Overlapping Windows The solution we
adopted to manage overlapping windows is to slightly extend the MVC. In
this solution, views associated to an actor must display information on the
cache of the window. Each time the contents of the cache is updated, the
window is asked to display it in its visible parts, without affecting the contents
of windows that may overlap it (its obscured parts). This type of windows is
subdivided into visible parts (parts that are not overlapped by any window)
and obscured parts (invisible parts).

Informations about visibility of windows is automatically updated by the
window manager of ST80 each time the structure of the screen is changed
(i.e., each time a window is moved, reframed, collapsed, opened or closed).
During this updating, displaying of actors is disabled until new visibility
information has been computed.

In order to keep a high level of concurrency, windows that may want to
update themselves on the screen while visibility information is not available
are not suspended: they inform the window manager that their contents have
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Figure 4: Interface generated for prime numbers algorithm.

changed, and let their models (actors) continue execution. The window man-
ager automatically redraws those windows as soon as it finishes computing
visibility information.

3.3.3 Automatic MVC Generator

In order to ease the programmer with the construction of MVC-based inter-
faces for actors, we offer an automated interactive generation of the interface
(namely the view and controller classes). Figure 4 shows an example of inter-
face automatically generated from each of the prime number filter composing
the algorithm described in section 3.2.

Design We consider two complementary aspects as basic to visualize and
control actors:

state and messages : Asin standard MVC, instance variables are displayed,
and messages to be sent to the actor by the user may be selected
through a menu.

activity :  This part is specific to actors. We display the contents of the
mailbox of the actor, as well as the current message being processed.
A menu provides the user some monitoring (suspend, sleep, step, re-
sume. .. ) of the actor activity.
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The Actalk-MVC generator offers many others features and specially the
following;:

e interactive description: The user can choose, at generate time, what
instance variables will be visualized. We intend to provide also non-
textual (graphical) representations of numerical variables (for example,

a gauge).

e modularity: The generator takes the hierarchy into account. When
defining a hierarchy of models, their respective views and controllers
automatically match this hierarchy.

e genericity: The generator is not limited to a specific actor model.
For instance, this generator supports Agha’s Actor computation model
[Agha 86]. If the behavior is replaced by a structurally different one
(e.g., whose instance variables differ), the view (and the controller)
change accordingly.

e debugging tools: The user can dynamically control the way an actor
computes messages (step by step, sleep. .. ). Those tools are well suited
to spy and monitor the activity of actors.

3.4 Scheduling Actors

Implementing concurrent activities on a monoprocessor involves a mecha-
nism to simulate parallelism by scheduling activities. Smalltalk-80 provides
a multi-process mechanism controlled by a scheduler. But this scheduler is
too limitative for our goals. We describe why and how we extended the
standard ST80 scheduler for a finer and more generic control over concurrent
activities.

3.4.1 The Standard Smalltalk-80 Scheduler

The standard ST80 scheduler is non-preemptive. A process keeps computing
as long as it does not schedule explicitly. In our case, this forces the user
to include explicit scheduling (the expression Processor yield) inside the
methods describing behaviors of actors. This is of course too much low-level
constraint.
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3.4.2 A Preemptive Scheduler for Actalk

Architecture The Actalk scheduler is described by a subclass of standard
ST80 scheduler ProcessorScheduler, named PreemptiveProcessorScheduler.
The scheduling policy of this scheduler is described by a method named run
belonging to this class. The Actalk scheduler is implemented by a specific
sleeping process which periodically awakes in order to perform scheduling,
by calling method run. This scheduler process has a high priority in order
to take immediate control when being awaken.

The Actalk scheduler is generic. It may be customized by defining sub-
classes and refining the run method. run methods are described as compo-
sitions of primitive scheduling actions. Currently two primitive scheduling
actions are provided:

o time-slicing between ST80 processes, as provided by the ConcurrentS-
malltalk scheduler [Okamura and Tokoro 90]. This is implemented by
method yield.

o scheduling between actors. This is implemented by method schedule.

The distinction between these two concepts (two methods) provides a
more precise and generic control over the scheduling of actors. For in-
stance our generic scheduler may be customized for Agha’s Actor computa-
tion model [Agha 86]. Such actors may have several activities concurrently.
In that case, the CPU time allocated to such an actor is shared among its
activities, being controlled by the scheduler.

The decomposition of the scheduling strategy in primitive scheduling ac-
tions is analog to the decomposition of the execution strategy of simulated ob-
jects in the simulation system described in [Goldberg and Robson 83, pages
443-445]. In this system, the user describes activities of a simulated object
by defining the method tasks as a sequence of primitive activities such as
holdFor: n, produceResource...

Time-slicing Time-slicing is achieved by performing yield action, defined
in class

PreemptiveProcessorScheduler. It consists in changing the order of the
activable processes in the ST80 scheduler table.
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The ST80 scheduler contains a eight entries table. Each entry corresponds
to a different level of process priority and contains an ordered list of processes
(waiting for the processor). The ST80 policy for choosing the next running
process is to search in the ST80 scheduler table (in a decremental order
accordingly to the priority) for the first non empty list. Then the first process
belonging to this list is chosen.

To ensure time-slicing, the following strategy is used. When the Actalk
scheduler process awakes, the standard ST80 scheduler puts back the process
which was currently running (and just got replaced by the awaking sched-
uler process) at first position in its corresponding (priority) list. The Actalk
scheduler then moves it from the first to the last position in the list. Conse-
quently when the Actalk scheduler process returns to sleep, next (different)
process in the list will be scheduled.

Scheduling We want (1) to ensure concurrency between ST80 applications
and concurrent applications (written in Actalk) and (2) to control the way
Actalk actors are scheduled. Consequently we defined Actalk processes as
specific and owning their own scheduling policy, being distinct from standard
ST80 processes.

Actalk processes belong to class PreemptibleProcess, a subclass of Process.
The Actalk scheduler holds its own table of Actalk processes. It ensures that
at most one Actalk process at a time is included in the ST80 scheduler.

The policy for choosing the next Actalk process to be scheduled among
the ST80 processes is generic, and defined in the schedule method belonging
to class PreemptiveProcessorScheduler. We can customize our scheduler,
for instance to take into account sub-scheduling of behavior activities specific
to Agha’s Actor computation model.

Combining Time-Slicing and Scheduling The default scheduling pol-
icy defines a 20% ratio of scheduling/time-slicing (i.e., one actor scheduling
every four ST80 processes time-slicing). The run method is defined accord-

ingly:
!PreemptiveProcessorScheduler methodsFor: ’scheduling’!
run

(nbTimeSlice >= 5)
ifTrue: [nbTimeSlice := 0.
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Figure 5: Chronogram: overview visualization of scheduling.

self schedule]
ifFalse: [nbTimeSlice:=nbTimeSlice+1.
self yield]! !

Visualization In order to visualize scheduling between actors, we designed
a graphic tool. It is based on Pie menus described in [Lalonde and Pugh 89].
Figure 2 gives a sample of its use. Each actor is represented by a slice of the
pie. The slice is highlighted when the actor is scheduled and removed when
the actor dies. This tool allows dynamic visualization of scheduling events.

A complementary tool, called chronogram, records scheduling events (cre-
ation, destruction, activation ... of actors), and is used to display a graph-
ical overview (see Figure 5).

The user can easily find informations about:

e time life: creation and end of actors,
e time slicing: scheduling of actors,

e statistics: waiting duration between two activations of an actor, ...
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As opposed to the Pie menu which provides visualization of the sched-
uler instantaneous state, the chronogram provides a global overview of the
scheduler behavior during some time interval.

3.5 Porting Actalk on the T-NODE

We started porting the Actalk system on the T-NODE multiprocessor. There-
fore we first ported the Actalk kernel on another dialect of Smalltalk, named
GnuSmalltalk, whose sources are in C and in public domain. We are porting
GnuSmalltalk onto the Transputers under Helios. This porting turned out
to be much more difficult than we expected because of some GnuSmalltalk
implementation strategies. This porting has not been completed yet. We
extended the GnuSmalltalk virtual machine to support built-in actors and
asynchronous message passing, as well as remote objects. A multi-process
simulation of a network of connected GnuSmalltalk interpreters has also been
implemented [Lemarié 91].

4 Conclusion

In this paper, we described a concurrent and parallel object-oriented pro-
gramming environment. This includes two components: a C+-+based concur-
rent extension and distribution system layer, and a Smalltalk-80-based pro-
totype programming environment for object-oriented concurrent programs.
During the progress of the project, some related activities were achieved:

e a graphical tool for the network configuration of parallel applications
[Briot et al. 91].

e the multi-process simulation of CDL [Perihelion 89], a language for
component distribution on parallel machines [Perret and Gautron 91].

All the tools mentioned in the paper have been distributed to other research
centers and are available.

The overall results of the project have to be slightly relativized. We

achieved numerous software components on programming language, distri-
bution system layer, and programming environment perspectives. However
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we could not fully achieve the most ambitious part of our project, that is to
join these components into an integrated chain of development. The main
reason of this failure was the real difficulty encountered in porting existing
sequential tools on a parallel machine. Nevertheless we hope that the nu-
merous software components that we designed and implemented, as well as
our experience discussed in several research papers, will be useful for next
developments of software for parallel computers.
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