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Abstract. This paper relates an experience in using a component model
to design and construct agents. After discussing various rationales and
architectural styles for decomposing an agent architecture, we describe
a component-based model of agents, named MALEVA. In this model,
components encapsulate various units of agent behaviors (e.g., follow
gradient, flee, reproduce. ..). Among its specificities, it provides an ex-
plicit notion of control flow between components, for a fine grain control
of activation and scheduling. Moreover, a notion of composite component
allows complex behaviors to be constructed from simpler ones. Two case
studies in the domain of multi-agent based simulation are presented in
this paper. They illustrate the ability of the model to support both a
bottom-up and a top-down approach for agent architecture design.

Keywords: component, agent, multi-agent systems, behavior, design, com-
position, architecture, simulation.

1 Introduction

Components and multi-agent systems are among current popular approaches for
designing and constructing software. Both of them propose abstractions to orga-
nize software as a combination of software elements, with easier management of
evolution (such as changing and adding elements). We consider that multi-agent
systems push further the level of abstraction and the flexibility of component
coupling, notably through self-organization abilities. Meanwhile, we believe that
the component concept and technology may help in the actual construction of
multi-agent systems:

— at the system level, we may consider each agent as a component, to provide
some support for integration, configuration, packaging and distribution of
multi-agent systems,

— at the agent level, by providing some support for structuration, (de)composition
and reuse of its internal architecture.



In this paper, we focus on the second category. Indeed, we believe that the
design and construction of an individual agent can benefit from the principles
of software components (encapsulation, explicit connectors. .. ). Our objective is
to help in an incremental design of agents as the composition of simpler agent
behaviors and activities (e.g., follow gradient, flee, reproduce. ..). Our main ap-
plication field target is multi-agent-based simulation of phenomena (biological,
ecological, social, economical. .. ) and their specific requirements definitely influ-
enced our design decisions.

After first discussing some rationales for the design of component-based agent
architectures, and referring to related work, we describe a component model
named MALEVA, which aims at encapsulating and composing units of behaviors
to describe complex agent architectures. As opposed to most of modular or
component-based agent architectures, this component model does not impose a
specific architectural style. Moreover, it also applies the principles of components
and software composition to the specification of control, through the notions of
control ports and control components. From a methodological point of view, the
model and its associated tools and implementations have been used in both top-
down and bottom-up approaches to agent design. Most experiments have been
conducted in the field of multi-agent based simulation.

2 Rationales and Styles for Agent Architectures

We consider an agent architecture as the description of the relations between the
software (or sometimes hardware) modules that implement the agent behavior.
Except for simple reactive behaviors, the architecture of an agent may be com-
plex. It is thus useful to describe it in terms of simpler lower level components
that interact with each other.

Inspired by the seminal work on software architectures by Shaw and Garlan
[18], we tentatively propose a classification for agent architectures from the per-
spective of architectural styles. There is of course no unique typology for agent
architectures, and we may find other classifications in the literature (e.g., in [15]
or [20]), such as horizontal/vertical or reactive/cognitive/hybrid. In this paper,
we focus on the rationales for decomposition and on their impact on the reuse
of the architecture or/and of its components. It is important to note that we
do not expect our typology to be exhaustive. Also note that, as for software
architectures [18], a complex architecture (e.g., InteRRaP, see Section 2.3) may
juxtapose and combine several architectural/decomposition styles.

2.1 Cycle-based Style

The architectural style based on the notion of cycle, among the simplest ones, fol-
lows the basic computational cycle of an agent situated within an environment:
perception (of the environment), state update (data or/and mental state), gen-
eration of intentions (of actions), action. An example is a general architecture
for situated reactive agents, introduced in Section 4.1. Another example is Yoav



Shoham’s Agent-Oriented Programming (AOP) architecture for cognitive agents
[19] (see Figure 1).
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Fig. 1. AOP Architecture

2.2 View-based Style

Another style of decomposition, more structural than computational, considers
various view points (e.g., interaction, environment, organization...) and their
respective units of processing (perception, communication, coordination. .. ). An
example is the VOLCANO architecture [16], which follows the decomposition
guidelines of the Voyelles methodology [7] along four dimensions: A (agent), E
(environment), I (interaction) and O (organization). The architecture is actually
a framework with components (named bricks) A, E, I and O (see left side of
Figure 2). Note that the designer needs also to implement inter-bricks adaptors,
respectively AE, AI, AO, EI, EO and IO.

Another example is the generic model of agent architecture (Generic Agent
Model: GAM), designed on top of the DESIRE agent component model [2].
It includes a set of components (interaction management, information mainte-
nance. . ., see right side of Figure 2), each dedicated to a specific type of process-
ing. The GAM generic model (also a framework) has been instantiated to model
(retro-engineer) various agent architectures, such as BDI, and ARCHON.

2.3 Level-based Style

Another approach considers different various levels (and models) of knowledge,
reasoning and action, to structure the architecture, e.g., through the distinction
between world model, self model, and social model. A representative example is
the InteRRaP architecture [14] (see Figure 3).%

4 Note that the internal architecture of each level follows the same model, based on
planning. Also note that, as for software architectures [18], a complex architecture
(such as InteRRaP) may juxtapose and combine several architectural styles.
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2.4 Behavior-based Style

A more radical style of decomposition, considers basic behaviors of the agent
as the units of (de)composition. An example is Rodney Brooks’ subsumption
architecture [5], in which various behaviors (e.g., random move, obstacle avoid-
ance. .. ) are simultaneously active. They are organized within some fixed hier-
archy and their associated priorities (see Figure 4). In practice, a behavior may
replace input data of the behavior situated below, as well as inhibit its output
data (for instance, in case of close obstacle perception, the obstacle avoidance
behavior may take control over other ones).
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2.5 Discussion

The architectures that we surveyed are generally rather stable and generic, al-
though usually more tailored at a specific model of agent (e.g., cognitive collabo-
rative agent for the InteRRaP architecture, situated agent or robot for subsomp-
tion architecture). But these architectures are often not very flexible. In practice
it is often uneasy, in some case almost impossible, to replace and add, and more-
over to remove components. Also, the implementation of the architecture does
not always follows the basic requirements of software components (output in-
terfaces, explicit connectors. .. ),5 neither classical component models (e.g., Jav-
aBeans). The VOLCANO architecture clearly separates the bricks, but in order
to replace one brick by another we are forced to re-implement the correspond-
ing adaptors. To make coupling more flexible, JAF (Java Agent Framework)

® The JADE architecture [1] offers some basic support for the designer to construct
an agent as a set of behaviors (instances of class Behaviour). Some subclasses,
e.g., CompositeBehaviour and ParallelBehaviour, provide basic structures for con-
structing hierarchies of behaviors or/and for expressing control structures, e.g., the
most advanced one, FSMBehaviour, relies on finite state automata. Meanwhile, JADE
behaviors are not real components (no output interface/ports nor connectors), thus
the architecture of an agent is still partly hidden within the code.



[9] proposes some interesting match-making mechanism, where each component
specifies the services that it requires. At component instantiation time, JAF
looks for the best correspondence between the requirements specification and
the components available.

More generally speaking, the existence of an architecture constrains the pos-
sible combinations of components, which is actually the very role of an architec-
ture. An architecture such as VOLCANO is a framework with abstract compo-
nents (named hot spots in the framework terminology) to be instantiated, but
also with adaptors to implement. The subsumption architecture actually rep-
resents an abstract model of architecture, instantiated for a specific robot and
objective (e.g., see Figure 4). It is concise but also hard to evolve (e.g., add a
component), as the fixed hierarchy is the key of control between components.

We think that the behavior-based style of decomposition, as used in the sub-
sumption architecture, is somewhat radical, but it is also the closest to the very
concept that we aim at decomposing: the behavior of the agent. A radical option
is then to only offer a model of component, in a way similar to a general software
component model such as JavaBeans, without a specific agent architecture. We
then must replace the fixed hierarchical control architecture of the subsumption
architecture by something more open.

In the model we propose, control is made explicit. And, by keeping in line with
a component model, control is specified through control ports and connexions
(see Section 3.1), in order to represent arbitrary patterns of control flow.

3 The MALEVA Model

As has been explained above, the objective of the MALEVA agent component
model is to help in incremental design and construction of agent behaviors by
composing simpler behaviors, encapsulated as software components.

3.1 Data flow and control flow

In MALEVA, we make a distinction between the activation control flow and the
data flow connecting the components. As we show in Section 3.2, this charac-
teristic and specificity of our model, which decouples the functional architecture
from the activation control architecture, makes components more independent
of their activation logic and thus more reusable. Consequently, we consider two
different kinds of ports within a component:

— data ports. They are used to convey data transfer (one way) between com-
ponents. Note that data ports are typed, as discussed in Section 6.1.

— control ports. A behavior encapsulated in a component is activated only when
it explicitly receives an activation signal through a control input port. When
the execution of the behavior is completed, the activation signal is passed to
the control output port.



In addition to the semantic distinction between data ports and control ports,
specific to MALEVA, we find the common structural distinction between input
ports and output ports. Table 1 summarizes that.

l H Data [ Control

Input port ||Data consumption|Activation entry point

Output port|| Data production | Activation exit point
Connezion Data transfer Activation transfer

Table 1. Data and control ports

3.2 An Introductory Example
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Fig. 5. Sequential and concurrent activation of two components

Left side of Figure 5 shows a first and very simple example of assembly /composition
of components: a sequence of two components. Component B is activated after
the computation of component A completes. Regarding data, component B will
consume the data produced by component A only after computation of A com-
pletes. In all figures, data flow connexions are shown in solid lines, and control
flow connexions in dotted lines.

The right side of the figure recombines the two same components, but this
time activated concurrently. Note that the control connexions have been changed
accordingly, but not the data connexions. The semantic is analog to the pipes
and filters [18] architectural style: component B consumes what A produces while
they are both active simultaneously.

This simple example is a first illustration of the possibilities and flexibility
in controlling activation of components. One may describe active autonomous
components (with an associated thread), explicit sequencing or any other form



of combination.® Flow of control is specified outside of the components, which
provides more genericity on the use of components. The designer of the applica-
tion also has a fine grained control over activation policies between components.
Making possible the control of temporal dependences between behaviors - which
are usually left implicit -, independently of behaviors functionalities, helps ex-
perts at experimenting with various strategies, at comparing results with the
target models, and at quantifying the impact on biases [3].7

3.3 Designing Agent Behaviors

Designing agents for an application consists in assembling existing behavior com-
ponents. We therefore assume that there is a library of behavior components
associated to the application domains targeted. A component may be primitive
(the behavior is written in the underlying language, e.g., Java) or composite,® as
the encapsulation of a composition (assembly) of components.

4 A First Case Study: Design of Prey and Predator

The MALEVA model has been particularly targeted and used for multi-agent-
based simulation (MABS) applications [17] (in various domains such as ecology,
ethology, economy. . .). In multi-agent-based simulations, various elements of the
phenomena modeled and their interactions are explicitly modeled and studied.
Our first case study will define behaviors of situated agents within an ecosys-
tem. First step is thus to define a general architecture for situated agents.’

4.1 Abstract Architecture of a Situated Agent

A situated agent senses its environment (e.g., position of the various agents near
by, presence of obstacles, presence of pheromones. .. ) through its sensors. These
data are used by its (internal) behavior to produce data for its effectors, which
will act upon the environment (e.g., move, take food, leave a pheromone, die. .. ).
The general architecture of a situated agent usually follows the computational
cycle: sensors — behavior — effectors and is shown at Figure 6.

5 An additional dimension, the model of activation of components, which could be
asynchronous or synchronous, will be briefly addressed in Section 6.1.

For instance, [10] shows that results of simulations can be found biased in cases
where the scheduling of the actions within an agent remains deterministic.

We believe that the notion of composite component is important and useful. It corre-
sponds to a notion of structural composition as opposed to, or rather in addition to,
functional composition (simple assembly). Encapsulation and hierarchization offered
by the notion of composite component are useful to help at managing complex-
ity. Another example supporting the notion of composite components is the Fractal
general-purpose component model [6].

Note that for other applications, e.g., micro-simulation [3], agents are not necessarily
situated (within an environment) and thus do not use any sensor/effector. Other
applications agents could also use inter-agent communication modules.

7
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4.2 Prey Behavior

We will now define and construct the basic behaviors of preys and predators. By
following a bottom up approach, we first define a set of elementary components,
representing the basic behaviors of preys and predators, that we name: Flee
(fleeing a predator), Follow (following a prey), and RandomMove (random move
for exploration, which represents the default behavior). Then we will compose
them, to represent the following agent behaviors: Prey and Predator.

A Prey flees the predators being located within its field of perception. If no
predator is close (sensed), the prey moves randomly (basic exploratory behavior).
Thus, we construct the Prey behavior as the composition of the following three
components: Flee, RandomMove, and a control component named Switch.

4.3 Control Components

The Switch control component reifies the standard conditional structure into a
special kind of primitive component.!® The condition is the presence or absence
of an input data. The behavior of Switch, once being activated (receiving an
activation signal), is as follows:

if data has been received through If (input data port) then
transfer control through Then (output control port)
and send data through Then (output data port)

else
transfer control through Else (output control port)

end if

10 Note that the MALEVA standard library includes other control components, analog
to standard control structures (e.g., repeat loop) or synchronization operators (e.g.,
barrier synchronization). They will not be described in this paper.
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The architecture of the prey behavior follows this pattern and is shown at
Figure 7. If a predator has been detected (some data representing the predator
location has been received on the input data port),!* Switch transfers control
through its Then control output port, which activates the Flee behavior. Then
Flee can compute a move data based on the location of the predator, and send
it through its output data port. The move data is finally transfered to Prey
output data port and then to the effector, to produce a move of the agent on the
environment. If no predator has been sensed (no data received), Switch transfers
control through its Else output control port, which activates RandomMove be-
havior. Note that RandomMove does not need a data input to be able to produce
a move data.

4.4 Predator Behavior

We may now reuse the Prey behavior component to construct the behavior of a
Predator which follows the preys while fleeing his fellows predators, and moves
randomly if he does not sense any other agent. The predator behavior may be
defined as a prey behavior (it flees other predators and otherwise carries out a
random movement), to which is added a behavior of predation (it follows the
preys). According to our compositional approach, we define Predator behavior
component as a new composite behavior embedding as it is the existing Prey
behavior component (see the result in Figure 8). Note that in that our current
design, hunger (predation) has priority over fear (fleeing), as Prey is activated
by Predator. Other combinations could be possible.

1 We assume that the input data port (perception of a predator in the environment)
and the output data port of the Prey behavior have been connected to the corre-
sponding sensor and effector data ports, along the general architecture of a situated
agent, as shown at Figure 6.
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5 A Second Case Study: Top-down Design of Ants

The second case study will provide a flavor of the reengineering in MALEVA
of a seminal work on sociogenesis of ant colonies (Alexis Drogoul’s MANTA
framework [8]). Because of space limitation, we do not detail the different types
of agents involved (ant worker, egg, larva, queen), neither the different steps and
components of the top down design of the behavior of an ant worker.

The behavior of an ant worker (named Worker Agent) is based on a pattern
of an aging agent (an agent dies when having reached its limit age). The sub-
component Maturing manages the incrementation of the age and the age limit
test. The first level of decomposition, named Behaviorl, states that random
move (exploration) is the default action unless a stimulus (food, pheromone. . .)
is sensed. The second level of decomposition, named Behavior2, states that the
ant worker will follow the gradient of the stimulus until it reaches the local max-
imum and then produces an action, depending on the type of stimulus (food,
pheromone. . .). The architecture is summarized at Figure 9.

Note that this case study followed a top down approach, as opposed to previ-
ous one (Section 4). The case study is further detailed in [11], which also includes
identification of some design patterns. Last, ant metamorphosis (from an egg, to
a larva, to a worker ant) was modeled as a dynamic change of behaviors [4].
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6 Implementation

6.1 Evolution of Implementation

The MALEVA component model and its associated prototype CASE tool have
been implemented successively in three versions and languages: Delphi, Java [11],
and C++ [12].

The Java-based implementation improved the possibility of architectural dy-
namic evolution,'? which turned out to be useful to model evolving behaviors,
e.g., ant metamorphosis (as mentioned in Section 5). Typing the ports was also
added and turned out to be useful for verifying some compatibility between
components. Then, sub-typing helps at defining more generic components. Java
also supports inspecting various information about a component, thanks to its
introspection facilities (API and tools). Thus, the designer of agents can easily
query a component to obtain its internal information.

The Java implementation, based on JavaBeans, also gave opportunity to com-
pare our MALEVA prototype component model with an industrial component
model such as JavaBeans (both being light-weight). Note that the JavaBeans
model conforms to a publish/subscribe communication model, but the implemen-
tation still relies on standard method call. In our Java-based implementation of
MALEVA, a mailbox (FIFO queue of messages) is associated to each input data

12 The Delphi implementation imposed recompilation, because of the absence of a dy-
namic code loader.



port and to the input control port, in order to decouple data transfer and actual
activation.

At the level of the general scheduler, two alternative models of activation have
been implemented: an asynchronous model and a synchronous model. The asyn-
chronous mode is more efficient and the expression of control is more precise.
Within each agent, the control connexions ensure an intra-agent synchroniza-
tion at wish. Meanwhile, unless the designer also uses explicit control connex-
ions between agents, the different agents may not be synchronized (some can
compute ahead of others), depending on their relative processing speed. In the
synchronous mode, the scheduler sends next activation trigger once all behaviors
have finished, which ensures but also forces a global synchronization. The choice
between the two models depends on the requirements for the application (see
e.g., [10] and [11] for more discussions).

6.2 From Methods to Components

The MALEVA prototype CASE tool includes a library of components (be-
havioral components and control components); an editor of connexion graphs
(named CGraphGen, which stands for concurrent graph generation); a graphical
environment for constructing virtual environments for situated agents; and a run
time support for scheduling and activating agents.

An interesting feature of CGraphGen is the importation of actual Java code
and its reification into MALEVA components. The granularity considered is a
Java method. After specifying the class and method name, and its signature,
CGraphGen automatically generates a corresponding component whose data
ports correspond to the method signature: one input data port for each parame-
ter, and one optional output port for the result (none in the case of void). Two
control ports (one input and one output) are also implicitly added. CGraphGen
allows graphical connexion of both data-flow and control-flow between compo-
nents, and the creation of composite components.

7 Further Issues and Future Directions

A first issue, for our current component architecture is that simulation designers
must design activation models from a relatively low-level perspective, with ex-
plicit manipulation of connexions. Abstract components and their related design
patterns (see e.g., [11]) help at capitalizing and reusing experiences.

A second issue, is that experience with specification of control through con-
nexions shows that in case of large applications, the connexion graphs may be-
come large, although they may be hierarchical and encapsulated in composite
components (e.g., see the recursive design of an ant behavior in Section 5).
Some radical alternative approach to reduce the control graph complexity, and
also to make it more accessible to formal analysis, is to abstract it in an adequate
formalism.



We think that a process algebra such as CCS [13] could allow the concise rep-
resentation of complex activation patterns. The idea is somehow analog to coor-
dination languages, but for very fine grained components. The starting point is to
model data used for control (e.g., presence of prey, of predator, of pheromone. . . )
as channels and synchronize activity of behaviors on them. The result is a com-
pact term to express a control graph analog to the example of prey and predator
(in Section 4):

isPrey.Follow || isPredator.Flee || (isNoPrey.RandomMove +
isNoPredator. RandomM ove)

where isPrey, isPredator, isNoPrey and isNoPredator are channels, connected
to the sensors of the agent; and Follow, Flee, and RandomMove are processes rep-
resenting behaviors. Such formal characterization would also allow the semantic
analysis of such specifications, for example through model checking.

8 Conclusion

In this paper, we presented some experience in using a component model to
design and implement agents. This model is relatively original in that it aims
at decomposing the inner behavior of agents, and not just its general architec-
ture. It is also original in the explicit management of activation control through
control ports and connexions, by applying the concept of component also to
the specification of control. As opposed to most of modular or component-based
agent architectures, our component model does not impose a specific architec-
tural style nor a bottom up or top down approach. Experiments showed that its
characteristics help in improving genericity of components, and in rationalizing
the control of intra-agent behavior scheduling, an important issue for simulation
applications.

We believe that there is no ultimate best agent architecture, as it depends on
the application domain and requirements. General purpose (also named hybrid)
architectures, like InteRRaP, which attempt at reconciling both cognitive and
reactive architectures, turn out to be powerful, but also complex. On the con-
trary, our architecture is simple, with a fine-grained control, and more targeted
at reactive agent models for multi-agent simulation. Thus, it may not be opti-
mal for all applications, for instance to construct e-business applications based
on negotiation protocols. But we believe that some features of our architecture
model may be transposed, and that making control available at the composition
level may help the use of components within frameworks of applications vaster
than those in which they had been initially thought.

Acknowledgments: We would like to thank Marc Lhuillier, Alexandre Guillemet
and Grégory Haik, for their contribution to the MALEVA project.
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