MetaAccessClass newName: #AccessClass
superclass: Classtalk
instanceVariableNames: "
category: 'Metaclass-Library'!

1AccessClass methodsFor: 'access generation'!
makelvAccessOn: ivNameArray
ivNameArray isNil ifFalse:
[ivNameArray do: [:ivString |
self compile: ivString , \ A" withCRs , ivString
classified: #accessing;
compile: ivString , : aValue\
,ivString , ' _ aValue'

classified: #accessing]]! !

' withCRs

7 Multiple Inheritance
We described examples from the library

of metaclasses. The programmer may
combine them by wusing instantiation and
inheritance. In non trivial cases, simple

inheritance may be not enough. Therefore
we introduce multiple inheritance in
Classtalk, while reusing most of the standard

Smalltalk-80 extension for multiple
inheritance.

7.1 MI In Smalltalk-80

The strategy proposed in
[Ingalls&Borning82] is to keep the single
inheritance scheme working. In case of
multiple inheritance the first superclass
continues to be the standard superclass,

while others are stored in the metaclass of
the class. These remaining superclasses are
referenced by the new instance variable
otherSupers, which is introduced by the kernel
class MetaclassForMultipleInheritance:

Metaclass (thisClass)
MetaclassWithMultipleInheritance (otherSupers)

When creating a class with multiple
superclasses, the methods which cannot be
reached by the standard single inheritance
lookup are recompiled into the method
dictionary of the new class. If several
methods with a same selector may be
reached, conflicting inherited methods are
automatically generated. To solve the
problem, the conflicts need to be resolved
by the programmer.

7.2 MI In Classtalk

When modeling multiple inheritance in
Classtalk we define the instance variable
otherSupers directly at the class level (and no at
the metaclass level). Consequently we
introduce the metaclass MIClass to define this
new instance variable. As with metaclasses
TypedClass and AccessClass, to extend the creation

428 OOPSLA '89 Proceedings

method we have to introduce a metaclags,
namely MetaMIClass:

Classtalk (name category)<newName:superclass:...category:> @
MetaMIClass () <newName:superclasses:...category:> 2
MIClass (otherSupers) <...>

‘The method to create classes with
multiple superclasses is named
newName:superclasses:instanceVariableNames:category:, Its
syntax and implementation are similar tg
those of the standard Classtalk method
newName:superclass:instance VariableNames:category:,

8 A Developed Example: Typed Stacks

To emphasize the Classtalk methodology
we develop the parameterized stacks
example. Our goal is to define stacks whose
parameter of the push: method s
typechecked. To make the demonstration
easier, and to show how we may reuse
standard libraries, we suppose that a class
Stack has been previously defined, e.g. as a
subclass of primitive class Array extended
with an index. Note that Stack can be eithera
Classtalk class either a Smalltalk-80 class.

The class architecture we want to discuss
is summarized by the following figure and
steps:

MiClass

AbstractClass TypedClass

A X
~ - i
Stack . .
.. AbstractTypedClass
e f]
TypedStack &5
+ S~ :*1
[} =~ - o
] oy FOY]
IntegerStack StringStack 4

| 1

IntegerStack(12) StringStack('ok')
« to express the different types of stacks =
(IntegerStack, StringStack...), each type of stack lS:.i;.i
defined as a parameterized class (i.e. axi‘;%!
instance of TypedClass), L
« to express thie common behavior (and
structure) of typed stacks, we introduce the
abstract class TypedStack,
« to maintain consistency betweel
TypedStack and its subclasses (IntegerStacks
StringStack...), TypedStack must be als0

parameterized, !

T

October 1-6, 1989

-+ TypedStack having to be both abstract and
parameterized, we introduce the metaclass
. AbstractTypedClass, which is a subclass of both
AbstractClass and TypedClass, and therefore an
jnstance of MIClass. Conflicting methods,

1 qpamely new (and new:), should be redirected to
8 AbstractClass.

:f ~ MIClass newName: #AbstractTypedClass

& - superclasses: 'AbstractClass TypedClass '

| instanceVariableNames: "

| category: 'Metaclass-Combination'!

. tAbstractTypedClass methodsFor: 'conflicting methods'!
- new
 Aself AbstractClass.new! !

- AbstractTypedClass newName: #TypedStack
superclass: Stack

instance VariableNames: "

category: 'Stack-Collection't

ITypedStack methodsFor: 'operations'!
ush: x
(x isKindOf: self class type)
ifTrue: [super push: x]
ifFalse: [self error: 'wrong type']! !

TypedClass newName: #IntegerStack
superclass: TypedStack
instance VariableNames:
type: Integer

category: 'Stack-Collection'] 31

n

9 Class/Metaclass

Moduife vs Uniform
reation

1 Limitations of the Classtalk
ibrary

The Smalltalk-80 class/metaclass module
split by Classtalk into two explicit
components. On the one hand, this allows an
nlimited level of metaclasses and provides
€ user with more freedom. But on the
1 hand, we need to define
meta)metaclasses to define extended class

ation methods each time we add some

instance variable, e.g. metaclasses
' etaTypedClass and MetaAccessClass.
- The class/metaclass module remains

cessary when defining extended creation
fitssages, as in standard Smalltalk-80. But

lalltalk-80 takes care of implicitly
Teating a metaclass to support the class
iethod, whereas in Classtalk the
fogrammer has the burden to explicitly

defining the class method.

_Another limitation of non-uniform
Ieation is illustrated by next example. We
ant to model classes whose all instance
ariables are public. Therefore we define

October 1.6, 1989

OOPSLA '83 Proceedings

PublicClass as an instance of AutoInitClass and a

subclass of AccessClass. Its init method
generates accessors for all instance
variables:

AutolnitClass newName: #PublicClass
superclass: AccessClass
instance VariableNames: "
category: 'Metaclass-Library'!

IPublicClass methodsFor: 'init'!
init
self makelvAccessOn: instanceVariables! !

Unfortunately this scheme does not work.
The method init is called during the process
of allocation (method new redefined in
AutolInitClass) and before creation of the class
(method newName:...category:). Consequently
instanceVariables is as yet initialized (value nil)
and no accessing method is generated.

A solution is to redefine newName:...category:
in order to call the init method. But init will
be called twice (once at allocation time and
once at creation time), because of non
uniformity.

In summary, programming with
metaclasses requires
protocol.

explicit
an uniform creation

9.2 Uniform Creation in Classtalk

Uniform creation, method create:, is defined
as the combination of standard allocation
(basicNew) and a generic uniform
initialization initialize:. In order to be usable
by all classes, Smalltalk-80 or Classtalk ones,
create: is defined by Behavior:

!Behavior methodsFor: ‘creation'!
create: initArray
Aself basicNew initialize: initArray! !

initialization methods: one
owned by Classtalk, and

There are two
for (meta)classes,

another for objects, defined by Object.
Initialization of classes specializes
initialization of general objects (use of
pseudo-variable super):

IClasstalk methodsFor: 'initialization'!
initialize: initArray
super initialize initArray.
self environment: Smalltalk
variable: false
words: true
pointers: true
category: category! !

The method environment:...category: is defined as
equivalent to the method

429

newName:environment:...category: and handles
initialization of the class. We suppose that
category is defined as an instance variable of
Classtalk in order to transmit its value
through the initialization process.

9.3 General Initialization

The method initializelnstance: owned by Object
initializes instance variables of every
object. Because their names and number is
defined for each class, this method should
accept a variable number of arguments.
Unfortunately Smalltalk-80 syntax does not
allow selectors with variable arity.
Therefore, we need to group the arguments
into a single data structure, such as array.
The creation of a cartesian complex would
look like:

Cartesian create: #(y 2 x 1)

This follows the strategy of CommonLisp-
like keywords, which may be reordered at
will, as opposed to explicit and ordered
keywords in Smalltalk-80.

9.4 Implementation
The main problem is to evaluate the
arguments associated to instance variables.
One solution is to extend Smalltalk-80
syntax in order to support dynamic creation
of arrays, by using some macro-method or
macro-character analog to Lisp's backquote.

Another solution is to evaluate the
arguments through explicit calls to the
compiler. For each instance variable, the

standard method instVarAt:put: assigns the
variable with the value computed by the
compiler:

{Object methodsFor: 'initialize-release'!
initialize: initArray

| i max ivNames aContext aCompiler |

initArray isNil ifFalse:

[i_1L

max _ initArray size.

ivNames _ self class alllnstVarNames.

aContext _ thisContext sender sender.

aCompiler _ Compiler new.

[i < max] whileTrue: .

[self instVarAt: (ivNames indexOf: (initArray at: i)
ifAbsent: [self error:
'unknown instance variable: ', (initArray at: i) printString])
put: (aCompiler
evaluate: (initArray at: i+1) printString
in: aContext
to: aContext receiver
notifying: self
ifFail: [self error:
'compilation of initialize failed]).
i_i+2])!

430 OOPSLA '89 Proceedings

b

9.5 Classtalk Library Revisited

We redefine the metaclass TypedClass and its
instance IntegerStack to show thig
simplification. Defining MetaTypedClass is ng ,
more Inecessary:

Classtalk create: #(

name #TypedClass

superclass Classtalk

instanceVariables 'type'

category 'Metaclass-Library'}!
TypedClass create: #(

name #IntegerStack

superclass TypedStack

instanceVariables "

type Integer

category ‘Stack-Collection')!

The good version of PublicClass uses a |
redefinition of the initialize: method,
AutoInitClass is noO more necessary: ;

Classtalk create: #(

name #PublicClass
superclass AccessClass
instanceVariables "

category 'Metaclass-Library')!

1PublicClass methodsFor: ‘init'!
initialize: initArray
super initialize: initArray.
self makelvAccessOn: instanceVariables! !

10 Future Work 58
Experimenting with Classtalk revealed the
following limitations: £

Methodology

The Smalltalk methodology suggests
define examples of a class as class methods:
Classtalk metaclasses are no longel
implicitly private to a class. Consequen
we need to provide another approach,
example by adding an instance variable
the class level.

Class/Metaclass Compatibility

Defining explicit metaclasses raises 1
issue of compatibility between a class and
metaclass, i.e. the mutual hypotheses abo
the instance variables and methods tBe
define [Graube89]. This may lead to DO
trivial problems when reusing standd
Smalltalk-80 classes. For instance,
defining Stack as a subclass of OrderedCollection: .

OrderedCollection defines the privas
initialization method setIndices. The allocaﬂ'g‘,*"‘]
method of OrderedCollection class is redcfined;’} i
order to automatically ensure M=
initialization:

October 1-6, 1989

10rderedCollecuon class methodsFor: 'instance creation'!
. pew: aninteger
. M(super new: anlnteger) setIndices! !

- If the metaclass of typed stacks, i.e.
. metaclass AbstractTypedClass, does not provide
~ such redefinition, stacks won't be properly
~ jpitialized.
~ Smalltalk-80 automatically ensures such
- compatibility, thanks to the rule for parallel
~ inheritance hierarchies. By splitting the
.~ Smalltalk-80 implicit class/metaclass
" module, we leave this responsibility to the
. programmer. We intend to provide
~ automatic checking for such conditions.

{No) Method Combination

The example of typed stacks may be
further extended by adding memoization
ability to typed stacks. When creating a
subclass of AutolInitClass and MemoClass, we
1 encounter a combination problem. Choosmg
. the right new to solve the conflict is not
,Fcnough We need a real combination of the
- two inherited behaviors. Unfortunately,
‘method combination is not available in the
standard Smalltalk-80 extension for multiple

inheritance. We will study such
improvement.

Conclusion

In this paper we pointed out the
limitations of the metaclass architecture of
Smalltalk-80. We introduced explicit
metaclasses and uniform creation i la
ObjVlisp to alleviate these problems. The

resulting system provides a platform to
experiment and apply metaclass-oriented
~ methodology with the help of the Smalltalk-
BD libraries and environment.

We thank Francis Wolinski for providing
his generic tree editor that we interfaced
with the Classtalk environment.

bliography

Attardi&al89] G. Attardi, C. Bonini, M.-R.
Boscotrecase, T. Flagella and M. Gaspari,
Metalevel Programming in CLOS,
ECOOP'89, Cambridge University Press,
_ July 1989.

Bobrow&Kiczales88] D.G. Bobrow and G.
Kiczales, The Common Lisp Object System
Metaobject Kernel: A Status Report, ACM
Conference on Lisp and Functional

_'October 1-6, 1989

Programming (LFP'88), pages 309-315,
July 1988.
[Borning&OShea87] A. Borning and T.

O'Shea, Deltatalk: An Empirically and
Aesthetically Motivated Simplification of
the Smalltalk-80 Language, ECOOP'87,
LNCS, No 276, pages 1-10, Springer-
Verlag, June 1987.

[Briot&Cointe87] J.-P. Briot and P. Cointe, A
Uniform Model for Object-Oriented
Languages Using The Class Abstraction,
IICAT'87, Vol. 1, pages 40-43, August 1987.

[Cointe87] P. Cointe, Metaclasses are First
Class: the ObjVlisp Model, OOPSLA'87,
pages 156-167.

[Cointe&Graube88] P. Cointe and N. Graube,
Programming with Metaclasses in CLOS,
First CLOS Users and Implementors
Workshop, Xerox Parc, Palo Alto CA, USA,
pages 23-29, October 1988.

[Cointe88] P. Cointe, A Tutorial Introduction
to Metaclass Architectures as Provided
by Class Oriented Languages,
International Conference on Fifth
Generation Computer Systems (FGCS'88),
Vol. 2, pages 592-608, Icot, Tokyo, Japan,
November-December 1988.

[Goldberg&Robson83] A. Goldberg and D.
Robson, Smalltalk-80: the Language and
its Implementation, Series in Computer
Science, Addison Wesley, 1983.

[Graube89] N. Graube, Metaclass
Compatibility, in same volume.

[Ingalls&Borning82] D.H.H. Ingalls and A.H.
Borning, Multiple Inheritance in
Smallitalk-80, Proceedings of the National
Conference on Artificial Intelligence,
pages 234-237, USA, August 1982.

[Malenfant&al89] Malenfant, G. Lapalme and
J. Vaucher, ObjVProlog: Metaclasses in
Logic, ECOOP'89, Cambridge University
Press, July 1989.

[Ungar&Smith87] D. Ungar and R.B. Smith,
Self: The Power of Simplicity, OOPSLA'87,
pages 227-242.

[Wolinski89] F. Wolinski, Le Systéme MV2C:
Modélisation et Génération d'Interfaces
Homme-Machine, Report 89/38, Laforia,
Université Pierre et Marie Curie, Paris,
April 1989.

OOPSLA '89 Proceedings 431

