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Abstract. This paper presents DARX, our framework for building failure-
resilient applications through adaptive fault tolerance. It relies on the fact that
multi-agent platforms constitute a very strong basis for decentralized software
that is both flexible and scalable, and makes the assumption that the relative
importance of each agent varies during the course of the computation. DARX
regroups solutions which facilitate the creation of multi-agent applications in a
large-scale context. Its most important feature is adaptive replication: replication
strategies are applied on a per-agent basis with respect to transient environment
characteristics such as the importance of the agent for the computation, the net-
work load or the mean time between failures.

Firstly, the interwoven concerns of multi-agent systems and fault-tolerant so-
lutions are put forward. An overview of the DARX architecture follows, as well
as an evaluation of its performances. We conclude, after outlining the promising
outcomes, by presenting prospective work.

1 Introduction

Nowadays it barely seems necessary to emphasize the tremendous potential of de-
centralized software solutions. Their main advantage lies in the distributed nature of
information, resources and action. One software engineering technique for building
such software has lately emerged in the artificial intelligence research field, and ap-
pears to be both promising and elegant: distributed agent systems [BDC00] [MCM99]
[NS00].

Intuitively, multi-agent systems appear to represent a strong basis for the construction
of distributed applications. The general outline of distributed agent software consists in
autonomous computational entities which interact with one another towards a common
goal that is beyond their individual capabilities.
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In addition, the multi-agent paradigm bears two attractive notions: flexibility and
scalability. By definition, agents have the ability to adapt in order to meet new context
requirements. A software consisting of multiple agents can therefore be dynamically
modified: objectives of specific agents may be altered, new agents can be brought in
to collaborate towards a computation, agents that have become partly useless for the
application can be adapted or set aside, and so on... Moreover, multi-agent systems
are based on communicating, autonomous entities; it ensues that there is no theoreti-
cal limit to the number of agents involved, nor is there any bound on the number of
hosting machines. Distributing such systems over large scale networks may therefore
tremendously increase their efficiency as well as their capacity.

However, large-scale distribution also brings forward the crucial necessity of apply-
ing dependability protocols. For instance, the greater the number of agents and hosts,
the higher the probability that one of them will be subjected to failure. Multi-agent
applications rely on collaboration amongst agents, hence the failure of one of the in-
volved agents might bring the whole computation to a dead end. Therefore it appears
that fault tolerance is a necessary paradigm for the design of such applications. In par-
ticular, software replication techniques provide for a range of recovery guarantees and
delays [GS97]. However, replicating every agent in systems comprising up to millions
of agents may not be affordable given the important time and resources consumption
implied. Also, several replication strategies exist and the efficiency of each strategy de-
pends heavily upon both the application context and the computing environment. One
solution might be to design and implement mechanisms for (1) the analysis of both the
context and the environment in order to single out the agents which are vital for the
system, and (2) the application and the dynamic adaptation of replication schemes with
respect to context and environment variations.

In this paper, we depict DARX, our architecture for fault-tolerant agent comput-
ing [MSBG01]. DARX uses the flexibility of multi-agent systems in order to offer
adaptive fault tolerance by means of dynamic replication mechanisms: software ele-
ments can be replicated and unreplicated on the spot and it is possible to change the
ongoing replication strategies on the fly. We have developed a solution to intercon-
nect this architecture with two existing multi-agent platforms, namely MadKit[GF00]
and DIMA [GB99], and in the long term to other platforms. The originality of our
approach lies in two major orientations. Firstly, the choice of the fault tolerance pro-
tocol – which computational entities are to be made fault-tolerant, to which degree,
and at what point of the execution – is not entirely incumbent upon the application
developer; DARX offers automated observation and control functionalities to address
these issues. And secondly, the overall architecture is conceived with a view to being
scalable.

The paper is organized as follows. In section 2, the main existing approaches towards
solving the fault tolerance problems in the multi-agent systems context are presented.
Section 3 depicts the general design of our framework dedicated to bringing adaptive
fault tolerance to multi-agent systems through selective replication. Section 4 reports
on the issues raised by the implementation of DARX-compliant applications, and sec-
tion 5 evaluates the performances of the resulting software. Finally, the conclusion and
perspectives are drawn in section 6.
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2 Related Work

Research on fault tolerance in multi-agent systems mainly focuses on the ability to guar-
antee the continuity of every agent computation. This approach includes the resolution
of consistency problems amongst agent replicas. Other related solutions address the
complex problems of maintaining agent cooperation [KCL00], providing reliable mi-
gration for independent mobile agents and ensuring the exactly-once property of mobile
agent executions [PS01].

Several solutions use specific entities to protect the computational elements of multi-
agent systems [H96] [KIBW99] [KCL00]. The principal contribution of these
approaches is in separating the control of the agents from the functionalities of the
multi-agent system.

In [H96], sentinels represent the control structure of the multi-agent system. Each
sentinel is specific to a functionality, handles the different agents which interact to pro-
vide the corresponding service, and monitors communications in order to react to agent
failures. Adding sentinels to a multi-agent system seems to be a good approach, how-
ever the sentinels themselves represent bottle-necks as well as failure points for the
system.

A similar architecture is that of the Chameleon project [KIBW99]. Chameleon is an
adaptive fault tolerance system using reliable mobile agents. The methods and tech-
niques are embodied in a set of specialized agents supported by a fault tolerance man-
ager (FTM) and host daemons for handshaking with the FTM via the agents. Adaptive
fault tolerance refers to the ability to dynamically adapt to the evolving fault toler-
ance requirements of an application. This is achieved by making the Chameleon in-
frastructure reconfigurable. Static reconfiguration guarantees that the components can
be reused for assembling different fault tolerance strategies. Dynamic reconfiguration
allows component functionalities to be extended or modified at runtime by changing
component composition, and components to be added to or removed from the system
without taking down other active components. Unfortunately, through its centralized
FTM, this architecture suffers from the same objections as the previous approach.

[KCL00] presents a fault tolerant multi-agent architecture that regroups agents and
brokers. Similarly to [H96], the agents represent the functionality of the multi-agent
system and the brokers maintain links between the agents. [KCL00] proposes to orga-
nize the brokers in hierarchical teams and to allow them to exchange information and
assist each other in maintaining the communications between agents. The brokerage
layer thus appears to be both fault-tolerant and scalable. However, the implied overhead
is tremendous and increases with the size of the system. Besides, this approach does not
address the recovery of basic agent failures.

In order to solve the overhead problem, [FD02] proposes to use proxies. This ap-
proach tries to make transparent the use of agent replication; that is, computational
entities are all represented in the same way, disregarding whether they are a single
application agent or a group of replicas. The role of a proxy is to act as an interface
between the replicas in a replicate group and the rest of the multi-agent system. It han-
dles the control of the execution and manages the state of the replicas. To do so, all the
external and internal communications of the group are redirected to the proxy. A proxy
failure isn’t crippling for the application as long as the replicas are still present: a new
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proxy can be generated. However, if the problem of the single point of failure is solved,
this solution still positions the proxy as a bottle-neck in case replication is used with a
view to increasing the availability of agents. To address this problem, the authors pro-
pose to build a hierarchy of proxies for each group of replicas. They also point out the
specific problems which remain to be addressed: read/write consistency and resource
locking, which are discussed in [SBS00] as well.

3 The Architecture of the DARX Framework

This section presents DARX, our Dynamic Agent Replication eXtension, and depicts
its features.

3.1 System Model and Failure Model

A distributed system is assumed, in which processes/agents communicate through mes-
sages. Communication channels are considered to be quasi-reliable. Our model fol-
lows that of partial synchrony, proposed by Chandra and Toueg in their generalization
of failure detectors [CT96]. This model stipulates that, for every execution, there are
bounds on process speeds and on message transmission times. However, these bounds
are not known and in our model they hold only after some unknown time: the global
stabilization time.

Processes are assumed to be fail/silent. Once a specific process is considered as hav-
ing crashed, it cannot participate to the global computation anymore. Byzantine be-
haviours might be resolved with DARX, but are not yet integrated in the failure model.

Host A.1 Host A.2

Domain B

Host B.2

Domain A

Host A.3

Host C.2

Host C.1 Host C.3

Host B.1

Domain C

Fig. 1. A hierarchic topology aimed at scalability

Finally, for scalability issues, a hierarchic structure is imposed for the logical net-
work topology. As shown in Figure 1, sets of hosts are organized in groups. Broadly
connected machines are regrouped in domains, and a higher inter-domains level called
the nexus is constructed. Within each domain, a single host is elected so as to participate
to the higher level.



92 O. Marin et al.

Application

Analysis

Naming &

Localisation

Failure Detection

Multi−Agent
System

Control
Replication

Adaptive

Java RMI

Replication

JVM

DARX

Adaptation

Agent

SOS: System−Level

Observation

Fig. 2. DARX service-oriented architecture

3.2 Overview

Figure 2 gives a service-oriented overview of the logical architecture of DARX.

– A failure detection service [BMS02][BMS03] maintains dynamic lists of all the
running hosts as well as of the valid software elements which participate to the
supported application, and notifies the latter of suspected failure occurrences.

– A naming and localisation service generates a unique identifier for every agent in
the system, and returns the addresses for all agent replicas in response to an agent
localisation request.

– A system observation service monitors the behaviour of the underlying distributed
system: it collects low-level data by means of OS-compliant probes and diffuses
processed trace information so as to make it available for the adaptive replication
control process.

– An application analysis service builds a global representation of the supported
agent application in terms of fault tolerance requirements.

– A replication service brings all the necessary mechanisms for replicating agents,
maintaining the consistency between replicas of a same agent, and automating repli-
cation scheme adaptation for every agent according to the data gathered through
system monitoring and application analysis.

– An interfacing service offers wrapper-making solutions for agents, thus rendering
the DARX middleware usable by various multi-agent systems and even making it
possible to introduce interoperability amongst different systems.

The following describes how DARX services interact in order to supply adaptive
fault tolerance to agent applications. The fault tolerance features are brought to agents
from various platforms through their corresponding adaptor by an instance of a DARX
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server running on every location1. Each DARX server implements the required repli-
cation services, backed by a common global naming/location service enhanced with
failure detection (see 3.3). Concurrently, a scalable observation service (see 3.4) is in
charge of monitoring the system behaviour at every level of the hierarchic topology –
local, domain, nexus. The information gathered through both means is used thereafter to
adapt the fault tolerance schemes on the fly: an event-driven decision module combines
system-level information and application-level information to determine the criticity2

of each agent, and to apply the most suitable replication scheme.
DARX includes transparent replication management. While the supported applica-

tion deals with agents, DARX handles replication groups. Each of these groups consists
of software entities – replicas – which represent the same agent. Thus in the event of
failures, if at least one replica is still up, then the corresponding agent isn’t lost to the
application. A more detailed explanation of a replication group, of its internal design
and of its utilization in DARX can be found in 3.5.

For portability and compatibility issues, DARX is Java-based. Indeed, the Java lan-
guage and more specifically the JVM provide – relative – hardware independence, an
invaluable feature for large-scale distributed systems. Moreover, a great number of the
existing multi-agent platforms are implemented in Java. In addition to all this, the re-
mote method invocation (RMI) facility offers many useful high-level abstractions for
the elaboration of distributed solutions.

3.3 Failure Detection and Naming Service

As part of the means to supply adequate support for large-scale agent applications, the
DARX platform includes a hierarchical, fault-tolerant naming service. This distributed
service is deployed over a failure detection service based on an adaptable implementa-
tion of the unreliable failure detector [BMS02][BMS03].

The failure detection and naming layer serves a major goal: to maintain dynamic lists
of the valid sites and of the valid agents, as well as their casual replicas, participating to
the application. Specific agents can thus be localized through this service. Failure de-
tectors exchange heartbeats and maintain a list of the processes which are suspected of
having crashed. Therefore, in an asynchronous context, failures can be recovered more
efficiently. For instance, the failure of a process can be detected before the impossibility
to establish contact arises within the course of the supported computation.

The service aims at detecting both hardware and software failures. Each DARX
server integrates an independent thread which acts as failure detector/name server.
Software failure is detected by monitoring the running processes on each server. Hard-
ware failures are suspected by exchanging heartbeats among groups of servers. For

1 A location is an abstraction of a physical location. It hosts resources and processes, and pos-
sesses its own unique identifier. DARX uses a URL and a port number to identify each location
that hosts a DARX server.

2 The criticity of a process defines its importance with respect to the rest of the application.
Obviously, its value is subjective and evolves over time. For example, towards the end of a
distributed computation, a single agent in charge of federating the results should have a very
high criticity; whereas at the application launch, the criticity of that same agent may have a
much lower value.
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large-scale integration purposes, this structure maps the hierarchic topology presented
in 3.1, which comprises two levels: a local one – domains – and a global one – the nexus.
The logical topology ought to reflect the physical topology as much as possible: every
domain is mapped onto a highly-connected cluster of workstations, or constituted inside
it. Local groups bind themselves together by electing exactly one representative which
will participate to the nexus. At this global level, each representative name server main-
tains a list of the known agents within the application – the replication group leaders
(see 3.5) in the DARX context. This information is shared and kept up-to-date through
a consensus algorithm implying all the representative name servers. When a new agent
is created, it is registered locally as well as by the representative name server; like-
wise in the case of an unregistration. At the local level, the name servers maintain the
list of all the replicas supported in their local group, disregarding whether these are
leaders or not.

In this architecture, the ability to provide different qualities of service to the local
and the global detectors is a major asset of our implementation. Thus on the global
level, failure suspicion can be loosened with respect to the local level. This distinction
is important, since a failure does not have the same interpretation in the local context
as in the global one. A local failure corresponds to the crash of an agent or of a host,
whereas in the global context a failure represents the crash of an entire domain.

Figure 3 shows how the naming service makes use of the failure detection to convey
its communications. The information is exchanged between name servers via piggy-
backing on the failure detection heartbeats. The local lists of replicas which are sus-
pected to be faulty are directly reused to maintain the global view of the application.
With respect to DARX, this means that the list of running agents is systematically up-
dated. When a DARX server is considered as having crashed, all the agents it hosted
are removed from the list and replaced by replicas located on other hosts. The election
of a new leader within an agent replication group is initiated by a failure notification
from the naming service.

failure
detector

Piggy−backing

processes
list

Network

Name Server

messages
to send

failed received

Local / Global

messages

Fig. 3. Usage of the failure detector by the name server
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3.4 Observation Service

DARX aims at providing decision-making support so as to fine-tune the fault tolerance
for each agent with respect to its evolution and that of its context. Decisions of this type
may only be reached through a fairly good knowledge of the dynamic characteristics of
the application and of the environment. In order to obtain such knowledge, a scalable
observation service has been designed and implemented, yet remains to be integrated
in DARX.

Similarly to the naming service, the observation service piggybacks its communi-
cations on the existing flow created by the regular heartbeat emissions of the fail-
ure detection service. Moreover, it is also hierarchic; it distinguishes local and global
levels.

The data collected at the local level consists in transient information such as the cur-
rent memory load of a host, the overall execution time of an agent since it was created,
the number of messages exchanged between two agents, . . . This type of data is shared
within local groups; broadcasting it or enabling subscription to it on a large scale does
not appear worthwhile. Indeed, the validity of such information over a long period of
time is highly questionable. Besides, its diffusion on a great number of distant loca-
tions bears a heavy cost, even though it would be diluted in the failure detection flow.
Nonetheless, it may be needed to gain instantaneous information on a specific machine
outside the local domain. For example, it may be necessary to determine the feasibility
of creating a new replica in a remote domain. The observation service therefore allows
for point-to-point subscription to data collection on distant hosts.

Statistical information, however, possesses a longer lifespan in the DARX context.
Such material encompasses all the data derived by processing the local information: the
average CPU load of a host over a long period of time, the failure rate of a host or of a
local group, their average network load, their meantime between failures, . . . It is shared
at the global level. Every local group elects a member responsible for the aggregation
of the statistical information, as well as for its diffusion at the global level. Statistical
information about other groups can thus be retrieved at the elected local workstation.

Each local DARX server integrates an observation module. It comprises three ele-
ments: a data collection module (DCM), a data processing module (DPM) and a data
exchange module (DEM). The DCM extracts the information available from the op-
erating system, such as the CPU load or the swap activity, therefore it is chosen to
be host-compliant. The DPM is Java-based and gathers application-level information;
the state of an agent, for example. The DPM also interfaces with the DCM to recover
system-level data, and renders it into a directly usable format for the DARX platform.
On a periodic basis, the DEM broadcasts the accumulated instantaneous information to
the DPMs of its local group, and contributes to the diffusion of the statistical informa-
tion at the global level if it belongs to a leading observation module.

3.5 Replication Management

DARX provides fault tolerance through software replication. It is designed in order to
adapt the applied replication strategy on a per-agent basis. This derives from the fun-
damental assumption that the criticity of an agent evolves over time; therefore, at any
given moment of the computation, all agents do not have the same requirements in terms
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of fault tolerance. On every server, some agents need to be replicated with pessimistic
strategies, others with optimistic ones, while some others do not necessitate any repli-
cation at all. The benefit of this scheme is double. Firstly the global cost of deploying
fault tolerance mechanisms is reduced since they are only applied to a subset of the
elements which constitute the distributed application. Secondly the chosen replication
strategies ought to be consistent with the computation requirements and the environ-
ment characteristics, as the choice of every strategy depends on the execution context
of the agent to which it is applied. If the subset of agents which are to be replicated is
small enough then the overhead implied by the strategy selection and switching process
may be of low significance.

In DARX, agent-dependent fault tolerance is enabled by the notion of replication
group (RG): the set of all the replicas which correspond to a same agent. At its creation
every replica is given a unique identifier provided by the naming service and built from
the original name of the corresponding agent in the application context. An RG contains
at least one active replica so as to ensure that messages destined to a specific agent will
indeed be processed. Starting from this point, any replication strategy can be enforced
within the RG. To allow for this, several replication strategies are made available by
the DARX framework. The strategies offered can be classified in two main types: (1)
active, where all replicas process the input messages concurrently, and (2) passive, in
which only one replica – a primary – is in charge of the computation while periodically
transmitting its state to the other replicas – its standbies. A practical example of a DARX
off-the-shelf implementation is the semi-active strategy where a single leading replica
forwards the received messages to its followers.

One of the noticeable aspects of DARX is that several strategies may coexist inside the
same RG. As long as one of the replicas is active, meaning that it executes the associated
agent code and participates in the application communications, there is no restriction on
the activity of the other replicas. These replicas may either be standbies or followers of an
active replica, or even equally active replicas. Furthermore, it is possible to switch from
a strategy to another with respect to a replica: a follower may become a standby, a new
leader with its followers may be selected amongst active replicas, and so on . . .

Throughout the computation, a particular variable is evaluated continuously for every
replica: its degree of consistency (DOC). The strategy applied in order to keep a replica
consistent is the main parameter in the calculation of this variable; the more pessimistic
the strategy, the higher the DOC of the corresponding replica. The other parameters
emanate from the observation service; they include the load of the host, the date of
creation of the replica, the latency in the communications with the other replicas of
the group, . . . The DOC has a deep impact on failure recovery; among the remaining
replicas after a failure has occured, the one with the highest DOC is the most likely to
be able of taking over the abandoned tasks of the crashed replicas.

The following information is necessary to describe a replication group:

– the criticity of its associated agent,
– its replication degree – the number of replicas it contains –,
– the list of these replicas, ordered by DOC,
– the list of the replication strategies applied inside the group,
– the mapping between replicas and strategies.
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The sum of these pieces of information constitutes the replication policy of an RG. A
replication policy must be reevaluated in three cases:

1. when a failure inside the RG occurs,
2. when the criticity value of the associated agent changes,
3. and when the environment characteristics vary considerably, for example when

CPU and network overloads induce a prohibitive cost for consistency maintenance
inside the RG.

Since the replication policy may be reassessed frequently, it appears reasonable to cen-
tralize this decision process. A leader is elected among the replicas of the RG for this
purpose. Its objective is to adapt the replication policy to the criticity of the associ-
ated agent as a function of the characteristics of its context – the information obtained
through the observation service. As mentioned earlier, DARX allows for dynamic mod-
ifications of the replication policy. Replicas and strategies can be added to or removed
from a group during the course of the computation, and it is possible to switch from
a strategy to another on the fly. For example if a standby crashes, a new replica can
be added to maintain the level of reliability within the group; or if the criticity of the
associated agent decreases, it is possible either to suppress a replica or to switch the
strategy attached to a replica from an active form to a passive one. The policy is known
to all the replicas inside the RG. When policy modifications occur, the leader diffuses
them within its RG. Except when the modification results from the failure of the leader:
a new election is then initiated by the naming service through a failure notification to
the remaining replicas.

Figure 4 depicts the composition of a replica. In order to benefit from fault toler-
ance abilities, each agent gets to inherit the functionalities of a DarxTask object,

ReplicationPolicy

TaskShell

DarxTaskdiscard

RemoteTask

handling of
duplicates

TaskShell

TaskShell

TaskShell

replication group

reply buffer

reply
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ReplicationManager

(replication group consistency)

(external communication)

(execution control)

− serial number
− message content
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(group proxy)

(replication group management)
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Fig. 4. Replication management scheme
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enabling DARX to control the agent execution. Each task is itself wrapped into a
TaskShell, which handles the agent inputs/outputs. Hence DARX can act as an in-
termediary for the agent, committed to deciding when an agent replica should really
be started, stopped, suspended or resumed, and exactly when and which message re-
ceptions should take effect. Leaders are wrapped in enhanced shells, comprising an ad-
ditional ReplicationManager. This manager exchanges information with the ob-
servation module (see 3.4) and performs the periodical reassessment of the replication
policy. It also maintains the group consistency by sending the relevant information to the
other replicas, following the policy requirements. Implementation-wise, there is an in-
dependent thread for every DarxTask as well as for every ReplicationManager.

Since replication must be transparent to the application, the DARX middleware is in
charge of handling all communications between agents. To allow this, every replication
group binds itself to proxies which channel incoming messages. These proxies imple-
ment the RemoteTask interface, thus referencing replication groups; it is the naming
service which keeps track of every replica to be referenced, and provides the corre-
sponding RemoteTask.The latter contains the addresses of all the replicas inside the
associated RG, with a specific tag for the currently active replicas. A RemoteTask is
obtained by a lookup request on the naming service using the application-relevant agent
identifier as parameter.

Figure 5 shows a tiny agent application as seen in the DARX context. An emitter,
agent B, sends messages to be processed by a receiver, agent A. At the moment of the
represented snapshot, the value of the criticity of agent B is minimal; therefore the RG
which represents it contains a single active replica only. The momentary value of the
criticity of agent A, however, is higher. The corresponding RG comprises three repli-
cas: (1) an active replica A elected as the leader, (2) a follower A’ to which incoming
messages are forwarded, and (3) a standby A” which receives periodical state updates
from A.

In order to transmit messages to A, B requested the relevant RemoteTask RTA
from the naming service. Since replication group A contains only one active replica,
RTA references replica A and no other.

If A happens to fail, the failure detection service will ultimately monitor this event
and notify A’ and A” by means of the localization service. Both replicas will then modify
their replication policies accordingly. The replica associated to the highest potential of
leadership will become the new group leader – most probably A’ in this case as semi-
active replication provides stronger consistency than passive replication –, thus ending
the recovery process.

semi−active
strategy

passive
strategy

A

A’’

A’

RTAB Replication Group A

Replication Group B

Fig. 5. A simple agent application example
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4 Application Building with DARX

This section describes how a multi-agent application may be built over DARX, and
hence benefit from its fault tolerance features.

At this point of our research, the application developer must respect a few guide-
lines and constraints which are given in this section in order for applications to benefit
from DARX services. We feel it is important to point out that this constraint can easily
be bypassed. Notwithstanding the possibility of generating the agent application code
through model-driven architectures, an automated analysis of the original agent source
code might provide the required information to enable DARX support without further
modifications of the original program; the latter corresponds to undergoing research
started out in [BGCAMS02].

In the meantime, our solution comprises facilities designed to make application
building as painless as possible. As a Java framework, DARX includes several generic
classes which assist the developer through the process of implementing a reliable multi-
agent application. The choice of those generic classes comes from the study of the OMG
MASIF [MASIF98] specifications, as well as that of the most recurrent aspects of vari-
ous multi-agent systems, therefore DARX-compliant application building is very close
to most agent developing environments.

Every agent class must extend a DarxTask for several reasons.
Firstly because, although it is not the only factor, the role of an agent [BGCAMS02]

is essential in determining its criticity. For every agent, the roles it may assume must be
explicitly listed by the developer. Any number of roles can be defined for an agent; each
of these roles ought to be mapped to a corresponding static criticity in the code of the
ReplicationManager. A static criticity is the importance of an agent taken out of
its computation context. At runtime, a dynamic criticity will be evaluated in conjunction
with the characteristics of the environment. Consequently, the role of the agent is part
of the variables present in the DarxTask.

Secondly, the DarxTask provides a boolean for differentiating whether the agent is
deterministic or not. This arises from the fundamental definition of agentry: it comprises
the notion of proactivity, which is closely related to non-determinism. It follows that
some agents may present non-deterministic behaviours such as unpredictable internal
state changes. This complicates consistency maintenance inside RGs: for example it
becomes indispensable to propagate the state changes of a leader to its followers if
they do not depend entirely on the incoming messages. The provided boolean enables
developers to specify the behaviour of a non-deterministic replica with respect to its
role inside the RG. In the continuity of the semi-active strategy example, a leader may
take stochastically funded decisions whereas its followers cannot.

Finally, the DarxTask is the point where DARX handles the execution of an agent:
application-specific control methods to start, stop, suspend and resume the agent have
to be defined for this purpose. Such methods would be very hard to implement in a
general context, where the application developer would not have to intervene, without
modifying the JVM: the resulting efficiency loss would be considerable. It ought to be
pointed that, technically, it is the serialized DarxTask of the RG leader which is sent
to the TaskShell of the passive replicas in order to perform state updates.
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Since DARX overrides the localization and naming services of the agent platforms
it supports, it has to take on the responsibility of channelling communications between
agents. In order to emit messages, agents must declare themselves to the framework
by instantiating a DarxCommunicationInterface; messages to other agents are
emitted through this interface, built around the RemoteTask reference of the destina-
tions. Messages sent to a group by means of a RemoteTask are thus rerouted to the
group leaders, where duplicates are discarded and ordering is guaranteed. Additionally,
this scheme allows tracking of the message flows by the observation service.

Also, fault tolerance protocols that are specific to the application can be developed.
DARX provides a generic ReplicationStrategy class which may be extended
to fulfill the needs of the programmer. Basic methods allow to define the consistency
information within the group, as well as the way this information ought to be propagated
in different cases, such as synchronous or asynchronous messages for example. A few
common strategies, such as the passive and the semi-active one, are already built in
DARX; others are undergoing research, like quorum-based strategies for instance.

5 Performances

This section presents performance evaluations established with DARX. Measures were
obtained using JRE 1.4.1 on the Distributed ASCI Supercomputer 2 (DAS-2). DAS-
2 is a wide-area distributed computer of 200 Dual Pentium-III nodes. The machine is
built out of clusters of workstations, which are interconnected by SurfNet, the Dutch
university Internet backbone for wide-area communication, whereas Myrinet, a popular
multi-Gigabit LAN, is used for local communication.

5.1 Agent-Oriented Dining Philosophers Example

A first experiment aims at checking that there is indeed something to be gained out of
adaptive fault tolerance. For this purpose, an agent-oriented version of the classic dining
philosophers problem [H85] has been implemented over DARX.

In this application, the table as well as the philosophers are agents; the correspond-
ing classes inherit from DarxTask. The table agent is unique and runs on a spe-
cific machine, whereas the philosopher agents are launched on several distinct hosts.
Figure 6 represents the different states in which philosopher agents can be found. The

cannot eatcan eat

can eat

cannot eat

Hungry

Thinking

Eating

Fig. 6. Dining philosophers over DARX: state diagram
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agent states in this implementation aim at representing typical situations which occur
in distributed agent systems:

– Thinking: the agent processes data which isn’t relevant to the rest of the application,
– Hungry: the agent has notified the rest of the application that it requires resources,

and is waiting for their availability in order to resume its computation,
– Eating: data which will be useful for the application is being treated and the agent

monopolizes global resources – the chop-sticks.

In order to switch states, a philosopher sends a request to the table. The table, in charge
of the global resources, processes the requests concurrently in order to send a reply.
Depending on the reply it receives, a philosopher may or may not switch states; the
content of the reply as well as the current state determine which state will be next.
It is arguable that this architecture may be problematic in a distributed context. For a
great number of philosophers, the table will become a bottleneck and the application
performances will degrade consequently. Nevertheless, the goal of this experimentation
is to compare the benefits of adaptive fault tolerance with respect to fixed strategies.
It seems unlikely that this comparison would suffer from such a design. Besides, the
experimentation protocol was built with these considerations in mind.

Table 1. Dining philosophers over DARX: replication policies

Agent state RD3 Replication policy

Thinking 1 Single active leader
Hungry 2 Active leader replicated passively
Eating 2 Active leader replicated semi-actively

Since the table is the most important element of the application, the associated RG
policy is pessimistic – a leader and a semi-active follower – and remains constant
throughout the computation. The RGs corresponding to philosophers, however, have
adaptive policies which depend on their states. Table 1 shows the mapping between the
state of a philosopher agent and the replication policy in use within the correspond-
ing RG. RD is used as an abbreviation for replication degree: the total number of RG
members, leader included. The choices for the replication policies in this example are
arbitrary. They correspond to the minimal fault tolerance scheme required in order to
bring the computation to its end should scarce failures occur. A thinking philosopher
may be restarted from scratch without any loss for the application, whereas a the disap-
pearance of either a hungry philosopher or an eating philosopher might interfere with
or even block the execution of the application.

5.2 Results Analysis

The experimentation protocol is the following. Eight of the DAS-2 nodes have been
reserved, with one DARX server hosted on every node. The leading table replica and

3 RD: Replication Degree.
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its follower each run on their own server. In order to determine where each philosopher
leader is launched, a round robin strategy is used on the six remaining servers. The
measure can start once all the philosophers have been launched and registered at the
table.

Two values are being measured. The first is the total execution time: the time it takes
to consume a fixed number of meals (100) over all the application. The second is the
total processing time: the time spent processing data by all the active replicas of the
application. Although the number of meals is fixed, the number of philosophers isn’t: it
varies from two to fifty. Also, the adaptive – “switch” – fault tolerance protocol is com-
pared to two others. In the first one the philosophers are not replicated at all, whereas in
the second one the philosophers are replicated semi-actively with a replication degree
of two – one leader and one follower in every RG.

Every experiment with the same parameter values is run six times in a row. Execu-
tions where failures have occurred are discarded since the application will not necessar-
ily terminate in the case where philosophers are not replicated. The results shown here
are the averages of the measures obtained.

Figure 7 shows the total execution times obtained. At first glance it demonstrates
that adaptive fault tolerance may be of benefit to distributed agent applications in terms
of performance. Indeed the results are quite close to those obtained with no fault toler-
ance involved, and are globally much better than those of the semi-active version. In the
experiments with two philosophers only, the cost of adapting the replication policy is
prohibitive indeed. But this expense becomes minor when the number of philosophers
– and hence the distribution of the application – increases. Distribution may also justify
the notch in the plot for the experiments with the unreplicated version of the applica-
tion: with six philosophers there is exactly one replica per server, so each processor is
dedicated to its execution. In the case of the semi-active replication protocol, the cost of
the communications within every RG, as well as the increasing processor loads, explain
the poor performances.
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Fig. 7. Comparison of the total execution times with various fault tolerance protocols
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Fig. 8. Comparison of the total processing times with various fault tolerance protocols

It is important to note that, in the case where the strategies inside RGs are switched,
failures will not forbid the termination of the application. As long as there is at least
one philosopher to keep consuming meals, the application will finish without deadlock.
Besides it is possible to simply restart philosophers which weren’t replicated, since
these replicas had no impact on the rest of the application: no chop-sticks in use, no
request for chop-sticks recorded. This is not true in the unreplicated version of the
application as failures that occur while chop-sticks are in use will have an impact on the
rest of the computation.

Figure 8 accounts for the measured values of the total processing time in each sit-
uation. Those results also concur to show that adaptive fault tolerance is a valuable
protocol. Of course, the measured times are not as good as in the unreplicated version.
But in comparison, the semi-active version induces a lot more processor activity. It
ought to be remembered that in this particular application, the switch version is as reli-
able as the semi-active version in terms of raw fault tolerance: the computation will end
correctly. However, the semi-active version obviously implies that the average recovery
delays will be much shorter in the event of failures. In such situations, the follower can
directly take over. Whereas with the adaptive protocol, the recovery delay depends on
the strategy in use: unreplicated philosophers will have to be restarted from scratch and
passive standbies will have to be activated before taking over.

6 Conclusion and Perspectives

The framework presented in this paper enables the building of fault-tolerant distributed
multi-agent systems. The resulting software is flexible: it possesses the ability to decide
which parts of the computation are more critical than the others, and hence should be
made to bypass failures through replication. DARX offers control over the way the
application safeguards its components, enabling the fault tolerance of the computation
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to be automatically fine-tuned on the fly. This feature proves to be quite powerful: it
allows adaptive fault tolerance whilst preserving software efficiency, as demonstrated
by the performances shown in this paper. Moreover, the architecture of the middleware
is designed to be scalable.

However, there are still some issues left unsolved: for instance, the observation ser-
vice mentioned in section 3.4 remains to be integrated in the framework. It works as a
stand-alone application, and the API for exchanging commands and data with DARX
is set. But the modifications of the DARX classes which shall make use of the obser-
vation service are being coded, and the dynamic usage of the observation data is still
research material. Hence the current field of investigation is the analysis of the dynamic
criticity of agents and the adaptation of the replication policy. The heuristics used up to
now are mainly driven by the user, due to the lack of a functional observation system.
Once it is fully integrated in DARX, that is once the real characteristics of the hosts
and of the network are acquired, those heuristics will be enhanced for further efficiency
and adequateness. Paving the way for optimal heuristics, [GFB05] presents an extended
range of simulations aimed at studying the behaviour of an agent application on top of
DARX, as well as its resilience to failures.

In order to validate the work achieved up until now, applications are currently being
developed. Those include a basic crisis management system destined to test the viability
and the utility of our architecture in terms of such software.
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