
Foreword

The increasing cooperation and convergence of various kinds of comput-
ing entities: computers, but also cell phones, personal digital assistants, house
appliances. . . , is deeply changing the way we were traditionally considering
computers and software. The size, the increasing complexity and the high evo-
lutivity of future applications (e.g., community-support, collaborative work, su-
pervision. . . ) make nearly impossible a centralized and explicit control by the
programmer. It is thus natural to delegate more autonomy and initiative to
the various software modules and to provide them with cooperation abilities.
Multi-agent systems have been proposed as a conceptual framework to help at
designing and constructing such large scale autonomous and cooperative com-
puting systems.

As a programming paradigm, we can analyze multi-agent systems through
the history and evolution of programming. We may for instance observe three
dimensions of progress: (1) higher levels of abstraction for entities processed
or/and exchanged - from bits, and then objects and messages, up to agents,
intentions and plans ; (2) later binding time, i.e., deferring the decision for what
actual code is to be executed - from procedure call, and then method invocation,
up to action selection by an autonomous agent ; (3) more flexible coupling
between software modules - from procedures, and then objects, components
and events, up to knowledge-based organizations of agents. Multi-agent systems
may thus be seen as an important evolution of programming.

There is currently growing experience on how to construct multi-agent ar-
chitectures and platforms, based on more conventional technology, objects, Java
and components. Interoperability has recently been an important concern,
notably, through the FIPA Agent Communication Language standard, which
builds up on object interoperability standards (such as CORBA), and extends
their levels of abstraction (e.g., expliciting interaction patterns and protocols, as
well as ontologies of knowledge, within a communication). We also see now var-
ious attempts and studies for using novel approaches and technologies such as
Model Driven Architecture (MDA), and Aspect-Oriented Programming (AOP)
to the design and construction of multi-agent systems. Last, the inherent decen-
tralization and autonomy of multi-agent systems also raise new questions about
dependability and security.

On the software engineering perspective, we believe the challenges are per-
haps even bigger. The decentralized, autonomous and adaptive nature of agents,
combined with the large scale, mobility and general dynamicity of their environ-
ment support (e.g., ad-hoc networks, with associated security and robustness
concerns), make it difficult to rely on traditional assumptions of software pre-
dictability. In other words, the traditional “defensive/pessimistic” approach
- statically safeguarding as much as possible the behaviour of the program
(through specifications, types, assertions. . . ) -, reaches its limits and should
be complemented (and not replaced !) by a “proactive/optimistic” approach -
providing the agents with abilities to adapt to unexpected individual and col-

i



lective behaviors. Another concern is also to include the users, as agents, from
the initial stages of the design. Indeed, our ultimate goal is to provide a sym-
biotic collaboration between artificial agents and human agents, as opposed to
confining users, either as supervisers with explicit control, or as end users with
little initiative.

For designing practical methodologies, there is still a debate in the com-
munity if agent-oriented methodologies should be filiated to current (object-
oriented) methodologies, or should be deeply restated (for instance by focusing
analysis on social concepts such as roles and organization, rather than on indi-
vidual objects or agents). In any case, future methodologies will still need steps
(such as analysis, design, modeling, measurements. . . ) as well as related tech-
niques (such as requirements analysis, meta-modeling, notations, metrics. . . ).
As a consequence, there is currently much activity in studying how such steps
or techniques may be partly reused from current technology, adapted, or com-
pletely rethinked.

As a conclusion, in order to achieve these challenges, we need to organize a
research community at the crossing of software engineering, programming and
multi-agent systems, with a concern for scalability of solutions. This book, the
third volume of the very good series on “Software Engineering for Multi-Agent
Systems”, includes several important studies and proposals along the various
perspectives we just sketched, and thus represents a very good contribution to
that research agenda.

Jean-Pierre Briot
Paris, November 2004

ii


