Architectural Design of Component-Based
Agents: A Behavior-Based Approach

Jean-Pierre Briot!:?, Thomas Meurisse!, and Frédéric Peschanski'

! Laboratoire d’Informatique de Paris 6 (LIP6)
Université Paris 6 - CNRS
Case 169, 4 place Jussieu
75252 Paris Cedex 05, France
{Jean-Pierre.Briot,Thomas.Meurisse,Frederic.Peschanski}@lip6.fr
2 Currently visiting CS Dept., PUC-Rio, Rio de Janeiro, Brazil

Abstract. This paper relates an experience in using a component model
to design and construct agents. After discussing various rationales and
architectural styles for decomposing an agent architecture, we describe a
model of component for agents, named MALEVA. In this model, compo-
nents encapsulate various units of agent behaviors (e.g., follow gradient,
flee, reproduce). It provides an explicit notion of control flow between
components (reified through specific control ports, connexions and com-
ponents), for a fine grain control of activation and scheduling. Moreover,
a notion of composite component allows complex behaviors to be con-
structed from simpler ones. Two examples, in the domain of multi-agent
based simulation, are presented in this paper. They illustrate the abil-
ity of the model to facilitate both bottom-up and top-down approaches
for agent design and construction and also to help at different types of
potential reuse.

Keywords: component, agent, multi-agent systems, behavior, design,
composition, architecture, simulation.

1 Introduction

Components and multi-agent systems are among current popular approaches for
designing and constructing software. Both of them propose abstractions to orga-
nize software as a combination of software elements, with easier management of
evolution (such as changing and adding elements). We consider that multi-agent
systems push further the level of abstraction and the flexibility of component
coupling, notably through self-organization abilities [5]. Meanwhile, we believe
that the component concept and technology may help in the actual construction
of multi-agent systems:

— at the system level, we may consider each agent as a component, to provide
some support for integration, configuration, packaging and distribution of
multi-agent systems,

R.H. Bordini et al. (Eds.): ProMAS 2006, LNAI 4411, pp. 73-[02] 2007.
© Springer-Verlag Berlin Heidelberg 2007

74 J.-P. Briot, T. Meurisse, and F. Peschanski

— at the agent level, by providing some support for structuration, (de)composi-
tion and reuse of its internal architecture.

In this paper, we focus on the second category. Indeed, we believe that the
design and construction of an individual agent can benefit from the principles
of software components (encapsulation, explicit connectors...). Our objective
is to help in an incremental design of agents as the composition of simpler
agent behaviors and activities (e.g., follow gradient, flee, reproduce...). Our
main application field target is multi-agent-based simulation of phenomena (bi-
ological, ecological, social, economical. ..). Their specific requirements definitely
influenced our design decisions, as well as our case studies and applications
conducted. Meanwhile, we believe that the scope of the component model that
we propose goes beyond the domain of multi-agent-based simulations, and that
other application areas could benefit from some of its principles, e.g., making
control available at the composition level.

After first discussing some rationales for the design of component-based agent
architectures, and referring to related work, we describe a component model
named MALEVA, which aims at encapsulating and composing units of behaviors
to describe complex agent architectures. This component model does not impose
a specific architectural style. One of its specificities is that it applies the principles
of components and software composition to the specification of control, through
the notions of control ports and control components. Two examples will be
presented in the paper. They illustrate how MALEVA can support bottom up
as well as top down design, and also how it offers some potential for reuse and
specialization, through: structural composition of behaviors, abstract behaviors
and design patterns.

2 Rationales and Styles for Agent Architectures

We consider an agent architecture as the description of the relations between
the software (or sometimes hardware) modules that implement the various agent
functions. Except for simple reactive agents, the architecture of an agent may be
complex. It is thus useful to describe it in terms of simpler lower level components
that interact with each other.

Inspired by the seminal work on software architectures by Shaw and Gar-
lan [23], we tentatively propose a classification for agent architectures from the
perspective of architectural styles In this paper, we focus on the rationales for
decomposition and on their impact on the reuse of the architecture or/and of
its components. It is important to note that we do not expect our typology to
be exhaustive. Also note that, as for software architectures [23], a complex ar-
chitecture (e.g., InteRRaP, see Section 2.3)) may juxtapose and combine several
architectural /decomposition styles.

! There is of course no unique typology for agent architectures, and we may find
other classifications in the literature (e.g., in |20]), such as horizontal/vertical or
reactive/cognitive /hybrid.

Architectural Design of Component-Based Agents 75

2.1 Cycle-Based Style

The architectural style based on the notion of cycle, among the simplest ones, fol-
lows the basic computational cycle of an agent situated within an environment:
perception (of the environment), state update (data or/and mental state), gen-
eration of intentions (of actions), action. An example is a general architecture
for situated reactive agents, introduced in Section [4.Il Another example is Yoav
Shoham’s Agent-Oriented Programming (AOP) architecture for cognitive agents
[24] (see Figure[T).

Initialize mental states
and capabilities
Definition of rules for making

new commitments
—————————————— >,
A4

Update mental states

input messages

Representation
of mental states
and capacities

A 4
Execute commitments

for current time
output messages

data control

\/

Fig.1. AOP Architecture

2.2 View-Based Style

Another style of decomposition, more structural than computational, considers
various view points (e.g., interaction, environment, organization...) and their
respective units of processing (e.g., perception, communication, coordination. . .).
An example is the VOLCANO architecture [21], which decomposes an agent along
four dimensions: A (agent), E (environment), I (interaction) and O (organization).
The architecture is actually a framework with components (named bricks) A, E, I
and 0. Figure [illustrates the central position of the A brick. Note that the de-
signer needs also to implement inter-bricks adaptors/wrappers, respectively AE,
AT, AD, EI, EO and I0.

Another example is the generic model of agent architecture (Generic Agent
Model: GAM) [4], based on the DESIRE methodology and component model
[B]. It includes a set of components (e.g., interaction management, information
maintenance) each dedicated to a specific type of processing (see Figure Bl im-
ported from [4]). The GAM generic model (also a framework) has been instan-
tiated to model (retro-engineer) various agent architectures, such as BDI, and
ARCHON.

76

J.-P. Briot, T. Meurisse, and F. Peschanski

Jaddeipn Ol

Fig.2. VOLCANO architecture

(Agent task control)
o, world info to ope
Own agent info to opc
Process
Control own
own process

own process info to wim

Process | info to
info to | maj

own process info to ain) mw info t0 he communicated
s ™ .
commu
Agent 1 agent Maintenance
Interaction | | infd of Agent
M Management| = Information I
T
agent info to aim communicated world info
world info to aim
: communicated info b d ohsenvations and action:
observation [oDssnve
results agefm 0
] infol
to wim Maintenance
Interaction of World
Information
g observel
. .
world info to wim world info
agent info to wim EE——
) observed | | communicated
action and info to asq | info to ast Agen!
absearvation Specific
info from ast Task
-~ ~ /
communication info from 11:1

Fig. 3. DESIRE GAM architecture

Architectural Design of Component-Based Agents 7

. Situation recognition Planning and Cooperative
Social model <> - > .)
ool mode and goal activation g scheduling A planning 1
~— ! '
— — - 1 1
Mental model Situation recc?gnlltlon > Planning land ' L‘olcaI. |
and goal activation scheduling : planification :
\ 1 !
1 1
Situation recognition Planning and 1 :
World model > N > . Behavior
rid mode and goal activation = scheduling ! V
Knowledge
base ‘}
Perception Communication Action

A A

\

Fig. 4. InteRRaP architecture

2.3 Level-Based Style

Another approach considers different various levels (and models) of knowledge,
reasoning and action, to structure the architecture, e.g., through the distinction
between world model, self model, and social model. A representative example is
the InteRRaP architecture [19] (see Figure M adapted from [19]). InterRRaP
is structured as a hierarchy of three layers, concurrently active: cooperative
planning, local planning, and reactive behaviour. The internal architecture of
each level follows the same model, based on situation recognition and planning.
A knowledge base structures the information manipulated by each layer, thus
respectively: social model, mental model, and world model. Two dual control
mechanisms between layers are considered: upwards activation request, to acti-
vate the layer above, and downwards commitment signal, to delegate execution
of commitments to the layer below.

2.4 Behavior-Based Style

A more radical style of decomposition, considers basic behaviors of the agent
as the units of (de)composition. An example is Rodney Brooks’ subsumption
architecture [7], in which various behaviors (e.g., random move, obstacle avoid-
ance. . .) are simultaneously active. They are organized within some fixed hierar-
chy and their associated priorities (see Figure B adapted from [7]). In practice,
a behavior may replace input data of the behavior situated below, as well as
inhibit its output data (for instance, in case of close obstacle perception, the
obstacle avoidance behavior may take control over other ones).

2.5 Discussion

The architectures that we surveyed are usually more tailored at a specific model
of agent (e.g., cognitive collaborative agent for the InteRRaP architecture,

78 J.-P. Briot, T. Meurisse, and F. Peschanski

—>| Obstacle avoidance o replacement
' e inhibition
—X_ﬂ Gradient following
]
\
X.| Exploratory move I

;g—>| Home return | Y
[

_,__&_,| Random move |r Y >

Fig. 5. Subsumption architecture

situated agent or robot for subsomption architecture). They aim at genericity,
but, in practice, they may not provide enough flexibility. For instance, it is often
uneasy, in some case almost impossible, to replace and add, and moreover to
remove components. Also, the implementation of the architecture does not al-
ways follows the basic requirements of software components (output interfaces,
explicit connectors.. .)E neither classical component models (e.g., JavaBeans).
The VOLCANO architecture clearly separates the components, but in order to
replace one component by another one, we are forced to re-implement the cor-
responding adaptors. The subsumption architecture actually represents an ab-
stract model of architecture, instantiated for a specific robot and objective (e.g.,
see Figure [). It is concise but also difficult to evolve (e.g., add a component),
as the fixed hierarchy is the key of control between components.

We think that the behavior-based style of decomposition, as used in the sub-
sumption architecture, is somewhat radical, but it is also the closest to the
concept that we aim at decomposing: the behavior of the agent. A radical option
is then to only offer a model of component, in a way similar to a general software
component model such as JavaBeans, without a specific agent architecture. The
main difference is that the control aspects, and not just the functionalities, must
be also made composable in a flexible and open way, in order to replace the fixed
hierarchical control model of the subsumption architecture. We propose that, by
keeping in line with the idea of a component model, control is specified /reified
through control ports and connexions (see Section B.l), in order to represent
arbitrary patterns of control flow.

2 The JADE architecture [offers some basic support for the designer to construct
an agent as a set of behaviors (instances of class Behaviour). Some subclasses,
e.g., CompositeBehaviour and ParallelBehaviour, provide basic structures for con-
structing hierarchies of behaviors or/and for expressing control structures, e.g., the
most advanced one, FSMBehaviour, relies on finite state automata. Meanwhile, JADE
behaviors are not real components (no output interface/ports nor connectors), thus
the architecture of an agent is still partly hidden within the code.

Architectural Design of Component-Based Agents 79

3 The MALEVA Model of Component

As has been explained above, the objective of the MALEVA agent component
model is to help in incremental design and construction of agent behaviors by
composing simpler behaviors, encapsulated as software components.

3.1 Data Flow and Control Flow

In MALEVA, a distinction is made between the activation control flow and the
data flow connecting the components. As we show in Section B2 this charac-
teristic and specificity of our model, which decouples the functional architecture
from the activation control architecture, makes components more independent
of their activation logic and thus more reusable. Consequently, we consider two
different kinds of ports within a component:

— data ports. They are used to convey data transfer (one way) between com-
ponents. Note that data ports are typed, as discussed in Section

— control ports. A behavior encapsulated in a component is activated only when
it explicitly receives an activation signal through its input control port. When
the execution of the behavior is completed, the activation signal is transfered
to its output control port.

In addition to the semantic distinction between data ports and control ports,
specific to MALEVA, we find the common structural distinction between input
ports and output ports. Table [[l summarizes that.

Table 1. Data and control ports

| | | Data | Control

Input port ||Data consumption|Activation entry point

Output port|| Data production | Activation exit point

Connexion Data transfer Activation transfer

3.2 An Introductory Example

Figure[@l shows a first and very simple example of assembly/composition of com-
ponents: a sequence of two components. Component B is activated after the
computation of component A completes. Regarding data, component B will con-
sume the data produced by component A only after computation of A completes.
In this figure, as well as the following ones, data flow connexions are shown in
solid lines, and control flow connexions in dotted lines.

Figure [7 recombines the two same components, but this time activated con-
currently. Note that the control connexions have been changed accordingly, but
not the data connexions. The semantic is analog to the pipes and filters [23]

80 J.-P. Briot, T. Meurisse, and F. Peschanski

control connexion
““““ 1
input control port\ : P > A \
1 1, 1
A T : input data port A
—= X —>
0 A B T 1= B b
1
1

/Q output :dl port "]
output control port ' ! :
1

data connexion

Fig. 6. Sequential activation of two components

—> —>
o A = 0—

Fig. 7. Concurrent activation of two components

architectural style: component B consumes what A produces while they are both
active simultaneously.

This simple example is a first illustration of the possibilities and flexibility
in controlling activation of components. One may describe active autonomous
components (with an associated thread), explicit sequencing or any other form
of combinationH Flow of control is specified outside of the components, which
provides more genericity on the use of components. The designer of the applica-
tion also has a fine grained control over activation policies between components.
Making possible the control of temporal dependences between behaviors - which
are usually left implicit -, independently of behaviors functionalities, helps ex-
perts at experimenting with various strategies, at comparing results with the
target models, and at quantifying the impact on biases [G]H

3 An additional dimension, the mode of activation of components, which could be
asynchronous or synchronous, will be briefly addressed in Section

* For instance, [14] shows that results of simulations can be found biased in cases
where the scheduling of the actions within an agent remains deterministic.

Architectural Design of Component-Based Agents 81

3.3 Designing Agent Behaviors

Designing and constructing agents for a given application should ideally con-
sist mostly in assembling existing behavior components. We therefore assume
that there is a library of behavior components associated to the application do-
mains targeted. A component may be primitive (the behavior is written in the
underlying language, e.g., Java) or composite as the encapsulation of a compo-
sition (assembly) of components.

4 A First Example: Bottom-Up Design of Prey and
Predator

The MALEVA model has been particularly targeted at and used for multi-agent-
based simulation (MABS) applications [22], in various domains such as ecology,
ethology, and economy. In multi-agent-based simulations, various elements of the
phenomena modeled and their interactions are explicitly modeled and studied.
The two examples described in this paper show some facets of design and of
potential reuse.

Our first example will define behaviors of situated agents within an ecosystem.
First step is thus to define a general architecture for situated agentsﬁ

4.1 Abstract Architecture of a Situated Agent

A situated agent senses its environment (e.g., position of the various agents near
by, presence of obstacles, presence of pheromones. . .) through its sensors. These
data are used by its (internal) behavior to produce data for its effectors, which
will act upon the environment (e.g., move, take food, leave a pheromone, die. . .).
The general architecture of a situated agent usually follows the computational
cycle:

sensors — behavior — effectors

and is shown at Figure 8l

4.2 Prey Behavior

We will now define and construct the basic behaviors of preys and predators. By
following a bottom up approach, we first define a set of elementary components,

5 It corresponds to a notion of structural composition as opposed to, or rather in ad-
dition to, functional composition (simple assemblage). Such encapsulation of assem-
blages of components represents a very powerful abstraction principle. Of course, a
composite may provide extra functionalities (and control specifications) at its higher
abstraction level, making it a true component on its own. Another example support-
ing the notion of composite component is the Fractal component model [§].

Note that for other applications, e.g., micro-simulation [6], agents are not necessarily
situated (within an environment) and thus do not use any sensor/effector. Other
applications agents could also use inter-agent communication (ACL) modules.

(=]

82 J.-P. Briot, T. Meurisse, and F. Peschanski

)
g z
2 |
[T s : =
5] Behavior, b5
A : &
7 [Sa)
~— Behavior, Behavior,
Behavior
Agent

Fig. 8. General architecture of a situated agent

representing the basic behaviors of preys and predators, that we name: Flee
(fleeing a predator), Follow (following a prey), and Exploration (exploration
through a random move, which represents the default behavior). Then we will
compose them, to represent the following agent behaviors: Prey and Predator.

A prey flees the predators being located within its field of perception. If no
predator is close (sensed), the prey explores its surroundings by moving ran-
domly. Thus, we construct the Prey behavior as the composition of the following
three components: Flee, Exploration, and a control component named Switch.

4.3 Control Components

The Switch control component reifies the standard conditional structure into a
special kind of primitive componentﬁ] The condition is the presence or absence
of an input data. The behavior of Switch, once being activated (receiving an
activation signal), is as follows:

IF data is received through If (input data port)
THEN transfer control through Then (output control port)
AND send data through Then (output data port)
ELSE transfer control through Else (output control port)

The architecture of the Prey behavior follows this pattern and is shown at Fig-
ure[d If a predator has been detected (some data representing the predator loca-

" Note that the MALEVA standard library includes other control components, analog
to standard control structures (e.g., repeat loop) or synchronization operators (e.g.,
barrier synchronization) [I6]. They will not be described in this paper.

Architectural Design of Component-Based Agents 83

> | if predator

input control port
u]

N

o~ o output control port
input data port

(predator location)

if no p.

Explo H
ration X B

output data port
(move)

Fig. 9. Prey behavior

tion has been received on the input data port)ﬁ Switch transfers control through
its Then output control port, which activates the Flee behavior. Then Flee can
compute a move data based on the location of the predator, and send it through
its output data port. The move data is finally transfered to Prey output data port
and then to the effector, to produce a move of the agent on the environment. If
no predator has been sensed (no data received), Switch transfers control through
its Else output control port, which activates Exploration behavior. Note that
Exploration does not need a data input to produce a move data.

4.4 Predator Behavior

We may now reuse the Prey behavior component to construct the behavior
of a predator which follows the preys while fleeing his fellows predators, and
otherwise explores its surroundings. The predator behavior may be defined as a
prey behavior (it flees other predators and otherwise carries out an exploration
movement), to which is added a behavior of predation (it follows preys that he
could perceive). According to our compositional approach, we define Predator
behavior component as a new composite behavior embedding as it is the existing
Prey behavior component (see the result in Figure[I0). Note that in our current
design, hunger (predation) has priority over fear (fleeing), as Prey is activated
by Predator. Other combinations could be possible.

8 We assume that the input data port (perception of a predator in the environment)
and the output data port of the Prey behavior have been connected to the correspond-
ing sensor and effector data ports, along the general architecture of a situated agent,
shown at Figure B

84 J.-P. Briot, T. Meurisse, and F. Peschanski

controf input port

data input port /'
(prey location)
Eise [=)
P : bmmmmmmmm - B
if no prey \ !
. >
c---g------ 1 TP
—
e 1
! output control port
00— Switch > a : n
|]
data input port /' b :
(predator location) 1
L Flee B—i— output data port
1 (move)
. " —
Explo 7 I
ration ! 1
; 1
W) 1
Lo e I
Prey
Predator |

Fig. 10. Predator behavior (with Prey as a sub-component)

5 A Second Example: Top-Down Design of Ants

This second example illustrates a top down design of agent behaviors. The com-
plete application was the reengineering in MALEVA [I5] of the modeling and
simulation of ant colonies for the study of their sociogenesis (Alexis Drogoul’s
MANTA framework [10]). Various types of ant agents are considered: eggs, lar-
vae, worker ants, queensf] In this paper, we focus on the top down design of the
behavior of an ant worker.

5.1 The Living Pattern

The first step of our design identifies some feature common to each living agent,
the ability to age (and ultimately to die). Therefore, we design a behavior, partly
abstract, named Living, shown at Figure [Tl It includes 4 sub-behaviors/comp-
onents: behavior CheckAgeLimit (it includes a variable age, incremented for
each activation step and compared with the agent age limit); behavior Die;
abstract behavior Behavior; and a Switch control component. When the agent
reaches its age limit, CheckAgeLimit emits a die data. Then Switch activates
Die, which in turn emits suicide data, ultimately conveyed to the actuators

 The metamorphosis process - from egg to larva and then to ant or queen - leads to
the issue of behavior evolution and architectural dynamicity, see Section [8

Architectural Design of Component-Based Agents 85

control suicide
r--0
1
1
1
v! control
1
:
o . suicide
! :
1 1 1\
! 1
! 1
! 1
! 1
L t
1
Vol —> > :
(generic) o (generic) 1 : (generic)
stimulus : action : : action
_______________ o
—>
Living \

Fig.11. Living abstract behavior

(in practice, it may e.g., remove the agent from the environment). Otherwise,
Behavior is activated by Switch.

This design is a simplified form of a design pattern |1 1] Living implements
that pattern as some “mini black-box framework”, where the hot spot is the
abstract component Behavior. To construct a specific agent behavior, we replace
(instanciate) the abstract component Behavior with a concrete behavior, e.g.,
specific to an ant, egg, larva or queen [I5].

5.2 The Behavior of an Ant

A worker ant has a relatively complex behavior because its various types of
activities: move, pheromone following, egg carrying, egg caring. It is simplified
in this paper. First, we instanciate Living into a concrete behavior specific
to ants, named Ant. In practice, Behavior is replaced by a concrete behavior,
named AntActivity Result is shown at Figure

We now define the specific behavior of the ant, named AntActivity, shown
at Figure The ant explores its surroundings through a random movement
(Exploration behavior), unless it perceives some stimulus (ManageStimulus

10 We have identified others, e.g., “exploration unless perception”, used by the Prey
behavior, in Section @l and which will be reused for the AntActivity ant internal
behavior, in Section A further discussion about MALEVA design patterns may
be found in [I5].

1 One may note that AntActivity has an additional output data port, in order to
distinguish the two possible outputs: action (e.g., leave a pheromone or take food)
and move, and their associated effectors and types. An alternative simplification is
to consider a single output data port including all types of actions (including move).

86 J.-P. Briot, T. Meurisse, and F. Peschanski

control suicide
r--g
I
I
I
v control
e
i
' o X suicide
1 H :
|l| (generic) | ! ’l‘
{ action 1 | (generic)
Ant I : ! & action
E Activit L
P —_— ctivity : !
{generic) o ! :
stimulus T move , ! move
1
_______________ L —
—
Fig. 12. Ant behavior
o---------- 1
—_ I
control e
r----f1
O Then ! | 1\ control
stimulus 1 "
stimulus actign
K
——1—n
' Manage R
1 0] 1
o Stimulus uk—:— action
move [|
Explo H ! "\
ration — : ' move
move ! ,L '
o :]
1 | 1
L - ——mm e ——— 1
—>

| AntActivity |

Fig.13. AntActivity behavior: first level of decomposition of Ant behavior

behavior). Thus, AntActivity reuses the “exploration unless perception” pat-

tern, already used for Prey and Predator behaviors (see Figures [l and [I0).
Because of space limitation, we do not detail the design of ManageStimulus

behavior (follow gradient and take action when reaching a local maximum).

Architectural Design of Component-Based Agents 87

Check |
A geLimi

Ant
d----n
r—fa
[
"
. . |
h . i
Manage [2
L . Stimu]us
Explo — [T
ration P 1 Follow L b
0 : - Gradient . 1
| I L= J 1 !
L I
AntActivi ;
y ManageStimulus |

Fig. 14. Ant behavior: complete decomposition

The complete architecture of the ant behavior (including 3 levels and 14 com-
ponents) is shown at Figure [[4

6 Implementation

6.1 Evolution of Implementation

The MALEVA component model and its associated prototype CASE tool have
been implemented successively in three versions and languages: Delphi, Java [15],
and C++ [16].

The Java-based reimplementation of MALEVA added typing to the compo-
nents ports and connexions. This turned out to be useful for verifying interface
compatibility between components. In addition, sub-typing helps at defining
more abstract components. Java also supports inspecting various information
about a component, thanks to its introspection facilities (API and tools). Thus,
the designer can easily query a component to obtain its internal information.

88 J.-P. Briot, T. Meurisse, and F. Peschanski

The Java implementation, actually based on JavaBeans, also gave opportu-
nity to compare our MALEVA prototype component model with an industrial
component model. Note that the JavaBeans model conforms to a publish/
subscribe communication model, but the implementation still relies on standard
method call. In our implementation of MALEVA, a mailbox (FIFO queue of
messages) is associated to each input data port and to the input control port,
in order to decouple data transfer and actual activation.

6.2 Modes of Activation and Scheduling

At the level of the general scheduler, two alternative modes (or approaches) of
activation have been implemented: an asynchronous mode and a synchronous
mode. In the asynchronous mode, the different agents (and components) evolve
independently. It may be more efficient, specially in the case of distributed imple-
mentation. Meanwhile, unless the designer also uses explicit control connexions
between agents, the different agents may not be synchronised (some can com-
pute ahead of others), depending on their relative processing speed. In the syn-
chronous mode, the scheduler sends next activation trigger once all behaviours
have finished, which ensures but also imposes a global synchronization. The
choice between the two modes depends on the requirements for the application
(see, e.g., [14] and [16] for more discussion).

6.3 From Methods to Components

The MALEVA prototype CASE tool includes a library of components (be-
havioral components and control components) ; an editor of connexion graphs
(named CGraphGen, which stands for concurrent graph generation) ; a graphical
environment for constructing virtual environments for situated agents ; and a
run time support for scheduling and activating agents.

An interesting feature of CGraphGen [16] is the importation of actual Java
code and its reification into MALEVA components. The granularity considered
is a Java method. After specifying the class and method name, and its signa-
ture, CGraphGen automatically generates a corresponding component whose
data ports correspond to the method signature: one input data port for each
parameter, and one optional output data port for the result (none in the case of
void). Two control ports (one input and one output) are also implicitly added.
CGraphGen allows graphical connexion of both data-flow and control-flow be-
tween components, and the creation of composite components.

7 Related Work

In addition to the agent architectures already discussed in Section B, we now
quickly refer to a few additional related works, still focusing on the agent ar-
chitectures offering some modular or compositional support at the level of one
agent. See also, e.g., [2], for a recent more general survey of languages, architec-
tures and platforms for multi-agent systems.

Architectural Design of Component-Based Agents 89

Like MALEVA, JAF (Java Agent Framework [13]), also based on JavaBeans,
uses components to decompose behaviours of agents. JAF does not explicitly
separate control flow from data flow. But it proposes some interesting match-
making mechanism, where each component specifies the services that it requires.
At component instantiation time, JAF looks for the best correspondence between
the requirements specification and the components available. Another difference
between JAF and MALEVA is at the level of behaviour decomposition. JAF de-
composition appears at a relatively high level, whereas MALEVA promotes a fine
grain behaviour decomposition, and its management through explicit control.

The MaSE methodology [9] includes a modular representation of agent be-
haviours as sets of concurrent tasks. Each task is described as a finite state
automaton and is implemented as an object with a separate thread. A task can
communicate with other tasks, inside the same agent, or with a task of another
agent, through event communication. A first difference with MALEVA is that
the implementation of MaSE concurrent tasks does not use components with
explicit input and output ports. Another difference is that MALEVA provides
more explicit control of activation, whereas MaSE concurrent tasks rely partly
on some implicit control (inter-tasks implicit concurrency and synchronous mes-
sage reception discipline). That said, as the MaSE methodology is actually very
general, we could imagine using several of the MaSE steps to produce MALEVA
components.

The DESIRE methodology and component model [3] is more high-level and
knowledge-oriented than MALEVA and is more aimed at cognitive agents. It is
based on a formal description considering separately a process/component level
and a knowledge level. This approach enables some possibilities of verification, but
at the cost of some added complexity in specifications. As opposed to MALEVA,
DESIRE does not provide a fine grained control model for components.

8 Further Issues and Future Directions

A first issue, for our current component architecture, is that simulation de-
signers must design activation models (control flow) from a relatively low-level
perspective, with explicit manipulation of connexions. Abstract components and
their related design patterns help at capitalizing and reusing experiences. While
several patterns and reusable abstracts components have been tested and doc-
umented in various experiments (see, e.g., in Section [and also in [I5]), we are
still far from a complete library of such reusable activation patterns. We wish to
provide the designers with several types of libraries: behavior components (e.g.,
Exploration) ; abstract components, e.g., Living ; control components, e.g.,
Switch ; and “system” components, e.g., for perception (sensors), action (effec-
tors), inter-agent communication, migration. In addition, the component-based
design of agents and the support of CASE tools using possible information (e.g.,
typing) should help in assisting the designer to analyse existing designs and to
create new ones.

90 J.-P. Briot, T. Meurisse, and F. Peschanski

A second issue is that the experience with the specification of control through
connexions shows that, in case of large applications, the connexion graphs may
become large, although they may be hierarchical and encapsulated in composite
components (e.g., see the recursive design of an ant behavior in Section [B]). Some
radical alternative approach to reduce the control graph complexity, and also to
make it more accessible to formal analysis, is to abstract it in an adequate for-
malism. We think that a process algebra (such as CCS) [I7] could allow the
concise representation of complex activation patterns. The idea is somehow ana-
log to coordination languages, but for very fine grained components. The starting
point is to model data used for control (e.g., presence of prey, of predator, of
pheromone. ..) as channels and synchronize activity of behaviors on them. The
result is a compact term to express a control graph analog to the example of
prey and predator (in Section H):

isPrey.Follow || isPredator.Flee ||
(isNoPrey.Exploration + isNoPredator. Exploration)

where isPrey, isPredator, isNoPrey and isNoPredator are channels, connected
to the sensors of the agent; and Follow, Flee, and Fxploration are processes rep-
resenting behaviors. Such formal characterization would also allow the semantic
analysis of such specifications, for example through model checking.

A third issue is the dynamicity of behaviors. An example of modeling is the
metamorphosis process of ants (egg, larva, ant), introduced in Section Bl Cur-
rent implementation strategy relies on a specific meta-component to manage
the reconfiguration and reassemblage of behaviors. We are currently considering
using a higher level mechanism, based on concepts of configurations, roles and
policies, such as [12]. Last, to allow the dynamicity of formalisms for activation
patterns, we are considering models of process algebras supporting dynamicity
and channel name passing, such as the Pi-calculus [18].

9 Conclusion

In this paper, we presented some experience in using a component model to
design and implement agents. This model is relatively original in the explicit
management of activation control through control ports and connexions, by ap-
plying the concept of component to the specification of control. Several exper-
iments illustrate how MALEVA can support various forms of potential reuse
through: structural composition of behaviors, abstract components and design
patterns, and specialization of intra-agent scheduling policies (that latter issue
is discussed in [6]).

Considering rationales for agent architectures, we believe that there is no
ultimate best agent architecture, as it depends on the application domain and
requirements. General purpose (also named hybrid) architectures, like InteRRaP,
which attempt at reconciling both cognitive and reactive architectures, turn out
to be powerful, but also complex. On the contrary, our architecture focuses on
a lower-level agent component model with a fine-grained control. It was initially

Architectural Design of Component-Based Agents 91

more targeted at reactive agent models for multi-agent simulation, but we believe
that the MALEVA component model is more general, the issue being more in
providing sufficiently rich libraries of components and abstract architectures,
supporting the types of architectures and applications targeted (e.g., interaction
protocols for e-commerce, reasoning components for rational/cognitive agents,
etc.). More generally speaking, we believe that some features of our architecture
model may be transposed, and that making control available at the composition
level may help the use of components within frameworks of applications vaster
than those in which they had been initially thought.

Acknowledgement

We would like to thank Marc Lhuillier, Alexandre Guillemet and Grégory Haik,
for their contribution to the MALEVA project.

References

1. F. Bellifemine, A. Poggi, G. Rimassa, Developing Multi-Agent Systems with
a FIPA-compliant Agent Framework, Software Practice and Ezperience, (31):
103-128, 2001.

2. R. Bordini, L. Braubach, M. Dastani, A. El Fallah Seghrouchni, J.J. Gomez-Sanz,
J. Leite, G. O’Hare, A. Pokahr, A. Ricci, A Survey of Programming Languages
and Platforms for Multi-Agent Systems, Informatica, 30:33—44, 2006.

3. F. Brazier, B. Dunin-Keplicz, N.Jennings, J. Treur, Formal Specification of Multi-
Agent Systems : a Real-World Case, Ist International Conference on Multi-Agent
Systems (ICMAS’95), San Francisco, CA, USA, MIT Press, 1995, pp. 25-32.

4. F. Brazier, C. Jonker, J. Treur, N. Wijngaards, Compositional Design of a Generic
Design Agent, Design Studies Journal, (22):439-471, 2001.

5. J.-P. Briot, Composants logiciels et systémes multi-agents, Technologies SMA et
leur utilisation dans lindustrie, A. El Fallah-Seghrouchni (ed.), Collection IC2,
Hermes/Lavoisier, France, to appear in 2007.

6. J.-P. Briot, T. Meurisse, A Component-based Model of Agent Behaviors for Multi-
Agent-based Simulations, 7th International Workshop on Multi-Agent-Based Sim-
ulation (MABS’06), AAMAS’2006, Japan, May 2006, pp. 183-190.

7. R.A. Brooks, A Robust Layered Control System for a Mobile Robot, IEEE Journal
of Robotics and Automation, 2(1):14-23, March 1986.

8. E. Bruneton, T. Coupaye, M. Leclerc, V. Quema, J.-B. Stefani, An Open Compo-
nent Model and its Support in Java, 7th International Symposium on Component-
Based Software Engineering, No 3054, LNCS, Springer-Verlag, May 2004, pp. 7-22.

9. S.A. DeLoach, Multiagent Systems Engineering: A Methodology and Language for
Designing Agent Systems, Agent-Oriented Information Systems (AOIS’99), Seat-
tle, WA, USA, May 1999.

10. A. Drogoul, B. Corbara, D. Fresneau, MANTA: Experimental Results on the Emer-
gence of (Artificial) Ant Societies, in Artificial Societies: the Computer Simulation
of Social Life, N. Gilbert and R. Conte (eds), UCL Press, U.K., 1995.

11. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of
Reusable Object Oriented Software, Addison-Wesley, 1995.

92

12

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

J.-P. Briot, T. Meurisse, and F. Peschanski

G. Grondin, N. Bouragadi, L. Vercouter, MaDcAr: an Abstract Model for Dy-
namic and Automatic (Re-)Assembling of Component-Based Applications, 9th
International SIGSOFT Symposium on Component-Based Software Engineering
(CBSE’2006), No 4063, LNCS, Springer-Verlag, 2006, pp. 360-367.

B. Horling, A Reusable Component Architecture for Agent Construction, Technical
Report No 1998-49, Computer Science Dept., UMASS, MA, USA, October 1998.
B. G. Lawson, S. Park, Asynchronous Time Evolution in an Artificial Society Mode,
Journal of Artificial Societies and Social Simulation, 3(1), 2000.

T. Meurisse, J.-P. Briot, Une approche & base de composants pour la concep-
tion d’agents, Journal Technique et Science Informatiques (TSI), 20(4):583-602,
Hermes/Lavoisier, France, April 2001.

T. Meurisse, Simulation multi-agent : du modele a 'opérationnalisation, Thése de
doctorat (PhD thesis), Université Paris 6, Paris, France, July 2004.

R. Milner, A Calculus for Communicating Systems, Springer-Verlag, 1982.

R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge Uni-
versity Press, 1999.

J.P. Miiller, M. Pischel, The Agent Architecture InteRRaP: Concept and Applica-
tion. Technical Report RR-93-26, DFKI, Saarbrucken, Germany, 1993.

J.P. Miiller, Control Architectures for Autonomous and Interacting Agents: A Sur-
vey, In Intelligent Agent Systems: Theoretical and Practical Issues, No 1209, LNAI,
Springer-Verlag, 1997, pp. 1-26.

P.-G. Ricordel, Y. Demazeau, Volcano, a Vowels-Oriented Multi-Agent Platform,
2nd International Workshop of Central and FEastern Europe on Multi-Agent Sys-
tems (CEEMAS’01), No 2296, LNCS, Springer-Verlag, 2001, pp. 253-262.

S. Moss, P. Davidsson (eds), Multi-Agent-Based Simulation, 2nd International
Workshop on Multi-Agent Based Simulation (MABS’2000) - Revised and Addi-
tional Papers, No 1979, LNCS, Springer-Verlag, 2001.

M. Shaw, D. Garlan, Software Architectures: Perspective on an Emerging Disci-
pline, Prentice Hall, 1996.

Y. Shoham, Agent Oriented Programming, Artificial Intelligence, 60(1):51-92,
1993.

	Introduction
	Rationales and Styles for Agent Architectures
	Cycle-Based Style
	View-Based Style
	Level-Based Style
	Behavior-Based Style
	Discussion

	The MALEVA Model of Component
	Data Flow and Control Flow
	An Introductory Example
	Designing Agent Behaviors

	A First Example: Bottom-Up Design of Prey and Predator
	Abstract Architecture of a Situated Agent
	Prey Behavior
	Control Components
	Predator Behavior

	A Second Example: Top-Down Design of Ants
	The Living Pattern
	The Behavior of an Ant

	Implementation
	Evolution of Implementation
	Modes of Activation and Scheduling
	From Methods to Components

	Related Work
	Further Issues and Future Directions
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

