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Abstract— This paper summarizes our experience in using a
component model to help at construction of agents for agent-
based simulations. In this model, named MALEVA, components
encapsulate various units of agent behaviors or activities (e.g.,
follow gradient, flee, mate, reproduce). Among its specificities, it
extends the principles of software composition to the specification
of control, through the notions of control ports and of control
components. Moreover, a notion of composite component allows
complex behaviors to be constructed from simpler ones. Two
examples, an ecosystem of situated agents and a microsimulation,
are presented. We also discuss the benefits of our model for a
fine grain control of activation and scheduling.

Keywords— agent, component model, behavior, composition,
activation control.

I. INTRODUCTION

Agent-based simulation is now established as one of the
main approach for modeling and simulation of various phe-
nomena. We believe that this is because the concept of agent
is both structuring enough (unit of activity, of interaction,
concept of organization...) and versatile enough (reactive or
cognitive agents, various models of environments. . .).

An important issue is how to design and construct opera-
tional models of agents. Using software engineering principles
should help at genericity and reuse of the models. A natural
direction is thus to exploit the concepts of software compo-
nents which already proved to be an effective approach for
rationalizing composition, reuse, and deployment of software.
It is important to note that, for simulation applications, the
designers are not necessarily themselves expert programmers.
Moreover, they usually want to quickly prototype and then up-
date the behavioral properties of the various agents populating
a simulation. We will see at Section IV how components, and
the separate specification of their control, may help them.

In this paper, we relate on our experience in the design
and the use of a component model for constructing agents
for agent-based simulations. This component model, named
MALEVA, helps at an incremental construction of an agent
by composition of simple agent behaviors or activities (e.g.,
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flee, follow gradient, mate, reproduce).' One of its specificities
is that it extends the principles of software composition to
the specification of control, through the notions of control
ports and of control components. MALEVA has indeed been
used as the foundation or as an inspiration for various agent-
based simulation projects, applied to, e.g.: urban migration
[22], traffic simulation [16], and fish tanks evolution.

Two examples will be described in the paper, for two
different types of agent-based simulation. The first example
is a variant of the classical prey/predator simulation example.
The second one is a simplification of a real application, on
micro-simulation of population evolution [14]. These examples
illustrate how MALEVA can offer some potential for reuse and
specialisation, through: structural composition of behaviors
and specialisation of intra-agent scheduling policies.

II. THE MALEVA AGENT COMPONENT MODEL

The objective of the MALEVA component model is to
help at incremental construction of agent behaviors (e.g., flee,
follow gradient, reproduce), reified as software components.
Therefore, we assume that there is a library of behavior
components associated to the application domains targeted.

A component may be primitive (it is written in the under-
lying language, e.g., Java), or composite (i.e. defined as the
encapsulation of a composition/assemblage of components).?

A. Data Flow and Control Flow

In MALEVA, a distinction is made between the activation
control flow and the data flow connecting the components. As

In this work and this paper, we focus on the issue of components at the
agent level, to decompose the internal structure of one given agent. Multi-
agent platforms often focus on the use of components at the system level (an
agent is implemented as a component) as, e.g., in [17].

2The notion of composite component corresponds to a notion of structural
composition, as opposed to, or rather in addition to, functional composition
(simple assemblage). Architectures of sub-components may be encapsulated
in composites, thus providing a hierarchical form of composition. A composite
may also provide extra functionalities (and control specifications) at its higher
abstraction level, making it a true component on its own. Another example of
component model providing a notion of composite is the Fractal component
model [6].
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Input port Data consumption | Activation entry point
Output port Data production Activation exit point
Connexion Data transfer Activation transfer

TABLE I
DATA AND CONTROL PORTS

we will show in Section II-B, this characteristic and likely
specificity of our model, decouples the functional architecture
from the activation control architecture. The objective is to
make components more independent of their activation logic
and thus more reusable.

Consequently, we consider two different kinds of ports
within a component:

o data ports. They are used to convey data transfer (one
way) between components.’

e control ports. A behavior encapsulated in a component
is activated only when it explicitly receives an activation
signal through its input control port. When the execution
of the behavior is completed, the activation signal is
transferred to its output control port.

As shown in Table I, in addition to the specific semantic
distinction between data ports and control ports, MALEVA
adopts the common architectural distinction between input
ports and output ports, as in, e.g., UML2 or CCM [19].

B. An Introductory Example

Figure 1 shows a first and very simple example of as-
sembly/composition of components: a sequence of two com-
ponents. Component B is activated after the computation
of component A completes. Regarding data, component B
will consume the data produced by component A only after
computation of A completes. In this figure, as well as the
following ones, data flow connexions are shown in solid lines,
and control flow connexions in dotted lines.
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Fig. 1. Sequential activation of two components

Figure 2 recombines the two same components, but this
time activated concurrently.* This simple example is a first

3Data ports are typed, as further discussed in Section V-C.

4The control connexions have been changed accordingly, but not the data
connexions. The semantic is analog to the pipes and filters [20] architectural
style: component B consumes what A produces while they are both active
simultaneously.

illustration of the possibilities and flexibility in controlling ac-
tivation of components. One may describe active autonomous
components (with an associated thread), explicit sequencing
or any other form of combination. Flow of control is specified
outside of the components, which provides more genericity on
the use of components,5 and, as we will discuss in Section IV,
also a fine grained control over activation policies.
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Fig. 2. Concurrent activation of two components

IIT. AN EXAMPLE OF SITUATED AGENTS

Our first example will define behaviors of situated agents
within an ecosystem. Thus, the first step is to design a general
architecture for situated agents.®

A. Abstract Architecture of a Situated Agent

A situated agent senses its environment (e.g., position of
the various agents near by, presence of obstacles, presence of
pheromones. ..) through its sensors. These data are used by
its (internal) behavior to produce data for its effectors, which
will act upon the environment (e.g., move, take food, leave
a pheromone, die...). The general architecture of a situated
agent usually follows the computational cycle:

sensors — behaviour — effectors

and is shown at Figure 3.
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Fig. 3. Abstract architecture of a situated agent

B. Basic Behaviors

We will now define and construct the behaviors of preys and
predators agents. By following a bottom-up approach, we first
define a set of elementary components, representing the basic

5An additional dimension, the mode of activation of components, which
could be asynchronous or synchronous, will be addressed in Section V-B.

For other applications, e.g., in Section IV on micro-simulation, agents
are not necessarily situated (within an environment) and thus do not use any
sensor/effector.



behaviors of preys and predators, that we name: Flee (fleeing
a predator) ; Follow (following a prey) ; and Exploration
(exploration through a random move, which represents the
default behavior). Then we compose them, to represent the
following agent behaviors: Prey and Predator.

C. Control Components

A prey flees the predators being located within its field of
perception. If no predator is close (sensed), the prey explores
its surroundings by moving randomly. Thus, we construct the
Prey behavior as the composition of the following three
components: Flee, Exploration, and a control component
named Switch.’

The Switch control component reifies the standard con-
ditional structure into a special kind of primitive component.
The condition is the presence or absence of an input data.
The behavior of Switch, once being activated (receiving an
activation signal), is as follows:

IF data is received through If (input data port)
THEN transfer control through Then (output control port)
AND send data through Then (output data port)
ELSE transfer control through E1se (output control port)
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Fig. 4. Architecture of a prey

The behavior of a prey, named Prey, is defined as follows.
If it detects a predator (some data representing the predator
location has been received on its input data port), the Switch
component transfers the control through its Then output
control port, which activates the Flee behavior. Then Flee
can compute a move data based on the location of the predator,
and send it through its output data port. The move data arrives
to Prey output data port and then to the effector, to produce a
move of the agent on the environment. If no predator has been
detected, Switch transfers control through its Else output

7The MALEVA standard library includes other control components, analog
to standard control structures (e.g., repeat loop) or synchronisation operators
(e.g., barrier synchronisation), see [18].

control port, which activates Exploration behavior.? The
result is shown at Figure 4.

E. Predator Behavior
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Fig. 5. Architecture of a predator (with prey as a sub-component)

We may now reuse the Prey behavior component to
construct the behavior of a predator, which follows the preys
while fleeing his fellows predators, and otherwise explores its
surroundings. The behavior of a predator may be defined as
the behavior of a prey (it flees other predators and otherwise
carries out an exploration movement), to which is added a
behavior of predation (it follows preys that he could perceive).
According to our compositional approach, we define the
Predator behavior component as a new composite behavior
embedding — as it is — the existing Prey behavior component
(see the result in Figure 5).10

An alternative to a bottom-up approach is a top-down
approach. An example is the top-down design of the behavior
of an ant, which involves a larger amount of components and
also some design patterns. Because of space limitation, it is
not included in this paper but is detailed in [5].

IV. AN EXAMPLE OF POPULATION MICROSIMULATION

This second example will help at illustrate another merit
of making explicit the control flow. It is inspired from an
existing application of demography microsimulation (named
Destinie) [14] and conducted at the French national statistics
institute (INSEE). In this (simplified) example, we consider
a virtual specie of agents, in which mating of two agents
is necessary for reproduction, but without considering sexual
differences (i.e. agents are hermaphrodite). We consider three
basic behaviors: Mate, Separate and Reproduce. Behav-
iors may be seen as state changes, governed by probabilistic

8Exploration does not need a data input to produce a move data.

9We assume the input data port (perception of a predator in the environ-
ment) and the output data port of the Prey behavior to be connected to the
corresponding sensor and effector data ports, along the general architecture
of a situated agent, shown at Figure 3.

101n this design, hunger (predation) has priority over fear (fleeing), as Prey
is activated by Predator. Other combinations could be possible.



transition laws. To activate a behavior evaluates if there is a
state change, according to the associated probability. Although
not independent, these 3 behaviors are not necessarily bound to
a specific sequence of activations, as all possible interleavings
are valid.

In general [11], behaviors are ordered sequentially, as pro-
posed by domain experts. Indeed, it is not easy to realize a
priori the impact of the possible interleavings. But the issues
are: In what order ? And with what impact on the simulation
results ?

Let us consider the following combinations:

(a): { Mate ; Separate ; Reproduce }
(b): { Mate ; Reproduce ; Separate }
(¢): { Mate || Separate || Reproduce }

The two first strategies (a) and (b) make explicit an order
of activation (sequence) of behaviors. In the third (c) strategy,
no temporal dependency constraint is specified (concurrency),
leaving the scheduler of the runtime system free of actual
scheduling decision.'!

Figure 6 shows the resulting histogram. It displays the num-
ber of individuals/parents (y coord.) having a certain number of
children (x coord.). Results follow the intuition: if reproduction
is activated before separation (b), this leads to more children
than if reproduction is activated after separation (a). A fully
concurrent strategy (c¢) produces an average number.
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Fig. 6. Histogram of number of babies

This example shows the importance for the simulation
designers to be able to experiment with various strategies for
ordering behaviors, to compare results with the target models,
and to quantify the impact on biases.'? By considering control
flow explicitly, MALEVA helps at specifying and controlling
temporal dependencies between behaviors, and thus their

T be more precise, the MALEVA runtime scheduler tries, for each
simulation step, to maximise possible interleavings of behaviors activations.

2For instance, [15] show that results of simulations can be found biased
in cases where the scheduling of the actions within an agent remains
deterministic.

possible orderings. This is realized via explicit control flow
connexions, without any change to the code of behaviors
(encapsulation is ensured), as shown at Figure 7.'° This is
notably useful for simulation applications, where the expert
may incrementally specify temporal dependencies, indepen-
dently of behaviors functionalities, and thus experiment with
various strategies, compare results with the target models, and
quantify the impact on biases [18]. A methodological guideline
for multi-agent-based simulations, and how MALEVA may
help in the incremental refinement from a design model to an
operational model, are further discussed in [4].
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Fig. 7. Temporal dependency specifications with CGraphGen

V. TooLS AND IMPLEMENTATION

The MALEVA prototype CASE tool includes a library
of components (behavioral components and control compo-
nents) ; an editor of connexion graphs (named CGraphGen,
which stands for concurrent graph generation) ; a graphical
environment for constructing virtual environments for situated
agents ; and a run time support for scheduling and activating
components.

A. From Methods to Components

An interesting feature of CGraphGen is the importation of
Java code and its reification into MALEVA components. The
granularity considered is a Java method. After specifying the
class, method name, and its signature, CGraphGen automati-
cally generates a corresponding component whose data ports
correspond to the method signature: one input data port for
each parameter, and one optional output data port for the result
(none in the case of void). Two control ports (one input
and one output) are also implicitly added. CGraphGen allows
graphical connexion of data-flow and control-flow between
components, and the creation of composite components.

Note that XML-based descriptions may be used for im-
portation or exportation. These simple characteristics (reifi-
cation of existing code into components, manipulation of the
temporal dependencies) turned out to be quite useful to help
at reengineer existing simulation applications, specially when
considering that the experts of the domains modelled and
simulated are seldom programmer experts.

13Connexions are usually achieved interactively, see Section V-A. In this
example, there are no data ports shown, because the behaviors considered in
this case study are very simple, thus without parameters, nor results.



B. Modes of Activation and Scheduling

At the level of the general scheduler, two alternative modes
(or strategies) of activation have been implemented: an asyn-
chronous mode and a synchronous mode. In the asynchronous
mode, the different agents (and components) evolve indepen-
dently. It may be more efficient, specially in the case of
distributed implementation. Meanwhile, unless the designer
also uses explicit control connexions between agents, the
different agents may not be synchronised (some can compute
ahead of others), depending on their relative processing speed.
In the synchronous mode, the scheduler sends next activation
trigger once all behaviors have finished, which ensures but also
imposes a global synchronization. The choice between the two
modes depends on the requirements for the application (see,
e.g., [15] and [18] for more discussion).

C. Implementation

After the initial Delphi implementation, the Java-based re-
implementation of MALEVA'# added typing to the compo-
nents ports and connexions. This turned out to be useful
for verifying interface compatibility between components. In
addition, sub-typing helps at defining more abstract compo-
nents. Java also supports inspecting various information about
a component, thanks to its introspection facilities (API and
tools). Thus, the designer can easily query a component to
obtain its internal information. The Java implementation also
improved the possibility of architectural dynamic evolution,
which turned out to be useful to model evolving behaviors,
such as, e.g., ant metamorphosis (see Section VII).

The Java implementation, actually based on JavaBeans,
also gave opportunity to compare our MALEVA prototype
component model with an industrial component model. Note
that the JavaBeans model conforms to a publish/subscribe
communication model, but the implementation still relies on
standard method call. In our implementation of MALEVA, a
mailbox (FIFO queue of messages) is associated to each input
data port and to the input control port, in order to decouple
data transfer and actual activation.

D. Performances

Considering performance, it is obvious that a very fine
grained decomposition of agent behaviors will have a cost.
This brings us to the usual trade-off between genericity
and performance. However, it is important to note that the
exact decomposition granularity may be freely chosen by
the application designer and locally for each agent. We are
considering the possibility of providing a code generator for
transformation (compacting) of a composite component into
an atomic component, with additional optimisations (e.g.,
transform certain activations in synchronous method calls
when intra-agent concurrency is not used).

147 re-implementation of MALEVA into C++ has also been realized,
in order to conduct more efficiently (reduce computation time) large scale
experiments [18]. Last, a complete re-implementation of Maleva in Smalltalk
(Squeak), named MalevaST, has very recently been independently conducted
by Noury Bouragadi et al. at Ecole des Mines de Douai, France.

VI. RELATED WORK

CCM (Corba Component Model) [19] is an industrial
general model of component, supporting input and output
interfaces and also event-based communication. However it
does not support a notion of composite. Also, its development
cycle is portable but relatively complex.

The Fractal model of component [6] supports the notion
of composite. A concept of controller is also supported but it
mainly offers simple control interfaces for life cycle manage-
ment or for structural reconfiguration. Last, the control flow is
not explicitly specified. Note that MALEVA could benefit from
Fractal introspection and dynamic reconfiguration capabilities.

DEVS (Discrete Event Simulation Formalism) [23] is a
formalism to model simulations in a hierarchical and modular
way. DEVS is based on an atomic model based on timed
state transitions and a coupled model to construct complex
models in a hierarchical fashion. Compared to DEVS, MAL-
EVA focuses on a model of component without imposing a
specific (powerful but also complex) formalism for describing
computation. Also, note that DEVS modules are not usually
implemented as software components (no explicit output in-
terface/ports nor connectors), although there are some steps
in that direction (see, e.g., some work about mapping DEVS
onto the Microsoft COM component model [7]).

The JADE architecture [2] offers some basic support for
the designer to construct an agent as a set of behaviors
(instances of class Behaviour). Some subclasses, e.g.,
CompositeBehaviour and ParallelBehaviour, pro-
vide basic structures for constructing hierarchies of behaviors
or/and for expressing control structures. For instance, a more
advanced one, FSMBehaviour, relies on a finite state au-
tomaton. Meanwhile, JADE behaviors are not real components
(no output interface/ports nor connectors), thus the architecture
of an agent is still partly hidden within the code.

Like MALEVA, JAF (Java Agent Framework [13]), also
based on JavaBeans, uses components to decompose behaviors
of agents. JAF does not explicitly separate control flow from
data flow. But it proposes some interesting match-making
mechanism, where each component specifies the services that
it requires. At component instantiation time, JAF looks for the
best correspondence between the requirements specification
and the components available. Another difference between
JAF and MALEVA is at the level of behavior decomposition.
JAF decomposition appears at a relatively high level, whereas
MALEVA promotes a fine grain behavior decomposition, and
its management through explicit control.

The MaSE methodology [8] includes a modular representa-
tion of agent behaviors as sets of concurrent tasks. Each task
is described as a finite state automaton and implemented as
an object with a separate thread. A task can communicate
with other tasks, inside the same agent, or with another
agent task, through event communication. The implementation
of MaSE concurrent tasks does not use components with
explicit input/output ports. Also, MALEVA provides more
explicit control of activation, whereas MaSE concurrent tasks



partly rely on implicit control (inter-tasks implicit concurrency
and synchronous message reception). That said, the MaSE
methodology is actually quite general and we may imagine
using some of MaSE steps to design MALEVA components.

Because of space limitation, we also refer to [5] for a more
extended comparison of various rationales and architectural
styles for modular agent architectures, and to [3], for a general
survey on architectures and languages for multi-agent systems.

VII. CONCLUSION

In this paper, we presented a component model, named
MALEVA, to construct agents for agent-based simulations.
This model is relatively original in the explicit management of
activation through control ports and connexions, by applying
the concept of component to the specification of control. It is
behavior-oriented and supports composite components. Some
experiments have illustrated how MALEVA may help at gener-
icity and reuse of components, through: structural composition
of behaviours, abstract components and design mini-patterns
(as discussed in [5]), and at rationalizing control of intra-
agent behavior scheduling, an important issue for simulation.
MALEVA has been experimented in different application
domains, such as: urban migration [22], automobile trafic
simulation [16], and artificial societies, e.g., a reengineering
[18] of Sugarscape model [9].

An issue is in providing rich libraries of components and
abstract architectures, supporting the types of architectures and
applications targeted, for agent-based simulation, but also in
other application fields, as we believe that the MALEVA model
of component has a wider potential scope.

Another issue is that, in case of large applications, the
connexion graphs may become large, although they may
be hierarchical and encapsulated in composite components.
Some radical alternative approach to reduce the control graph
complexity is to abstract it in an adequate formalism such as
a process algebra, in order to allow the concise representation
of complex activation patterns. Such formal characterization
would also allow the semantic analysis of such specifications,
e.g., through model checking (see more discussion in [5]).

A last issue is the possible dynamicity of behaviors, e.g.,
to model the metamorphosis of an ant: from an egg, to a
larva, to a worker ant or to a queen [5]. Current implementa-
tion strategy relies on a specific meta-component to manage
the reconfiguration and re-assemblage of behaviors. We are
currently considering using a higher level mechanism, based
on concepts of configurations, roles and policies, such as the
MaDcAr prototype model of automatic reconfiguration [12].

In summary, we hope that this short presentation of the
MALEVA component model has illustrated some of its speci-
ficities and abilities at composing and reusing agent behav-
iors, for agent-based simulation applications. More generally
speaking, we believe that some features of our component
model may be transposed, and that making control available at
the composition level may help the use of components within
frameworks of applications vaster than those in which they
had been initially thought.

Acknowledgements: to Marc Lhuillier, Alexandre
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