
A Component-based Model of Agent Behaviors
for Multi-Agent-based Simulations

Jean-Pierre Briot1 and Thomas Meurisse2

1 Laboratoire d’Informatique de Paris 6 (LIP6)
8, rue du Capitaine Scott, 75015 Paris, France
(currently visiting CS Dept., PUC-Rio, Brazil)

Jean-Pierre.Briot@lip6.fr
2 Sinovia, 93, rue Henri Rochefort, 91000 Evry, France

Thomas.Meurisse@sinovia.com

Abstract. This paper describes a component model aimed at easing
the design and construction of agents for multi-agent based simulations
(MABS). After first discussing the methodological issues of constructing
operational models of agents, we introduce our model of component for
agents, named MALEVA. In this model, components encapsulate various
units of agent behaviors or activities (e.g., follow gradient, flee, mate, re-
produce. . .). Among its specificities, it provides an explicit notion of con-
trol flow between components, for a fine grain control of activation and
scheduling. Moreover, a notion of composite component allows complex
behaviors to be constructed from simpler ones. Two small case studies,
an ecosystem of situated agents and a microsimulation, are presented. We
also discuss the benefits on the issue of intra-agent scheduling control.

Keywords: multi-agent based simulation, agent, architecture, component,
design, operational model, behavior, activity, composition, scheduling, control.

1 Introduction

Multi-agent based simulation (MABS) is now established as one of the main ap-
proach for modeling and simulation of various phenomena. We believe that this
is because the concept of agent is both structuring enough (unit of activity, of
interaction, concept of organization. . .) and versatile enough (reactive or cogni-
tive agents, various models of environments. . .). Meanwhile, we also think, along
[5], that the process of constructing operational models from domain models is
still often underestimated.

We will start this paper by summarizing a proposition, by Drogoul et al.
at MABS’2002 [5], about a first sketch of methodological framework clarifying
the different levels, models, steps and roles concerned. Then, we will propose an
abstract component-based model as the basis for constructing operational models
for MABS. Indeed, we think that the design and construction of an agent can
benefit from the concepts of component. We believe it can help at an incremental
construction of an agent by composition of simple agent behaviors or activities
(e.g., flee, follow gradient, mate, reproduce. . .).

2

2 From Domain Models to Operational Models

As was discussed in [5], translating conceptual models into computational models
for MABS is a critical and not trivial step. That paper has proposed a first sketch
of a methodological framework for multi-agent-based simulations. It is illustrated
at Figure 1. Let us summarize it briefly.

Fig. 1. The proposed methodological framework

We start with a target system which characterizes the phenomenon to predict
or the theory that needs explanations. This part involves experts in a particular
domain, and they are named thematicians. A thematician is in charge of defining
the domain model. It includes three types of information about the target sys-
tem [13]: theories and assumptions (what he knows or estimates), observations
(what he sees or analyzes), and questions (what he wants to understand) [5]. In
most cases, the theories associated with the target system may remain partly
controversial and ambiguous. Thus, as claimed by Barreteau et al. [2], other in-
termediary models are often useful, or even necessary, before building the actual
simulation program.

3

Indeed, since the specifications of the thematician do not usually allow for
a direct transcription to an operational solution,3 the domain model has to be
translated into something more precise and formal, by clarifying the concepts
and removing the ambiguities. The result is named the design model, and its
definition is the role of the modeler.

The design model will be used as an input by the computer scientist to
shape the operational model. Computational agents are used as an implemen-
tation technique. Specifying technical properties such as the distribution of the
agents, the time scheduling techniques used, etc., and making them explicit in
the operational model, will facilitate the comparison between different models
and help in understanding the role of computational-specific features in the pos-
sible emergence of structures (as shown by, e.g., Axtell [1]) or possible biases
(see Section 5) during the simulation.

3 The MALEVA Model of Agent Components

The MALEVA agent component model that we will now describe is a tentative
foundation, or more precisely an abstract model, for constructing and imple-
menting operational models. The objective is to help at incrementally design
and construct agent behaviors or activities (e.g., flee, follow gradient, mate,
reproduce. . .), by composing simpler behaviors/actions, reified as software com-
ponents. We therefore assume that there is a library of behavior components
associated to the application domains targeted. A component may be primitive
(the behavior is written in the underlying language, e.g., Java), or composite (as
the encapsulation of a composition of components).

3.1 Data flow and control flow

In MALEVA, there is a distinction between the activation control flow and the
data flow connecting the components. This characteristic and specificity of our
model, which decouples the functional architecture from the activation control
architecture, makes components more independent of their activation logic (an
example of benefits will be discussed in Section 5) and thus more reusable.
Consequently, we consider two different kinds of ports within a component:

– data ports. They are used to convey data transfer (one way) between com-
ponents.

– control ports. A behavior encapsulated in a component is activated only when
it explicitely receives an activation signal through a control input port. When
the execution of the behavior is completed, the activation signal is passed to
the control output port.

3 As shown by Fishwick [7], the conceptual gap between thematicians and computer
scientists can be very important. Therefore, identifying a third role in between, the
modeler, appears to be very useful.

4

4 1st Case Study: Prey and Predator Situated Agents

This first case study will define behaviors of situated agents within an eco-system.
So first step is to define the general (abstract) architecture of a situated agent.

4.1 Abstract Architecture of a Situated Agent

A situated agent senses its environment (e.g., position of the various agents near
by, presence of obstacles, presence of pheromones. . .) through its sensors. These
data are used by its (internal) behavior to produce data for its effectors, which
will act upon the environment (e.g., move, take food, leave a pheromone, die. . .).
The general architecture of a situated agent usually follows the computational
cycle: sensors → behavior → effectors and is shown at Figure 2.

Fig. 2. Abstract architecture of a situated agent

4.2 Prey Behavior

We will now define and construct the basic behaviors of preys and predators. By
following a bottom up approach, we first define a set of elementary components,
representing the basic behaviors of preys and predators, that we name: Flee
(fleeing a predator), Follow (following a prey), and RandomMove (random move
for exploration, which represents the default behavior). Then we will compose
them, to represent the following agent behaviors: Prey and Predator.

A Prey flees the predators being located within its field of perception. If no
predator is close (sensed), the prey moves randomly (basic exploratory behavior).
Thus, we construct the Prey behavior as the composition of the following three
components: Flee, RandomMove, and a control component named Switch.

4.3 Control Components

The Switch control component reifies the standard conditional structure into a
special kind of primitive component.4 The condition is the presence or absence
4 Note that the MALEVA standard library includes other control components, (e.g.,

repeat loop, barrier synchronization), not described in this paper.

5

of an input data. The behavior of Switch, once being activated (receiving an
activation signal), is as follows:

IF data is received through If (input data port)

THEN transfer control through Then (output control port)

AND send data through Then (output data port)

ELSE transfer control through Else (output control port)

Fig. 3. Architecture of a prey

The architecture of the prey behavior (shown at Figure 3) follows this pat-
tern. If a predator has been detected (some data representing the predator loca-
tion has been received on the input data port),5 Switch transfers control through
its Then control output port, which activates the Flee behavior. Then Flee can
compute a move data based on the location of the predator, and send it through
its output data port. The move data is finally transfered to Prey output data
port and then to the effector, to produce a move of the agent on the environ-
ment. If no predator has been sensed (no data received), Switch transfers control
through its Else output control port, which activates RandomMove behavior.6

4.4 Predator Behavior

We may now reuse the Prey behavior component to construct the behavior of a
Predator which follows the preys while fleeing his fellows predators, and moves
randomly if he does not sense any other agent. The predator behavior may be
defined as a prey behavior (it flees other predators and otherwise carries out a
5 We assume that the input data port and the output data port of the Prey behavior

have been connected to the corresponding sensor and effector data ports, along the
general architecture of a situated agent, already shown at Figure 2.

6 Note that RandomMove does not need input data to produce a move data.

6

random movement), to which is added a behavior of predation (it follows the
preys). According to our compositional approach, we define Predator behavior
component as a new composite behavior embedding as it is the existing Prey
behavior component (see the result in Figure 4). Note that in that our current
design, hunger (predation) has priority over fear (fleeing), as Prey is activated
by Predator. Other combinations could be possible.

Fig. 4. Architecture of a predator (with prey as a sub-component)

5 2nd Case Study: Population Microsimulation

This second case study is inspired/simplified from an existing application of
demography microsimulation, named Destinie [9]. It considers a virtual specy of
agents, in which mating of two agents is necessary for reproduction, but without
considering sexual differences (i.e. agents are hermaphrodite). We consider three
basic behaviors: Mate, Separate and Reproduce. Behaviors may be seen as state
changes, governed by probabilistic transition laws.

As a general guideline [8] behaviors are ordered in a sequence, as proposed
by domain experts. But the issues are: In what order? And with what impact
on the simulation results? Indeed, although not independent, these 3 behaviors
are not necessarily bound to a specific sequence, as all possible interleavings are
valid. Let us consider the following combinations:

– case (a) : sequence { Mate ; Separate ; Reproduce }
– case (b) : sequence { Mate ; Reproduce ; Separate }
– case (c) : concurrent { Mate || Separate || Reproduce }

7

The two first strategies (a) and (b) make explicit an order of activation
(sequence) of behaviors. In the third (c) strategy, no temporal dependency con-
straint is specified, leaving the scheduler of the runtime system free of actual
scheduling decision. Figure 5 shows he resulting histogram. It displays the num-
ber of individuals (y coordinate) having a certain number of children (x coordi-
nate). Results follow the intuition: if reproduction is activated before separation
(b), this leads to more babies than if reproduction is activated after separation
(a). A fully concurrent strategy (c) produces an average number.

Fig. 5. Histogram of number of babies

This example shows the importance for the experts to be able to experiment
with various strategies for ordering behaviors, to compare results with the tar-
get models, and to quantify the impact on biases.7 By considering control flow
explicitly, MALEVA helps at specifying and controlling temporal dependences
between behaviors - and thus their possible orderings -, via explicit control flow
connexions,8 without any change to the code of behaviors (encapsulation en-
sured). This helps at: decoupling the functionality of an agent behavior from the
logic of activation; making components more generic; and refining incrementally
the operational model. By going back to our opening methodological point of
view (see Section 2), this eases the relations between the design model and the
operational model.

6 Conclusion

In this paper, we presented a component model, named MALEVA, to construct
operational models for multi-agent based simulations. This model is relatively
7 For instance, [10] shows that results of simulations can be found biased in cases

where the scheduling of the actions within an agent remains deterministic.
8 They are usually achieved interactively, via the CGraphGen CASE graphic tool [12].

8

original in the explicit management of activation control through control ports
and connexions, by applying the concept of component also to the specification
of control (see [3] for more about architectural issues). Experiments showed that
these characteristics improve genericity of components, and help at rationalizing
control of intra-agent behavior scheduling, an important issue for simulation.
MALEVA has been experimented in different application domains, such as: ur-
ban migration [14], automobile trafic simulation [11], and artificial societies, e.g.,
a reengineering [12] of Sugarscape model [6]. Meanwhile, further experiments are
still necessary to confirm and refine what we consider as promising results.

Acknowledgements We would like to thank Marc Lhuillier, Alexandre Guillemet,
Grégory Häık, and Frédéric Peschanski, for their contributions to the MALEVA
project, and Alexis Drogoul and Diane Vanbergue for their contributions to the
methodological framework that we refered to.

References

1. R. Axtell, Effects of interaction topology and activation regime in several multi-
agent systems, MABS’2000, No 1979 of LNCS, 2000, pages 33–48.

2. O. Barreteau, F. Bousquet, and J.-M. Attonaty, Role-playing games for opening the
black box of multi-agent systems, Journal of Artificial Societies and Social Simula-
tion, 4(2), 2001.

3. J.-P. Briot, T. Meurisse and F. Peschanski, Architectural Design of Component-
based Agents: A Behavior-based Approach, To appear in pre-Proceedings of 4th
International Workshop on Programming Multi-Agent Systems (ProMAS’06), AA-
MAS’2006, Hakodate, Japan, May 2006.

4. A. Drogoul, B. Corbara, and D. Fresneau, MANTA: Experimental Results on the
Emergence of (Artificial) Ant Societies, Artificial Societies: the computer simulation
of social life, UCL Press, London, U.K., 1995.

5. A. Drogoul, D. Vanbergue, and T. Meurisse, Multi-Agent Based Simulation : Where
are the Agents ? MABS’2002, LNCS, Springer-Verlag, July 2002.

6. J. M. Epstein and R. L. Axtell, Growing Artificial Societies : Social Science from
the Bottom Up, MIT Press, 1996.

7. P. Fishwick, Simulation Model Design and Execution, Prentice-Hall, 1995.
8. N. Gilbert and K. G. Troitzsch, Simulation for the Social Scientist, Open University

Press, 1999.
9. INSEE, Le modèle de microsimulation dynamique DESTINIE, Technical Report

G9913, Division Redistribution et Politiques Sociales, Institut National de la Statis-
tique et des Etudes Economiques, Paris, France, 1999.

10. B. G. Lawson and S. Park, Asynchronous Time Evolution in an Artificial Society
Mode, Journal of Artificial Societies and Social Simulation, 3(1), 2000.

11. V. LeCerf and M. Pintado, An adaptive model of Camera-Driven Urban Inter-
sections Observation, Workshop on Dynamic Scene Recognition from Sensor Data,
edited by C. Tessier, ONERA, Toulouse, France, June 1997.

12. T. Meurisse, Simulation multi-agent : du modèle à l’opérationnalisation, Thèse de
doctorat (PhD thesis), Université Paris 6, France, July 2004.

13. K.G. Troitzsch, Methods of empirical social research, SICSS Summer School, 2000.
14. D. Vanbergue, J.-P. Treuil, and A. Drogoul, Modelling urban phenomena with

cellular automata, Advances in Complex Systems, Vol. 3, 2000.

