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This work focuses on the engineering of software replication techniques for dis-
tributed cooperative applications designed as multi-agent systems. Such applica-
tions are often very dynamic: e.g., new agents can join or leave, they can change
roles or strategies. Also, the relative importances of agents may evolve during the
course of computation and cooperation, as opposed to traditional static approaches
of replication, e.g., for data bases, where critical servers may be identified at design
time. Thus, we need to dynamically and automatically identify the most critical
agents and to adapt their replication strategies (e.g., active or passive, number of
replicas), in order to maximize their reliability and their availability. An important
issue is then: what kind of information could be used to estimate which agents are
most critical agents? In this paper, we first introduce our approach and prototype
architecture for adaptive replication. Then, we discuss various kinds of information
and strategies to estimate criticality of agents: dynamic dependences, roles, and
plans. Some preliminary measurements and future directions are also presented.

1. Introduction

The possibility of partial failures is a fundamental characteristic of dis-
tributed applications. The fault-tolerance research community has devel-
oped solutions (algorithms and architectures), some more curative e.g.,
based on exception handling and cooperative recovery '3, and some more
preventive, notably based on the concept of replication, applied e.g. to data
bases.

As discussed by ®, software replication in distributed environments has
some advantages over other fault-tolerance solutions. First and foremost,
it provides the groundwork for the shortest recovery delays. Also, generally
it is less intrusive with respect to execution time. Finally, it scales much
better. Another important advantage, on the design perspective, is that
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the use of software replication is relatively generic and transparent to the
application domain. The designer does not have to explicitly specify the
nature of the possible abnormal behaviors and the way to handle them. As
we show in the paper, our solution is furthermore transparent, as the task
of deciding what entities to replicate and how to parameterize replication
is handled automatically. That said, software replication focuses mostly on
processor or network faults, and does not address the whole spectrum of
possible faults (design, timing...). Thus, a general issue, and still subject
of open research - and not addressed in this paper -, is how to combine
various approaches for fault-tolerance in a single articulated methodology.

Software replication is generally applied explicitly and statically, at de-
sign time. Thus, it is the responsibility of the designer of the application
to identify explicitly what critical components should be made robust and
also to decide what strategies (e.g., active or passive replication) and their
configurations (how many replicas, their placement, etc.).

Meanwhile, new cooperative applications, e.g., e-commerce, air traffic
control, crisis management systems, ambient intelligence, increasingly de-
signed as multi-agent systems (MAS), are much more dynamic. In such
applications, the roles and relative importance of the agents can greatly
vary during the course of computation, of interaction and of cooperation,
because the agents may change roles, plans and strategies. Also, new agents
may join or leave the application (as an open system). It is thus very dif-
ficult, or even impossible, to identify in advance the most critical software
components of the application.

Such new challenges reach the limits of traditional static approaches
of replication, and motivate the study of adaptive replication mechanisms.
One key issue is then the identification of the most critical components
(agents) of the application at a certain time. Therefore, we consider using
various levels of information: system level, e.g., communication load, and
application/agent level, e.g., roles or plans, to estimate criticality. This
paper will report on our past and current experiments using various types
of informations, notably communications, roles, and plans.

2. Context of this Work
2.1. Model of Failure Considered

Any software/hardware component may be subject to faults resulting in
output errors, which can lead to a deviation of its specified behavior, i.e. a
failure. In distributed systems, and even more so in scalable environments,
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failures are unavoidable. A subdomain of reliability, fault-tolerance aims at
allowing a system to survive in spite of faults, i.e. after a fault has occurred,
by means of redundancy in either hardware or software architectures.

In this work, we consider crash type of failures, that is when a compo-
nent stops producing output. It is the simplest type of failure to contend
with. However, in various cases our solution allows to deal with other
types of failures (omission, timing, byzantine). They are currently being
investigated, but will not be considered in this paper.

2.2. Types of Techniques Considered

Replication is an effective way to achieve fault-tolerance for crash types of
failures. A replicated software component has representations (replicas) on
two or more hosts ®. The two main types of replication protocols are: active
replication, in which all replicas process concurrently all input messages ;
passive replication, in which only one of the replicas processes all input
messages and periodically transmits its current state to the other replicas
in order to maintain consistency.

Active replication strategies provide fast recovery but lead to a high
overhead. Passive replication minimizes processor use by activating redun-
dant replicas only in case of failures. Then a new replica is elected among
the set of passive ones and the execution is restarted from the last saved
state. This technique requires less CPU resources than the active strategy
but it needs an expensive checkpoint management.

2.3. Limitations of Current Replication Techniques

Many toolkits include replication facilities to build reliable applications.
However, many of them are not flexible enough to implement an adaptive
replication. For instance, MetaXa 3 implements in Java active and passive
replication in a flexible way. Authors extended Java with a meta-level ar-
chitecture. However, MetaXa relies on a modified Java interpreter. GARF
4 realizes fault-tolerant Smalltalk machines using active replication. Similar
to MetaXa, GARF uses a reflexive architecture and provides different repli-
cation strategies. But, it does not provide adaptive mechanism to apply
these strategies.

3. Principles of our Approach for Dynamic Replication

To overcome the limitations of static or explicit replication, we propose an
approach with automatic and dynamic control of replication. At first, we
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need a replication architecture which allows dynamic replication and dy-
namic adaptation of the replication policy (e.g., passive to active, changing
the number of replicas). As discussed above, current replication toolkits
rarely support such dynamicity. Therefore, we designed a novel replication
framework, named DarX, with such dynamic features.

3.1. DarX: A Framework for Dynamic Replication

DarX is a framework for designing reliable distributed applications based
on adaptive replication. Each agent can be replicated an unlimited number
of times, with different replication strategies (main ones are: passive and
active). A novel feature is the reification of the replication strategy, so that
it may be dynamically changed.

DarX includes group membership management to dynamically add or
remove replicas. It also provides atomic and ordered multi-cast for the
replication groups’ internal communication. Messages between agents, that
is communication external to the group, are also logged by each replica,
and sequences of messages can be re-emitted for recovery purposes. For
portability and compatibility issues, DarX is implemented in Java.

A replication group is an opaque entity underlying every application
agent. The number of replicas and the internal strategy of a specific agent
are totally hidden to the other application agents. Each replication group
has exactly one leader which communicates with the other agents. The
leader also checks the liveness of each replica and is responsible for reliable
broadcasting. In case of failure of a leader, a new one is automatically
elected among the set of remaining replicas.

DarX provides global naming. Each agent has a global name which is
independent of the current location of its replicas. The underlying system
allows to handle the agent’s execution and communication. Each agent is
itself wrapped into a TaskShell (see Figure 1), which acts as a replication
group manager and is responsible for delivering received messages to all the
members of the replication group, thus preserving the transparency for the
supported application. Input messages are intercepted by the TaskShell,
enabling message caching. Hence all messages get to be processed in the
same order within a replication group.

An agent can communicate with a remote agent, regardless whether it is
a single agent or a replication group, by using a local proxy implemented by
the RemoteTask interface. Each RemoteTask references a distinct remote
entity considered as its replication group leader. The reliability features are
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Figure 1. DarX application architecture

brought to agents by an instance of a DarX server (DarxServer) running
on every location. Each DarxServer implements the required replication
services, backed up by a common global naming/location service. See e.g.,
12 for further details on DarX.

3.2. Need for Automatic and Adaptive Control

Provided the architecture for dynamic replication, we need a control mecha-
nism for deciding which agents should be replicated and with what strategy
(active or passive, how many replicas, where to create the replicas, etc.).?
For dynamic applications,”
cation designer cannot monitor the evolution of a distributed cooperative

a manual control is not realistic, as the appli-

application of a significant scale. Therefore, the control mechanism should
be automatic, although it may use some information as provided by the
designer of the application.

3.3. A Simple Scenario

As a simple example of scenario, let us consider a distributed multi-agent
system that helps at scheduling meetings. Each user owns a personal assis-

aHere, we only discuss the decision about which agents to replicate and with how many
replicas. Other issues are addressed elsewhere, e.g., where to create the replicas in 6.

bFor multi-agent applications which are very static (fixed organization, fixed behaviors,
etc., and with a small number of agents), the most critical agents may be identified by the
application designer at design time. Thus, replication may be decided at configuration

time, as for traditional replication techniques.
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tant agent which manages his calendar. This assistant agent interacts with:
the user to receive his meeting requests and the associated information (a
title, a description, possible dates, participants, priority, etc.) ; the other
assistant agents of the system to schedule meetings, based on preferences
of their human owners.

In practice, the assistant agents use the Contract Net Protocol (CNP) 4
as following (see Figure 2): a call for proposals message is sent (broadcasted)
to the participants by the initiator ; the participants reply (propose or
refuse) to the initiator with the proposed meeting times ; the initiator sends
accept or reject messages to participants ; the participants which agree to
the proposed meeting inform (confirm) the initiator.

Participant

Call For Proposal (cfp)

refuse
no d

propose

accept

I | reject

inform

failure

Figure 2. Contract net protocol

If the assistant agent of one important participant (initiator or prime
participant) fails (e.g., his machine or PDA crashes), this may disorganize
the whole meeting planning. As the application is very dynamic - new
meeting negotiations start and complete dynamically and simultaneously -
decision for replication should be done automatically and dynamically.

3.4. Notion of Criticality

The control mechanism will estimate the most critical agents of the ap-
plication and this information will be regularly updated. Here we may
informally define the criticality of an agent as follows: the criticality of an
agent, relative to an organization of agents it belongs to, is the measure of
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the potential impact of the failure of that individual agent on the failure of
the organization. In the following, we consider criticality of an agent as a
numerical value within the interval [0 1]. Various strategies to estimate the
criticality of an agent are discussed in Section 4.

3.5. Replication Control

Once we have a strategy for computing (estimating) the criticality of each
agent, we may compute the number of replicas nb; of an agent as follows:
nb; = rounded(rm + w; * Rm/W), where: w; is the criticality of the agent,
W is the sum of the domain agents’ criticalities, rm is the minimum number
of replicas, Rm are the available resources, i.e., the maximum number of
replicas. The numbers of replicas computed is then used by DarX to control
and update replication for each agent.

4. Estimating the Criticality

In order to estimate the criticality of an agent, the issues are: What kind
of information will be pertinent 7 And how can we obtain it ? (explicitly
stated by the application designer, inferred by external observation, e.g.,
amount of messages exchanged, or by internal observation, e.g., plans of
an agent, etc.). We describe below some strategies: some are completely
general and use basic information (references, messages), some make some
assumption of higher-level abstractions (performatives, roles, plans) which
may or not be supported by a given multi-agent architecture.

4.1. Dynamic Dependences

This strategy is based on the concept of dependence (between agents).
Intuitively, the more an agent has other agents depending on it, the more it
is critical in the organization. We explicitly represent dependences between
agents as a weighted graph, and we provide a mechanism to automatically
update its respective weights. The criticality of an agent is computed as
the aggregation of the weights representing dependences of other agents on
it.

We consider the interdependence graph as a labeled oriented graph (see
Figure 3), where each node represents a domain agent and each labeled
arc between two nodes represents a dependence between the associated
agents. The label of an arc (oriented) is a real number which reflects the
importance of the dependence (oriented) between the associated agents.
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Figure 3. Example of interdependence graph

The interdependence graph is dynamic as it can be modified when a new
domain agent is added, or disappears, or when interaction patterns evolve.

At design time, the interdependence graph is initialized by the designer,®
and at run time, it is dynamically and automatically adapted. Several pa-
rameters may be used to update the interdependences between agents. Our
primary updating strategy is using communication load (number of mes-
sages) as the parameter. The adaptation algorithm updates the interde-
pendence graph, based on local information (communication load) and on
global information, which is defined as an aggregation of the local informa-
tion of the various agents and hosts.

The algorithm is very simple: only the number of messages is consid-
ered, independent of their contents, thus the cost of monitoring is very low.
We also proposed and experimented with an extension of this algorithm,
using performatives as additional input information (e.g., request has a
weight greater than cancel) %. Note that monitoring of communication, is
implemented by a general monitoring distributed architecture, which can
also be used by other strategies (e.g., for monitoring roles, see next section).

4.2. Roles

Another strategy that we studied is based on the concept of role. A role,
within an organization, represents a pattern of services, activities and rela-
tions. As an example, in some e-commerce organization, roles are: service
provider, client, broker, etc. A role will be fulfilled (played) by one or

“Note that it can actually be automatically initialized by another strategy, e.g., based
on static analysis of dependences, which has been implemented.
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more agents, and the same agent may simultaneously play several roles in
different organizations.

Roles are usually defined relatively to some organization, but they may
also be defined relatively to some protocol. An example is the contract net
protocol which is used in the scenario (see Section 3.3). It considers two
roles: manager /initiator and bidder/participant. In fact, protocol roles can
be considered as some specific case of organizational role, where an organi-
zation is created dynamically during the scope of the protocol activation.

The notion of role captures some information about the relative impor-
tance of roles and their interdependences. Thus we thought that a role
is a pertinent concept for estimating criticality. We ask the designer to
grade the various roles along their criticality (relative importance). In the
scenario, two roles are considered: Initiator and Participant. Their
respective weights could be set by the application designer to e.g., 0.7 and
0.4.

In order to monitor roles, we must assume or not if agents signal ex-
plicitly when they play a role (role-taking and then role-leaving). Signaling
explicitly when an agent starts (and stops) playing a role is usually the
case for organizational roles, where organizational actions are usually made
public to the organization. For protocol roles, if agents use FIPA ACL
(agent communication language) and specify explicitly the protocol used
(within the messages), that information can then also be used.

Meanwhile, as we want our role strategy to be general, we also consid-
ered the case where agents do not necessarily signal their roles. We only
suppose that they communicate with some minimal agent communication
language. We thus designed a role monitoring mechanism. It uses a descrip-
tion language for specifying protocols, stored in a library, and a recognition
algorithm. Lastly, the criticality of an agent is computed as the aggregation
of the weights set to the roles it is currently playing.

4.3. Plans

The last strategy uses the plans of an agent, i.e., the actions that the agent
has planned to execute in the near future. In our model, we consider that
each agent of the system knows which sequence of actions (plan) must be
executed in order to accomplish its current goal.Y We assume that at each

dSince unexpected events may occur in dynamic environments, agents usually interleave
planning and execution. Consequently, their plans are established just for the short
term.
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given instant of time, the agent is executing at most one action.

Using the same approach established by &, we represent the plan of an
agent as a directed acyclic AND/OR graph where each node represents an
action. The nodes are connected by AND or OR edges.

Agent2

Figure 4. Examples of plans

In the example of Figure 4, after performing the action A, Agentl needs
to have both actions B and C executed in order to accomplish its plan.
However, after C, only one of D or E needs to be performed so that Agentl
accomplishes its plan. We call an external action an action belonging to
the plan of an agent which will be executed by other agents. For example,
consider the action C belonging to the plan of Agentl in Figure 4. Since
this action is performed by Agent2, it is an external action in the current
plan of Agentl. A terminal action is an action after which no other known
action will be performed.

In order to calculate the criticality of an action, we distinguish its ab-
solute criticality from its relative criticality. The absolute criticality (AC)
of an action is defined without taking into account the current plans of the
agents. It is given a priori by the system designer and can be determined
in function of a number of factors: number of agents capable of performing
the action, duration of the action, resources required for the execution of
the action, application dependent information.

The relative criticality (RC) of an action belonging to the plan of an
agent is proportional to the criticality of the agent when it is executing the
action or waiting for some other agent to execute it. As a consequence, the
relative criticality of an action may vary depending on the agent plan it
belongs to. For an external action, it is computed as the aggregation (OR
and AND, see details in 1) of its children relative criticality. For a non-
external action a, its relative criticality is equal to its absolute criticality
plus the sum of the local relative criticalities of a in each plan to which it
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belongs.

See ! for further refinements, for considering the expected duration of
actions, and for considering the possible dynamicity of plans of agents,
because of, e.g., lack of resources, or failed commitments.

5. Discussion

Each strategy has its pros and cons: static or dynamic, cost, and nature
of assumptions of abstractions available (messages, roles, plans). The last
strategy (plans) has the advantage of estimating future criticality and not
just instantaneous one. Note that various strategies that we proposed are
mostly bottom-up, as they use or infer information from the program el-
ements or/and from execution, to estimate criticality of agents. We are
also planning to study a dual direction, top-down, based on first analysis
and specifications of general dependability requirements, and then in using
that information to guide replication control. Some directions are in using
a dependability risk-driven approach or dependability cases '°.

We are currently conducting experiments to compare strategies. In this
paper, we summarize some of our experiments, based on the scenario of
meetings scheduling (see Section 3.3). They were carried out on twenty ma-
chines with Intel(R) Pentium(R) 4 CPU at 2 GHz and 526 Mb of RAM. To
compare accuracy of strategies, we used a fault simulator which randomly
chooses an agent and stops its thread. If the killed agent was playing the
role of an initiator, then its associated meeting scheduling negotiation (pro-
tocol) fails, unless the agent has been replicated. Thus, that experiment
provides some measure of the accuracy of the strategy to identify most
critical agents and protect them.

We considered a multi-agent system with 200 agents distributed on 10
machines. We run each experiment 10 minutes and we introduced 100
faults. We repeated several times the experiment with a variable number
of extra resources Rm. Here, Rm defines the number of extra replicas that
can be used by the whole multi-agent system. This experiment measures the
rate of succeeded simulations SR which is defined as follows: SR = %7
where N.SS is the number of succeeded simulations and T'NS is the total
number of simulations.

In Figure 5, we compare four strategies: 1) random, 2) roles strategy
with roles explicitly signaled, 3) roles strategy with role monitoring, 4)
dependences strategy. For each strategy, we display the success rate SR as
a function of the number of extra replicas.
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Figure 5. Rate of succeeded simulations for each number of replicas

First, it shows that all strategies show better results than the random
strategy. The strategy with roles explicitly signaled is the most accurate
(actually it is also the less costly). This can be explained for the example
scenario by the importance of the initiator in the negotiation. For applica-
tion domains where the roles have similar importance, the strategy based
on dependences may lead to better results. We are currently conducting
further measures on different types of applications. The objective is to try
to empirically identify possible features of applications, correlated to the
relative accuracy of different strategies.

6. Related Work

Chameleon 'Y is an adaptive fault tolerance system using reliable mobile

agents. The methods and techniques are embodied in a set of specialized
agents supported by a fault tolerance manager (FTM) and by host daemons
for handshaking with the FTM via the agents. Adaptive fault tolerance is
achieved by making the Chameleon infrastructure reconfigurable. Unfortu-
nately, through its centralized FTM, this architecture is not scalable and
the FTM represents a bottle-neck as well as a failure point for the system.

Hagg introduced sentinels to protect the agents from some undesirable
states 7. Sentinels build models of each agent and monitor communications
in order to react to faults. Each sentinel is associated by the designer to one
functionality of the multi-agent system and handles agents which achieve
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that functionality. This approach is interesting, however sentinels represent
themselves failure points for the multi-agent system.

Fedoruk and Deters 2 propose to use proxies to make transparent the use
of agent replication, i.e. enabling the replicas of an agent to act as a same
entity regarding the other agents. A proxy manages the state of the replicas.
All external and internal communications of the group are redirected to the
proxy. But this increases the workload of the proxy which is a quasi central
entity. To make it reliable, they propose to build a hierarchy of proxies for
each group of replicas. Their approach lacks some flexibility and reusability,
in particular concerning replication control. Replication is indeed set up by
the designer before run time.

Kaminka et al. '' adopted a monitoring approach in order to detect
and recover faults. They use models of relations between mental states
of agents. They adopt a procedural plan-recognition based approach to
identify the inconsistencies. However, the adaptation is only structural,
the relation models may change but the contents of plans are static. Main
hypothesis is that any failure comes from incompleteness of beliefs. Thus,
the behavior of agent cannot be adaptive and the system cannot be open.

Horling et al. ¥ presented a distributed system of diagnosis. The faults
can directly or indirectly be observed in the form of symptoms by using a
failure model. The diagnosis process modifies the relations between tasks,
in order to avoid inefficiencies. The adaptation is only structural because
they do not consider the internal structure of tasks. However, a problem
of performances can occur in this approach because the global performance
improvement is based on a local performance improvement.

7. Conclusion

Large-scale multi-agent systems are often distributed and must run without
any interruption. To make these systems reliable, we proposed an archi-
tecture (DarX) for dynamic replication and its control. In this paper we
discussed various strategies for estimating criticality of agents, inferred au-
tomatically from various kinds of information (references, messages, roles,
plans). The agent criticality is then used to replicate agents in order to
maximize their reliability and availability based on available resources. We
believe that our current results are promising. Meanwhile, more experi-
ments are needed to better evaluate our approach, various strategies, and
classify their respective classes of applications.
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