
A Classification of Various Approaches

for Object-Based Parallel and

Distributed Programming

Jean-Pierre Briot1 and Rachid Guerraoui2

1 Laboratoire d’Informatique de Paris 6 (LIP6)
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Abstract. This paper aims at classifying and discussing the various
ways along which the object paradigm is used in concurrent and dis-
tributed contexts. We distinguish the applicative approach, the integra-
tive approach, and the reflective approach. The applicative approach ap-
plies object-oriented concepts, as they are, to structure concurrent and
distributed systems through libraries. The integrative approach consists
in merging concepts such as: object and activity, message passing and
transaction, etc. The reflective approach integrates protocol libraries in-
timately within an object-based programming language. We discuss and
illustrate each of these approaches and we point out their complementary
levels and goals.

Mr. President and fellow citizens of New York: The facts with which I
shall deal this evening are mainly old and familiar; nor is there anything
new in the general use I shall make of them. If there shall be any novelty,
it will be in the mode of presenting the facts, and the inferences and
observations following that presentation. Abraham Lincoln1

1 Introduction

It is now well accepted that the object paradigm provides good foundations
for the new challenges of concurrent, distributed and open computing. Object
notions, and their underlying message passing metaphor, are strong enough to
structure and encapsulate modules of computation, whereas the notions are flexi-
ble enough to match various granularities of software and hardware architectures.

1 Address at the Cooper Institute, New York, February 27, 1860.
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Most of object-based2 programming languages do have some concurrent or
distributed extension(s), and almost every new architectural development in the
distributed system community is, to some extent, object-based. For instance both
the Open Distributed Processing (ODP) and the Object Management Group
(OMG) recent standardization initiatives for heterogeneous distributed comput-
ing, are based on object concepts [53].

As a result, a lot of object-based concurrent or distributed models, languages,
or system architectures, have been proposed and described in the literature.
Towards a better understanding and evaluation of these proposals, this paper
discusses how object concepts are articulated (applied, customized, integrated,
expanded. . . ) with concurrency and distribution challenges and current technol-
ogy. Rather than an exhaustive study of various object-based concurrent and
distributed programming systems, this paper aims at classifying and discussing
the various ways along which the object paradigm is used in concurrent and
distributed contexts.

By analyzing current experience and trends (as for instance reported in
[50,28]), we have distinguished three main approaches to in object-based con-
current and distributed programming: the applicative approach, the integrative
approach and the reflective approach. This paper discusses and illustrates suc-
cessively these three approaches.

The applicative approach applies object-based, and most often object-oriented
concepts3 , as they are, to structure concurrent and distributed systems through
libraries. The integrative approach consists in unifying concurrent and distrib-
uted system concepts with object-based concepts. The reflective approach inte-
grates protocol libraries within an object-based programming language.

Although these approaches may at first glance appear concurrent, in fact they
are not. More precisely, the research directed along these approaches have com-
plementary goals. The applicative approach is oriented towards system-builders
and aims at identifying basic concurrent and distributed abstractions. The inte-
grative approach is oriented towards application-builders, and aims at defining
a high level programming language with few unified concepts. The reflective ap-
proach is oriented towards both application-builders and system-builders. The
main goal is to provide the basic infrastructure to enable (dynamic) system cus-
tomization with minimal impact on the application programs. The success of a
reflective system relies both on a high level programming language, and on a
rich library of concurrent and distributed abstractions.

2 Peter Wegner [59] proposed a layered terminology: object-based is used for languages
and systems based on the notion of object (andmessage), class-based adds the concept
of class, and object-oriented adds further the inheritancemechanism. Object-oriented
languages and systems are by far the most common.

3 This is because class and inheritance concepts help at structuring and reusing li-
braries.
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2 Overview

The first approach is applicative (Sect. 3). This approach applies object con-
cepts, as they are, to structure concurrent and distributed systems through class
libraries. Various components, such as processes, files, and name servers, are rep-
resented by various object classes. This provides genericity of the software ar-
chitectures. Programming remains mostly standard (sequential) object-oriented
programming. Roughly speaking, the basic idea is to extend the library, rather
than the language.
The second approach is integrative (Sect. 4). It aims at identifying and merg-

ing object concepts with concurrency and distribution concepts and mechanisms.
Languages and systems among the integrative approach often integrate/unify
object with activity (the concept of active object), and message passing with
various synchronization protocols, such as sender/receiver synchronization and
transactions. However, integrations are not always that smooth and some con-
cepts may conflict with others, notably inheritance with synchronization, and
replication with communication (see Sect. 4.6).
The third approach is reflective (Sect. 5). The idea lies in the separation

of the application program with the various aspects of its implementation and
computation contexts (models of computation, communication, distribution. . . ),
themselves described in terms of meta-program(s). Reflection may also abstract
resources management, such as load balancing and time-dependency, and de-
scribe it with the full power of a programming language. The reflective approach
may be considered as a bridge between the two previous approaches as it helps
at transparently integrating various computing protocol libraries within a pro-
gramming language/system. Moreover, it helps at combining the two other ap-
proaches, by making explicit the separation, and the interface, between their
respective levels (roughly speaking: the integrative approach for the end user,
and the applicative approach for developing and customizing the system).

3 The Applicative Approach

3.1 Modularity and Structuring Needs

The basic idea of the applicative approach is to apply encapsulation and ab-
straction, and possibly also class and inheritance mechanisms, as a structuring
tool to design and build concurrent and distributed computing systems. In other
words, the issue is in building and programming a concurrent or distributed
system, with an object-oriented methodology and programming language. The
main motivation is to increase modularity, by decomposing systems in various
components with clear interfaces. This improves structuring of concurrent and
distributed systems, as opposed to Unix-style systems in which the different
levels of abstraction are difficult to distinguish and thus to understand.
Applied to distributed operating systems, the applicative approach has led to

a new generation of systems, such as Chorus [57] and Choices [20], based on the
concept of micro-kernel, and whose different services are performed by various
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specialized servers. Such systems are easier to understand, maintain and extend,
and should also ultimately be more efficient as only the required modules have
to be used for a given computation.
We illustrate the applicative approach through: (1) abstractions for concur-

rent programming, in particular through examples in Smalltalk, where a basic
and simple object concept is uniformly applied to model and structure the whole
system through class libraries, and (2) abstractions for distributed programming,
such as in the Choices operating system, which organizes the architecture of a
generic distributed operating system along abstract notions of class components,
which may then be specialized for a given instantiation/porting of the (virtual)
system.

3.2 Abstractions for Concurrent Programming

Concurrent programming in Smalltalk. Smalltalk is often considered as
one of the purest examples of object-oriented languages. This is because its
motto is to have only a few concepts (object, message passing, class, inheritance)
and to apply them uniformly to any aspect of the language and environment.
One consequence is that the language is actually very simple. The richness of
Smalltalk comes from its set of class libraries. They describe and implement
various programming constructs (control structures, data structures. . . ), internal
resources (messages, processes, compiler. . . ), and a sophisticated programming
environment with integrated tools (browser, inspector, debugger. . . ).
Actually, even basic control structures, such as loop and conditional, are not

primitive language constructs, but just standard methods of standard classes,
which make use of the generic invocation of message passing. They are based
on booleans and execution closures (blocks). Blocks, represented as instances of
class BlockClosure, are essential for building various control structures that
the user may extend at his wish. They are also the basis for multi-threaded
concurrency through processes. Standard class Process describes their repre-
sentation and its associated methods implement process management (suspend,
resume, adjust priority. . . ). The behavior of the process scheduler is itself de-
scribed by a class, named ProcessorScheduler. The basic synchronization prim-
itive is the semaphore, represented by class Semaphore. Standard libraries also
include higher abstractions: class SharedQueue to manage communication be-
tween processes, and class Promise for representing the eager evaluation of a
value computed by a concurrently executing process.
Thanks to this uniform approach, concurrency concepts and mechanisms are

well encapsulated and organized in a class hierarchy. Thus, they are much more
understandable and extensible than if they were just simple primitives of a pro-
gramming language. Furthermore, it is relatively easy to build up on the basic
standard library of concurrency classes to construct more sophisticated concur-
rency and synchronization abstractions [18]. Examples are in the Simtalk [8] or
Actalk [16,17] frameworks. Figure 1 shows a sample of the hierarchy of activ-
ity/synchronization classes provided by Actalk libraries. They implement var-
ious synchronization schemes, such as guards, abstract states, synchronization
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counters. . . (see in Sect. 6). Within the Actalk project, Löıc Lescaudron also ex-
tended the Smalltalk standard scheduler into a generic scheduler to parametrize
and classify various scheduling policies [38].

Activity

EnabledSetsActivity

ConcurrentActivity

SynchroConcurrentActivity

CountersActivity

GenericInvocationsCountersActivity

EnabledSetsGenericInvocationsCountersActivity

EnabledSetsCountersActivity

GuardsActivity

AlwaysEnabledSetsActivity

FullGenericInvocationsCountersActivity

Fig. 1. Hierarchy of activity/synchronization classes in Actalk

EuLisp. EuLisp [55], a Lisp dialect including its object system, also follows
the applicative approach for concurrency. Basic abstractions for concurrency
and for synchronization (respectively, threads and locks) are defined by classes
(respectively, class thread and class lock).

Eiffel (Variations on). Although the Eiffel programming language has been
initially designed for sequential computation, several works have been conducted
afterwards to address concurrency concerns. Some of them are described in [50].
The approach proposed by Bertrand Meyer [51] is applicative, in that it is an

application of object concepts, and minimalistic, in that the idea is to expand
the scope of existing standard Eiffel concepts and mechanisms (thus to increase
their genericity) without introducing new ones, or rather the minimum. Notably,
semantics of Eiffel assertions, by pre- and post-conditions, is redefined, when in a
concurrent context, as waiting until conditions are satisfied (along the principles
of behavioral synchronization, later detailed in Sect. 4.4).

Additional constructions and mechanisms being often necessary, they may be
described and implemented through libraries, by applying the object method-
ology to organize them. For instance, class Concurrency [34] encapsulates an
activity (associated to an object) and remote asynchronous message passing.

Alternatively, but following the same applicative approach, concurrency has
been introduced in the ÉPÉE environment [33] at the level of complex data
structures (e.g., a matrix). ÉPÉE follows a data-concurrency (SPMD) model of
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concurrency, as opposed to an activation/control-concurrency (MIMD) model, as
for class Concurrency (and, more generally speaking, for integrative languages
based on the concept of active objet, as we will later see in Sect. 4.3). Indeed, ob-
jects represent duality (and unification) between data and procedures (potential
activation). ÉPÉE provides libraries of abstract structures which may be placed
on several processors, without any addition to the Eiffel language.

3.3 Abstractions for Distributed Programming

Smalltalk libraries. The HP Distributed Smalltalk product provides a set of
distributed services following the OMG (CORBA) standard, themselves imple-
mented as Smalltalk-80 class libraries. Smalltalk offers libraries for remote com-
munication, such as Sockets and RPC, as well as standard libraries for storage
and exchange of object structures for persistence, transactions, and marshaling.
The Binary Object Streaming Service (BOSS) library provides a basic support
for building distribution mechanisms, e.g., persistence, transactions, and mar-
shaling.
Projects like GARF [23,24] and BAST [25,26] go a step further in providing

abstractions for fault-tolerant distributed programming. In GARF, two comple-
mentary class hierarchies have been developed for various communication mod-
els (point-to-point, multicast, atomic multicast. . . ) and object models (monitor,
persistent, replicated. . . ). For instance, class Mailer implements remote message
passing. Class Abcast (a subclass of Mailer) broadcasts an invocation to a set
of replicated objects, and ensures that the messages are totally ordered (ensure
the consistency of the replicas). These classes constitute the adequate support
for the development of fault-tolerant applications where critical components are
replicated on several nodes of a network [32].
The BAST project aims at building abstractions at a lower level. Roughly

speaking, BAST provides distributed protocols, such as total order multicast
and atomic commitment, that are used in the implementation of GARF classes.
For instance, BAST supports classes UMPObject for unreliable message passing,
and subclassses RMPObject, RMPObject, and RMPObject respectively for reliable,
best effort and fifo (first in first out) message passing.

Choices. Choices [20] is a generic operating system, of which objective is not
only to be easily ported onto various machines, but also to be able to adjust var-
ious characteristics of both hardware, resources, and application interfaces such
as: file format, communication network, and memory model (shared or distrib-
uted). An object-oriented methodology is presented together with the system,
both for the design of distributed applications, and for the design of new exten-
sions to the Choices kernel.
A specific C++ class library has been developed. For instance, class Object-

Proxy implements remote communications between objects, classes Memory-
Object and FileStream represent memory management, and class ObjectStar
provides some generalized notion of pointer. Class ObjectStar provides trans-
parency for remote communications without need for a pre-compilation step.
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This class is also useful for the automatic garbage collector. Class Disk ab-
stracts and encapsulates a physical storage device which may be instantiated,
e.g., in class SPARCstationDisk when porting Choices onto a SPARC station.
The experience of the Choices projects shows that a distributed operating

system, developed with an object-oriented methodology and programming lan-
guage (C++ in this case), helps at achieving better genericity and extensibility.

Beta. In a similar approach, a library of classes (named patterns in Beta) for
distributed programming has been developed with and for the Beta programming
language [14]. For instance, class NameServer represents a name server which
maps textual object names to physical references. Class ErrorHandlermanages
partial errors/faults of a distributed system. The point in this work is to be able
to add distributed features to a given sequential/centralized program, without
changing the program logic, i.e., only through additions, as opposed to changes
[14, page 199].

3.4 Evaluation of the Applicative Approach

In summary, the applicative approach aims at increasing the flexibility, yet reduc-
ing the complexity, of concurrent and distributed computing systems by structur-
ing them as libraries of classes. Each aspect or service is represented by an object.
Such modularity and abstraction objectives are very important because concur-
rent and distributed computing systems are complex systems, which ultimately
use very low-level mechanisms, e.g., network communication. Furthermore, such
systems are often developed by teams of programmers, and in such context,
having separate modules with well defined interfaces is of primary importance.
Finally, the difficulty with maintaining and extending Unix-like systems comes
mainly from their low modularity and insufficient level of abstraction.
Although progress is made towards that direction, as noted above, it is still

too early to exhibit a standard class library for concurrent and distributed
programming. We need, both a good knowledge of the minimal mechanisms
required, and also a consensus on a set of such mechanisms, involving differ-
ent technical communities, notably: programming languages, operating systems,
distributed systems, and data-bases. The fact that the semaphore abstraction
became a standard primitive for synchronization, leads us to think that other
abstractions for concurrent and distributed programming could also be identified
and adopted. Indeed, through a well defined interface (wait and signal opera-
tions), and a known behavior (metaphor of the train semaphores), the semaphore
represents one standard of synchronization for concurrent programming. Such a
basic abstraction may then be used as a foundation to build various higher-level
synchronization mechanisms. Classification and specialization mechanisms, as
offered by object-oriented programming, are then appropriate to organize such
a library/hierarchy of abstractions.
Andrew Black has proposed a similar study of abstractions for distributed

programming [11]. He suggested, as a first exercise, to decompose the concept of
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transaction into a set of abstractions. The goal is to represent concepts such as
lock, recovery, and persistence, through a set of objects that must be provided
by a system in order to support transactions. The modularity of this approach
would help defining various transaction models, adapted to specific kinds of
applications. For instance, a computer supported cooperative application does
not need strong concurrency control constraints as for a banking application4.
Both Venari [61] and Phoenix [29] projects aim at defining various transactional
models from a set of minimal abstractions.

4 The Integrative Approach

4.1 Unification Needs

The amount of issues and concepts required represents one of the major dif-
ficulties of concurrent and distributed programming. In addition to classical
constructs of sequential programming, concurrent and distributed computation
introduces concepts such as process, semaphore, monitor and transaction. The
applicative approach helps at structuring concurrency and distribution concepts
and mechanisms, but it keeps them disjoint from the objects structuring the
application programs. In other words, the programmer still faces at least two
major different issues: programming with objects, and managing concurrency
and distribution of the program, also with objects, but not the same objects ! To
give an example, let’s consider an application for trafic simulation. It will define
domain objects such as cars, roads, traffic lights, etc. If made concurrent or/and
distributed, this application will also include other kinds of objects to control
concurrency and distribution, such as threads, semaphores, transactions, etc.
They are completely distinct and of different nature from application domain
objects.

Furthermore, when using libraries, the programming style may become a little
cumbersome, as the distribution aspects (and more specifically the manipulation
of the objects implementing them) add up to the standard programming style.
For instance, the introduction of asynchronous and remote communicationmodel
in Eiffel class Concurrency (see Sect 3.2), forces to some amount of explicit
message manipulation (e.g., see [34, pages 109–11]), as opposed to standard
implicit message passing. One may then choose to integrate such a construct
directly into the programming language as a language extension, such as Eiffel//
[22], or a brand new language.

In summary, rather than leaving both the object programs and the manage-
ment of concurrency and distribution orthogonal, the integrative approach aims
at merging them by integrating concepts, and offering a unified object model for
the programmer.

4 The second kind of application requires a strict serialization of transactions through
a locking mechanism, whereas the first kind does not need it.



Classification of Distributed Objects 11

4.2 Dimensions of Integration

There are various possible dimensions of integration between object-based pro-
gramming concepts and concurrency and distribution concepts. We will consider
three main different dimensions. Note that they are relatively independent of
each other. Thus, as we will see, a given language or system may follow one
dimension of integration but not another one.
A first integration between the concept of an object and the concept of a

process (more generally speaking the concept of an autonomous activity) leads
to the concept of an active object. Indeed, an object and a process may both
be considered as communicating encapsulated units5. Actor languages [40,1] are
a typical example of programming languages based on the notion of an active
object.
A second dimension of integration associates synchronization to object acti-

vation, leading to the notion of a synchronized object. Message passing is then
considered as an implicit synchronization between the sender and the receiver.
Furthermore one often associates mechanisms for controlling the activation of
invocations at the level of an object, e.g., by attaching a guard to each method.
Note that the concept of an active object already implies some form of synchro-
nized object, as the existence of a (single) activity private to the object actually
enforces the serialization of invocations. However, some languages or systems,
e.g., Guide [5] or Arjuna [56], associate synchronization to objects although they
distinguish the notions of object and activity. Another more recent example is
Java [37], where a new private lock is implicitly associated to each newly created
object.
A third dimension of integration considers the object as the unit of distrib-

ution, leading to the notion of a distributed object. Objects are seen as entities
which may be distributed and replicated on several processors. The message
passing metaphor is seen as a transparent way of invoking either local or remote
objects. The Emerald distributed programming language [10] is an example of
distributed programming language based on the notion of distributed object.
One can also further integrate message passing with the transaction concept as
to support inter-object synchronization and fault-tolerance [41,27].
As noted above, these dimensions are rather independent. For instance, Java

is partially integrated in that it follows a model of synchronised objects, but
not a model of active object (object and thread are kept separate). Java does
not follow a model of distributed object either – actually it does not unless
one uses the remote method invocation (RMI) facility which then makes remote
invocation become transparent.

4.3 Active Objects

The basic idea leading to the concept of an active object is to consider an object
having its own computing resource, i.e., its own private activity. This approach,

5 This similarity has been for instance noted in [51].
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simple and natural, is quite influent [63], following the way traced by actor-
languages [40,1]. The concept of an active object is also a natural foundation
for building higher-level autonomous agents, for distributed knowledge-based
systems.
The independence of object activities provides what is usually called inter-

object concurrency. When, for each active object, requests are usually processed
one at a time: this is called a serialized object. In other computation models (e.g.,
Actors [1]) an active object is allowed to process several requests simultaneously,
thus owning more than one internal activity: this is called intra-object concur-
rency. This increases the expressive power as well as the overall concurrency.
But this requires a further concurrency control in order to ensure object state
consistency (as we will see below).

4.4 Synchronized Objects

The presence of concurrent activities requires some degree of synchronization,
i.e., constraints, in order to ensure a correct execution of programs. Synchro-
nization may be associated to objects and to their communication means, i.e.,
message passing, through various levels of identification.

Synchronization at Message Passing Level. A straightforward transposi-
tion of the message passing mechanism, from a sequential computing context
to a concurrent one, leads to the implicit synchronization of the sender (caller)
to the receiver (callee). This is called synchronous transmission: to resume its
own execution, the sender object waits for (1) completion by the receiver of the
invoked method execution and then (2) the return of the reply.
In case of active objects, the sender and the receiver own independent activ-

ities. It is therefore useful to introduce some asynchronous type of transmission,
where the sender may resume its execution immediately after sending the mes-
sage, i.e., without waiting for completion of the invoked method by the receiver.
This type of transmission introduces further concurrency through communica-
tion. It is well suited for a distributed architecture, because if the receiver (the
server) is located on a distant processor, the addition of the communication la-
tency to the processing time may be significant. Finally, some languages (e.g.,
see in [63]) introduce some mixed kind of transmission, which immediately re-
turns an eager promise for (handle to) a (future) reply, without waiting for the
actual completion of the invocation.

Synchronization at Object(s) Level. The identification of synchronization
with message passing, that is with requests invocation, has the advantage of
transparently ensuring some significant part of the synchronization concerns.
Indeed synchronization of requests is transparent to the client object, being
managed by the object serving requests.
In case of serialized active objects, requests are processed one at a time,

according to their order of arrival. Some finer grain or rather more global con-
currency control may however be necessary for objects. We will then consider
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three different levels of synchronization at the object(s) level. They respectively
correspond to: the internal processing of an object, its interface, and the coor-
dination between several objects.

Intra-Object Synchronization. In case of intra-object concurrency (i.e., an object
computing simultaneously several requests), it is necessary to include some con-
currency control in order to ensure the consistency of the object state. Usually,
the control is expressed in terms of exclusions between operations6. The typi-
cal example is the readers and writers problem, where several readers are free
to access simultaneously to a shared book. However, the presence of one writer
excludes all others (writers and readers).

Behavioral Synchronization. It is possible that an object may temporarily not
be able to process a certain kind of request which is nevertheless part of its
interface. The typical example is the bounded buffer example, which may not
accept some insertion request while it is full. Rather than signaling an error, it
may delay the acceptance of that request until it is no more full. This makes
synchronization of services between objects being fully transparent.

Inter-Objects Synchronization. Finally, it may be necessary to ensure some con-
sistency, not just individual, but also global (coordination) between mutually
interacting objects. Consider the example of a money transfer between two bank
accounts. The issue is in ensuring the invisibility of possible transient and incon-
sistent global states, while the transfer takes place. Intra-object or behavioral
synchronization are not sufficient. We must introduce a notion such as an atomic
transaction [7], to coordinate the different invocations.

Synchronization Schemes. Various synchronization schemes have been pro-
posed to address these various levels of concurrency control. Many of them are
actual derivations from general concurrent programming and have been more and
less integrated within the object-based concurrent programming framework.
Centralized schemes, as for instance path expressions, specify in an abstract

way the possible interleavings of invocations, and may be associated in a natural
way to a class. The Procol language [13] is based on that idea. Another example of
centralized scheme is the concept of body. That is, some distinguished centralized
operation (the body), explicitly describes the types and sequence of requests that
the object will accept during its activity7. Languages like POOL [4] and Eiffel//
[22] are based on this concept.

6 Note that the case of a mutual exclusion between all methods subsumes the case of
a serialized object (as defined in Sect. 4.3).

7 This concept is actually a direct offspring of Simula-67 [9] concept of body, which
actually included support for coroutines. Note that this initial potential of objects
for concurrency was then abandoned, both for technological and cultural reasons, by
most of Simula-67 followers. This potentiality started being rediscovered from the
late 70’s, actor-languages appearing as new pioneers [40].
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Decentralized schemes, such as guards, are based on boolean activation con-
ditions, that may be associated to each method. Synchronization counters are
counters recording the invocation status for each method, i.e., the number of
received, started and completed invocations. Associated to guards, they provide
a very fine grained control of intra-object synchronization. An example is the
distributed programming language Guide [5].

Finally, a higher level formalism is based on the notion of abstract behaviors.
This scheme is quite appropriate for behavioral synchronization (introduced in
the previous section). The idea8 is as following: an object conforms to some
abstract behavior representing a set of enabled methods. In the example of the
bounded buffer, three abstract behaviors are needed: empty, full, and partial.
The abstract behavior partial is expressed as the union of empty and full, and
consequently is the only one to enable both insertion and extraction methods.
After completing the processing of an invocation, next abstract state is computed
to possibly update the state and services availability of the object.

Note that, although integration of synchronization schemes with object model
is usually straightforward, this integration impacts on the reuse of synchroniza-
tion specifications (see Sect. 4.6).

4.5 Distributed Objects

An object represents an independent unit of execution, encapsulating data, pro-
cedures, and possibly private resources (activity) for processing the requests.
Therefore a natural option is to consider an object as the unit of distribution,
and possible replication. Furthermore, self-containedness of objects (data plus
procedures, plus possible internal activity) eases the issue of moving and migrat-
ing them around. Also, note that message passing not only ensures the separation
between services offered by an object and its internal representation, but also
provides the independence of its physical location. Thus, message passing may
subsume both local and remote invocation (whether sender and receiver are on
the same or distinct processors is transparent to the programmer) as well as
possible unaccessibility of an object/service.

Accessibility and Fault-Recovery. In order to handle unaccessibility of ob-
jects, in the Argus distributed operating system [41], the programmer may asso-
ciate an exception to an invocation. If an object is located on a processor which
is unaccessible, because of a network or processor fault, an exception is raised,
e.g., to invoke another object. A transaction is implicitly associated to each in-
vocation (synchronous invocation in Argus), to ensure atomicity properties. For
instance, if the invocation fails (e.g., if the server object becomes unaccessible),
the effects of the invocation are canceled. The Karos distributed programming
language [27] extends the Argus approach by allowing the association of trans-
actions also to asynchronous invocations.

8 See e.g., [46] for a more detailed description.
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Migration. In order to improve the accessibility of objects, some languages or
systems support mechanisms for object migration. In the Emerald distributed
programming language [10], and the COOL generic run-time layer [39], the pro-
grammer may decide to migrate an object from one processor to another. He
may control (in terms of attachements in Emerald) which other related objects
should also migrate together.

Replication. As for migration, a first motivation of replication is in increasing
the accessibility of an object, by replicating it onto the processors of its (re-
mote) clients. A second motivation is fault-tolerance. By replicating an object
on several processors, its services become robust against possible processor fail-
ure. In both cases, a fundamental issue is to maintain the consistency of the
replicas, i.e., to ensure that all replicas hold the same values. In the Electra [44]
distributed system, the concept of remote invocation has been extended in the
following fashion: invoking an object leads to the invocation of all its replicas
while ensuring that concurrent invocations are ordered along the same (total)
order for all replicas. Andrew Black also introduced a general mechanism for
group invocation well suited for replicated objects [12].

4.6 Limitations

The integrative approach attempts at unifying object mechanisms with concur-
rency and distribution mechanisms. Meanwhile, some conflicts may arise between
them, as we will see below.

Inheritance Anomaly. Inheritance mechanism is one of the key mechanisms
for achieving good reuse of object-oriented programs. It is therefore natural to
use inheritance to specialize synchronization specifications associated to a class
of objects. Unfortunately, experience shows that: (1) synchronization is difficult
to specify and moreover to reuse, because of the high interdependency between
the synchronization conditions for different methods, (2) various uses of inher-
itance (to inherit variables, methods, and synchronizations), may conflict with
each other, as noted in [49]. In some cases, defining a new subclass, even only with
one additional method, may force the redefinition of all synchronization specifi-
cations. This limitation has been named the inheritance anomaly phenomenon
[46].
Specifications along centralized schemes (see Sect. 6) turn out to be very

difficult to reuse, and often must be completely redefined. Decentralized schemes,
being modular by essence, are better suited for selective specialization. However,
this fine-grained decomposition, down at the level of each method, partially
backfires. This is because synchronization specifications, even if decomposed for
each method, still remain more or less interdependent. As for instance in the
case of intra-object synchronization with synchronization counters, adding a new
write method in a subclass may force redefinition of other methods guards, in
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order to account for the new mutual exclusion constraint. (See [46] for a detailed
analysis and classification of the possible problems.)

Among the recent directions proposed for minimizing the problem, we may
cite: (1) specifying and specializing independently behavioral and intra-object
synchronizations [58], (2) allowing the programmer to select among several
schemes [46], and (3) genericity, by instantiating abstract specifications, as an
alternative to inheritance for reusing synchronization specifications [49].

Compatibility of Transaction Protocols. It is tempting to integrate trans-
action concurrency control protocols into objects. Thus one may locally define,
for a given object, the optimal concurrency control or recovery protocol. For in-
stance, commutativity of operations enables the interleaving (without blocking)
of transactions on a given object. Unfortunately, the gain in modularity and
specialization may lead to incompatibility problems [60]. Broadly speaking, if
objects use different transaction serialization protocols (i.e., serialize the trans-
actions along different orders), global executions of transactions may become
inconsistent, i.e, non serializable. A proposed approach to handle that problem
is in defining local conditions, to be verified by objects, in order to ensure their
compatibility [60,30].

Replication of Objects and Communications. The communication pro-
tocols which have been designed for fault-tolerant distributed computing (see
Sect. 4.5) consider a standard client/server model. The straightforward transpo-
sition of such protocols to the object model leads to the problem of unexpected
duplication of invocations. Indeed, an object usually acts conversely as a client
and as a server. Thus an object which has been replicated as a server may itself
in turn invoke other objects (as a client). As a result all replicas of the object
will invoke these other objects several times. This unexpected duplication of in-
vocations may lead, in the best case, to inefficiency, and in the worst case, to
inconsistencies (by invoking several times the same operation). A solution, pro-
posed in [47], is based on pre-filtering and post-filtering. Pre-filtering consists in
coordinating processing by the replicas (when considered as a client) in order to
generate a single invocation. Post-filtering is the dual operation for the replicas
(when considered as a server) in order to discard redundant invocations.

Factorization vs Distribution. Last, a more general limitation (i.e., less spe-
cific to the integrative approach) comes from standard implementation frame-
works for object factorization mechanisms, which usually rely on strong assump-
tions about centralized (single memory) architectures.

The concept of class variables9, supported by several object-oriented pro-
gramming languages, is difficult and expensive to implement for a distributed
system. Unless introducing complex and costly transaction mechanisms, their

9 As supported by Smalltalk.
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consistency is hard to maintain, once instances of a same class may be distrib-
uted among processors. Note that this problem is general for any kind of shared
variable. Standard object-oriented methodology tends to forbid the use of shared
variables, but may advocate using class variables instead.
In a related problem, implementing inheritance on a distributed system leads

to the problem of accessing remote code for superclasses, unless all class code
is replicated to all processors, which has obvious scalability limitations. A semi-
automatic approach consists in grouping classes into autonomous modules as to
help at partitioning the class code among processors.

Some radical approach replaces the inheritance mechanism between classes,
by the concept/mechanism of delegation between objects. This mechanism has
actually been introduced in the Actor concurrent programming language Act 1
[40]. Intuitively, an object which may not understand a message will then del-
egate it (i.e., forward it10) to another object, called its proxy. The proxy will
process the message in place of the initial receiver, or it can also itself delegate
it further to its own designated proxy. This alternative to inheritance is very
appealing as it only relies on message passing, thus is fits well with a distributed
implementation. Meanwhile, the delegation mechanism needs some non trivial
synchronization mechanism to ensure the proper handling (ordering) of recursive
messages, prior to other incoming messages. Thus, it may not offer a general and
complete alternative solution [15].

4.7 Evaluation of the Integrative Approach

In summary, the integrative approach is very appealing by the merging it achieves
between concepts, from object-based programming, and those from concurrent
and distributed programming. It thus provides a minimal number of concepts and
a single conceptual framework to the programmer. Nevertheless, as we discussed
in Sect. 4.6, this approach unfortunately suffers from limitations in some aspects
of the integration.

Another potential weakness is that some too systematic unification/inte-
gration may lead to some too restrictive model (too much uniformity kills va-
riety !) and may lead to inefficiencies. For instance, stating that every object
is active, and/or every message transmission is a transaction, may be inappro-
priate for some applications not necessarily requiring such protocols, and their
associated computational load. A last important limitation is a legacy problem,
that is the possible difficulty with reusing standard sequential program. Some
straightforward way is the encapsulation of sequential programs into active ob-
jects. But, note that a cohabitation between active objects and standard ones,
called passive objects, is non homogeneous, which requires methodological rules
for distinction between active objects and passive objects [22].

10 Note that, in order to handle recursion properly, the delegated message will include
the initial receiver.
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5 The Reflective Approach

As we earlier discussed, the applicative approach (library-based approach) helps
at structuring concurrent and distributed programming concepts and mecha-
nisms, thanks to encapsulation, genericity, class, and inheritance concepts. The
integrative approach minimizes the amount of concepts to be mastered by the
programmer and makes mechanisms more transparent, but at the cost of pos-
sibly reducing the flexibility and the efficiency of mechanisms offered. Indeed
programming languages or systems built from libraries are often more extensi-
ble than languages designed along the integrative approach. Libraries help at
structuring and simulating various solutions, and thus usually bring good flexi-
bility, whereas brand new languages may freeze too early their computation and
communication models. In other words it would be interesting to keep the unifi-
cation and simplification advantages of the integrative approach, while retaining
the flexibility of the applicative/library approach.
One important observation is that the applicative approach and the integra-

tive approach actually address different levels of concerns and use: the integrated
approach is for the application programmer, and the applicative approach is for
the system programmer. In other words, the end user programs its applications,
with an integrative (simple and unified) approach in mind. The system pro-
grammer, or the more expert user, builds or customizes the system, through the
design of libraries of protocol components, along an applicative approach.
Therefore, and as opposed to what one may think at first, the applicative

approach and the integrative approach are not in competition, but rather com-
plementary. The issue is then: How can we actually combine these two levels of
programming ?, and to be more precise: How do we interface them ? It turns
out that a general methodology for adapting the behavior of computing systems,
named reflection, offers such kind of a glue.

5.1 Reflection

Reflection is a general methodology to describe, control, and adapt the behavior
of a computational system. The basic idea is to provide a representation of the
important characteristics/parameters of the system in terms of the system it-
self. In other words, (static) representation characteristics, as well as (dynamic)
execution characteristics, of application programs are made concrete into one
(or more) program(s), which represents the default computational behavior (in-
terpreter, compiler, execution monitor. . . ). Such a description/control program
is called a meta-program. Specializing such programs enables to customize the
execution of the application program, by possibly changing data representation,
execution strategies, mechanisms and protocols. Note that the same language
is used, both for writing application programs, and for meta-programs control-
ling their execution. However, the complete separation between the application
program and the corresponding meta-programs is strictly enforced.
Reflection helps at decorrelating libraries specifying implementation and ex-

ecution models (execution strategies, concurrency control, object distribution)
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from the application program. This increases modularity, readability and
reusability of programs. Last, reflection provides a methodology to open up
and make adaptable, through a meta-interface11, implementation decisions and
resources management, which are often hard-wired and fixed, or delegated by
the programming language to the underlying operating system.
In summary, reflection helps at integrating protocol libraries intimatelywithin

a programming language or system, thus providing the interfacing framework
(the glue) between the applicative and the integrative approaches/levels.

5.2 Reflection and Objects

Reflection fits specially well with object concepts, which enforce a good encap-
sulation of levels and a modularity of effects. It is therefore natural to organize
the control of the behavior of an object-based computational system (its meta-
interface) through a set of objects. This organization is named a Meta-Object
Protocol (MOP) [35], and its components are called meta-objects [43], as meta-
programs are represented by objects. They may represent various characteris-
tics of the execution context such as: representation, implementation, execution,
communication and location. Specializing meta-objects may extend and modify,
locally, the execution context of some specific objects of the application program.
Reflection may also help at expressing and controlling resources management,

not only at the level of an individual object, but also at a broader level such
as: scheduler, processor, name space, object group. . . , such resources being also
represented by meta-objects. This helps at a very fine-grained control (e.g., for
scheduling and load balancing) with the whole expressive power of a full pro-
gramming language [54], as opposed to some global and fixed algorithm (which
is usually optimized for a specific kind of application or an average case).

5.3 Examples of Meta Object Protocols (MOPs)

The CodA architecture [48] is a representative example of a general object-based
reflective architecture (i.e., a MOP) based on meta-components12. CodA consid-
ers by default seven (7) meta-components, associated to each object (see Fig. 2),
corresponding to: message sending, receiving, buffering, selection, method lookup,
execution, and state accessing. An object with default meta-components behaves
as a standard (sequential and passive) object13. Attaching specific (specialized)

11 Thismeta-interface enables the client programmer to adapt and tune the behavior of
a software module, independently of its functionalities, which are accessed through
the standard (base) interface. This has been named by Gregor Kiczales the concept
of open implementation [36].

12 Note that meta-components are indeed meta-objects. In the following, we will rather
use the term meta-component in order to emphasize the pluggability aspects of a
reflective architecture (MOP) such as CodA. Also, for simplification, we will often
use the term component in place of meta-component.

13 to be more precised, as a standard Smalltalk object, as CodA is currently imple-
mented in Smalltalk.
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meta-components allows to selectively changing a specific aspect of the repre-
sentation or execution model for a single object. A standard interface between
meta-components helps at composing meta-components from different origins.

Base Level Application Object

Message Message

reception

storage

scheduling

lookup

execution

state access

sending

to meta−levels

Fig. 2. Meta-components in CodA

Note that some other reflective architectures may be more specialized and
may offer a more reduced (and abstract) set of meta-components. Examples are
the Actalk and GARF platforms, where a smaller amount of meta-components
may be in practice sufficient to express a large variety of schemes and application
problems.

The Actalk platform [16,17] helps at experimenting with various synchroniza-
tion and communication models for a given program, by changing and special-
izing various models/components of: (1) activity (implicit or explicit acceptance
of requests, intra-objet concurrency. . . ) and synchronization (abstract behav-
iors, guards. . . ), (2) communication (synchronous, asynchronous. . . ), and (3)
invocation (time stamp, priority. . . ). The GARF platform [23], for distributed
and fault-tolerant programming, offers a variety of mechanisms along two di-
mensions/components: (1) object control (persistence, replication. . . ) and (2)
communication (multicast, atomic. . . ).

More generally speaking, depending on the actual goals and the balance
expected between flexibility, generality, simplicity and efficiency, design decisions
will dictate the amount and the scope of the mechanisms which will be opened-up
to the meta-level. Therefore, some mechanisms may be represented as reflective
methods, but which belong to standard object classes, that is, without explicit
and complete meta-objects.

Smalltalk is a representative example of that latter category. In addition
to the (meta-)representation of the program structures and mechanisms, as first
class objects (see Sect. 3.2), a few very powerful reflective mechanisms offer some
control over program execution. Examples are: redefinition of error handling
message, reference to current context, references swap, changing the class of
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an object. . . Such facilities actually help at easily building and integrating vari-
ous platforms for concurrent, concurrent and distributed programming, such as
Simtalk, Actalk, GARF, and CodA itself [18].

5.4 Examples of Applications

To illustrate how reflection may help at mapping various computation models
and protocols onto user programs, we will quickly survey some examples of
experiments with a specific reflective architecture. (We chose CodA. See [48] for
a more detailed description of its architecture and libraries of components.)
Note that, in the case of the CodA system, as well as for almost all other

examples of reflective systems further described, the basic programming model
is integrative, while reflection enables the customization of concurrency and dis-
tribution aspects and protocols, by specializing libraries of meta-components.

Concurrency Models. In order to introduce concurrency for a given object
(by making it into an active object, along an integrated approach), two meta-
components are specialized. The specialized message buffering component14 is a
queue which will buffer incoming messages. The specialized execution component
associates an independent activity (thread) to the object. This thread processes
an endless loop for selecting and performing next message from the buffering
component.

Distribution Models. In order to introduce distribution, a new meta-compo-
nent is added, for marshaling messages to be remotely sent. In addition, two new
specific objects are introduced, which represent the notion of a remote reference
(to a remote object) and the notion of a (memory/name) space. The remote
reference object has a specialized message receiving component, which marshals
the message into a stream of bytes and sends it through the network to the
actual remote object. This latter one has another specialized message receiving
component which reconstructs and actually receives the message. Marshaling
decisions, e.g., which argument should be passed by reference, by value (i.e.,
a copy), up to which level. . . , may be specialized by a marshaling descriptor
supplied by the marshaling component.

Migration and Replication Models. Migration is introduced by a new meta-
component which describes the form and the policies (i.e., when it should occur)
for migration. Replication is managed by adding two new dual meta-components.
The first one is in charge of controlling access to the state of the original object.
The second one controls the access to each of its replicas. Again, marshaling deci-
sions, such as: which argument should be passed by reference, by value, by move
(i.e., migrated, as in Emerald [10]), with attachments. . . , may be specialized

14 The default buffering component is actually directly passing incoming messages on
to the execution component.
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through the marshaling descriptors supplied by the corresponding component.
Also one may specialize aspects such as which parts of the object should be repli-
cated, and various management policies for enforcing the consistency between
the original object and its replicas.

5.5 Other Examples of Reflective Architectures

Other examples of representative reflective architectures and their applications
are quickly mentioned in the following. Note that this is by no means an exhaus-
tive study.

Dynamic Installation and Composition of Protocols. The general MAUD
methodology [2] focuses on fault tolerance protocols, such as: server replication,
check point. . . Its specificity is in offering a framework for dynamic installation
and composition of specialized meta-components. The dynamic installation of
meta-components enables the installation of a given protocol only when needed,
and without stopping the program execution. The possibility to associate meta-
components, not only to objects, but also to other meta-components (which are
first-class objects), enables the layered composition of protocols.

Control of Migration. The autonomy and self-containedness of objects, fur-
ther reinforced in the case of active objects, makes them easier to migrate as a
single piece. Nevertheless, the decision to migrate an object is an important issue
which often remains with the programmer responsibility (e.g., in Emerald [10]).
It may be interesting to semi-automate such a decision, along various consid-
erations such as: processor load, ratio of remote communications. . . Reflection
helps at integrating such statistical data (residing for physical and shared re-
sources), and at using them by various migration algorithms described at the
meta-level [54].

Customizing System Policies. The Apertos distributed operating system
[62], represents a significant and innovative example of a distributed operat-
ing system, completely designed along an object-based reflective architecture
(MOP). In supplement to the modularity and the genericity of the architecture
gained by using an applicative (object-oriented) approach (as for Choices, al-
ready discussed in Sect. 3.3), reflection brings the (possibly dynamic) customiza-
tion of the system towards application requirements. As for instance one may
easily specialize the scheduling policy in order to support various kinds of sched-
ulers, e.g., a real-time scheduler. Another gain is in the size of the micro-kernel
obtained, which is particularly small, as it is reduced to supporting the basic
reflective operations and the basic resources abstractions. This helps at both the
understanding and the porting of the system.
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Reflective Extension of an Existing Commercial System. A reflective
methodology has recently been used in order to incorporate extended15 trans-
action models into an existing commercial transaction processing system. It ex-
tends a standard transaction processing monitor, in a minimal and disciplined
way (based on upcalls), to expose features such as: lock delegation, dependency
tracking between transactions, and definition of conflicts, and to represent them
as reflective operations [6]. These reflective primitives are then used to implement
various extended transaction model, such as: split/join, cooperative groups. . .

5.6 Related Frameworks for Interfacing Customizations.

We finally mention two examples of frameworks for customizing computational
behaviors, which are closely related to reflection.

The Composition-Filters Model. The SINA language is based on the no-
tion of a filter, a way to specify arbitrary manipulation and actions for messages
sent to (or from) an object [3]. In other words, filters represent some reification
of the communication and interpretation mechanism between objects. By com-
bining various filters for a given object, one may construct complex interaction
mechanisms in a composable way.

Generic Run-Time as a Dual Approach. The frontier between program-
ming languages and operating systems is getting thinner. Reflective program-
ming languages have some high-level representation of the underlying execution
model. Conversely, and dual to reflection, several distributed operating systems
provide a generic run time layer, as for instance the COOL layer for the Cho-
rus operating system [39]. These generic run time layers are designed as to be
used by various programming languages, thanks to some upcalls which delegate
specific representation decisions to the programming language.

5.7 Evaluation of the Reflective Approach

Reflection provides a general framework for the customization of concurrency
and distribution aspects and protocols, by specializing and integrating (meta)-
libraries intimately within a language or system, while separating them from the
application program.
Many reflective architectures are currently proposed and getting evaluated.

It is too early yet to find and validate some general and optimal reflective archi-
tecture for concurrent and distributed programming (although we believe that
CodA [48] is a promising step in that direction). Meanwhile, we now need more
experience in the practical use of reflection, to be able to find good tradeoffs
between the flexibility required, the architecture complexity, and the resulting
efficiency. One possible (and currently justified) complain is about the actual

15 That is, relaxing some of the standard (ACID) transaction properties.
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relative complexity of reflective architectures. Nevertheless, and independently
of the required cultural change, we believe that this is the price to pay for
the increased, albeit disciplined, flexibility that they offer. Another significant
current limitation concerns efficiency, consequence of extra indirections and in-
terpretations. Partial evaluation (also called program specialization) is currently
proposed as a promising technique to minimize such overheads [45].

6 Integrating the Approaches

As already pointed out in the introduction, the applicative, integrative and re-
flective approaches are not in conflict, but are instead complementary. The com-
plementary nature of these approaches extends to their relationship to language:
the applicative approach does not change the underlying language; the library
approach either defines a new language or adds new concepts to the language;
and the reflective approach requires the use of a specific type of language.
Among the examples of languages and systems given in the paper, some have

been built following more than one approach. This is the case for instance for
the ÉPÉE [33] parallel system (see Sect. 3.2), which on one hand is based on the
integration of object with distribution, and on the other hand is implemented
with libraries. Other examples are Actalk [16] and GARF [23] (see Sect. 3.2),
which offer libraries of abstractions for concurrent and distributed programming,
that may be transparently applied, and thus integrated to programs, thanks to
the reflective facilities of Smalltalk.
We believe that future developments of object-based concurrent and distrib-

uted systems will integrate aspects of the three approaches. A very good example
is the current development around the Common Object Request Broker Archi-
tecture (CORBA) of the OMG [52]. CORBA integrates object and distribution
concepts through an object request broker, which makes remote communication
partially transparent. In that sense, CORBA follows the integrative approach.
CORBA also specifies a set of services to support more advanced distributed
features such as transactions. For instance, the CORBA object transaction ser-
vice (named OTS) is specified and implemented in the form of a class library
of distributed protocols, such as locking and atomic commitment. In that sense,
CORBA follows the applicative approach. Finally, most of CORBA implemen-
tations provide facilities for message reification (messages can be considered as
first class entities – e.g., smart proxies in IONA Orbix), and hence supports
customisation of concurrency and distribution protocols. In that sense, CORBA
implementations follow (to some extent) the reflective approach.

Conclusion

Towards a better understanding and evaluation of various object-based con-
current and distributed developments, we have proposed a classification of the
different ways along which the object paradigm is used in concurrent and dis-
tributed contexts. We have identified three different approaches which convey
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different, yet complementary, research streams in the object-based concurrent
and distributed system community.

The applicative approach (library-based approach) helps at structuring con-
current and distributed programming concepts and mechanisms, through encap-
sulation, genericity, class, and inheritance concepts. The principal limitation of
the approach is that the programming of the application, and of the concurrent
and distribution architecture, are represented by unrelated sets of concepts and
objects. The applicative approach can be viewed as a bottom-up approach and
is directed towards system-builders.

The integrative approach minimizes the amount of concepts to be mastered
by the programmer and makes mechanisms more transparent, by providing some
unified concurrent and distributed high level object model. However, this is at
the cost of possibly reducing the flexibility and efficiency of the mechanisms.
The integrative approach can be viewed as a top-down approach and is directed
towards application-builders.

Finally, by providing a framework for integrating protocol libraries intimately
within a programming language or system, the reflective approach provides the
interfacing framework (the glue) between the applicative and the integrative ap-
proaches/levels. Meanwhile, it enforces the separation of their respective levels.
In other words, reflection provides the meta-interface through which the system
designer may install system customizations and thus change the execution con-
text (concurrent, distributed, fault tolerant, real time, adaptive. . . ) with minimal
changes on the application programs.

The reflective approach also contributes in blurring the distinction between
programming language, operating system, and data base, and at easing the de-
velopment, adaptation and optimization of a minimal computing system dynam-
ically extensible. Nevertheless, we should strongly remind that this does not free
us from the necessity of a good basic design and finding a good set of founda-
tional abstractions.
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8. J. Bézivin, Some Experiments in Object-Oriented Simulation,ACM Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA’87), Vol. 22, no 12, December 1987, pages 394–405. 6

9. G.M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard, Simula
Begin, Petrocelli Charter, 1973. 13

10. A. Black, N. Hutchinson, E. Jul, H. Levy and L. Carter, Distribution
and abstract types in Emerald, IEEE Transactions on Software Engineering,
Vol. 12, no 12, December 1986. 11, 15, 21, 22

11. A. Black, Understanding Transactions in the Operating System Context, Op-
erating Systems Review, Vol. 25, no 28, January 1991, pages 73–77. 9

12. A. Black and M.P. Immel, Encapsulating Plurality, European Conference on
Object Oriented Programming (ECOOP’93), edited by O. Nierstrasz, LNCS,
no 707, Springer-Verlag, July 1993, pages 57–79. 15

13. J. van den Bos and C. Laffra, Procol: A Concurrent Object-Language with
Protocols, Delegation and Persistence, Acta Informatica, no 28, September 1991,
pages 511–538. 13

14. S. Brandt and O.L. Madsen, Object-Oriented Distributed Programming in
BETA, [28], pages 185–212. 9, 9

15. J.-P. Briot and A. Yonezawa, Inheritance and Synchronization in Concur-
rent OOP, European Conference on Object Oriented Programming (ECOOP’87),
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