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Abstract— This paper studies how to bring flexibility
to fault-tolerant systems. Firstly, multi-agent systems are
identified as a very valuable basis for reaching this goal,
and reliability is also shown to be a rare and attractive
feature for such systems. We then propose a framework
for building applications that provide adaptive fault tol-
erance, and put forward the promising results obtained
when testing the implementation of this framework. We
conclude with drawing some perspectives of evolution of
our work.
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I. INTRODUCTION

A priori, the main motivation for multi-agent sys-
tems lies in the distributed nature of information, re-
sources and action. It seems also intuitive that one of
the fundamental issues of distributed computer systems
is the possibility of host or network failures. However,
it is to be noticed that most of the current distributed
multi-agent platforms and applications do not yet ad-
dress, in a systematic way, this possibility of failures
[NS00] [MCM99]. The main explanation appears to be
that most multi-agent systems and applications are still
developed on a small scale:

« they run on a single computer or on a few highly

coupled (farm of) computers.

« they run for short-timed experiments.

In the distributed systems community some abstrac-
tions (group communication, replication, atomic multi-
cast, ...) have been proposed to ensure some depend-
ability of critical systems. But the design and applica-
tion of such dependability protocols have mostly been
static, in the sense that they do not change once the ap-
plication starts. Fortuitously, another important issue
for multi-agent systems resides in dynamic applications,
where the relative significance of the different entities
involved may change during the course of computation.
An example of application domain is the field of crisis
management systems [BDCO0O0] where software is devel-
oped in order to assist various teams in the process of
coordinating their knowledge and actions. Possibility
of failures is high and the criticality of each element,
should it be an information server or an agent assistant,
evolves during the management of the crisis. A con-
crete example can be that of a toxic gas spreading in an
urban area, the crisis being handled with the help of a
multi-agent application where each agent assists a pub-
lic service team sent on the spot. The importance of
the paramedical teams is then foremost, and the assist-
ing agents require a high degree of dependability; but it
can appear finally that the gas is harmless. If panic has
stricken the population nonetheless, it is at this moment
the law and order teams which are to be assisted the
most reliably. One naive solution would be to apply de-
pendability protocols, for example replication schemes,
to every element. But this is not feasible in practice be-
cause these protocols are costly; thus one needs to apply
them optimally when and where they are most needed.

In this paper, we propose an architecture for fault-
tolerant computing. As opposed to main conventional
distributed programming architectures, our architecture
offers dynamic properties: software elements can be
replicated and unreplicated on the spot and it is possi-
ble to change the current replication strategies on the
fly. We have developed a solution to interconnect this
architecture with a multi-agent platform, namely DIMA
[GB99]. We consequently conducted some simple ex-
periments to evaluate our architecture.



The paper is organized as follows. Section 2 briefly
presents replication issues in multi-agent systems, as
well as a quick insight on replication in distributed sys-
tems. Section 3 describes the goals we intended to
achieve through developing a solution that would allow
the elaboration of applications liable to provide adaptive
fault tolerance. Section 4 presents the general design
of our proposal for a framework dedicated to reliable
multi-agent systems. Section 5 reports on the perfor-
mances of the software we implemented on the basis
of the solution we proposed. Finally, perspectives are
drawn in section 6.

Il. RELATED WORK
A. Fault tolerance in multi-agent systems

Within the family of reactive multi-agent systems,
some systems offer high redundancy. A good example
is a system based on the metaphor of ant nests [DCF95],
where a common task is fulfilled by a multitude of very
basic agents which present exactly the same behaviour
and the same characteristics at the beginning ; that is,
they share the same code. Unfortunately:

« itisvery hard and time-consuming to design appli-
cations in terms of such reactive multi-agent sys-
tems; basically, nobody has yet found the right
methodology,

« such a simple redundancy scheme cannot be ap-
plied onto more cognitive multi-agent systems as
this would increase the advent of inconsistencies
between copies of a single agent; indeed, the more
advanced and complex agent definitions involve in-
trinsic non-determinism.

Some solutions [DSW97] [SN98] offer dynamic
cloning of specific agents in multi-agent systems. The
motivation is different, though: to improve the availabil-
ity of an agent in case of congestion. Such work appears
to be restricted to agents having functional tasks only,
and no changing state. Thus it doesn’t represent an ap-
propriate support for fault tolerance.

Other solutions [BCS99] [GHOO] enable some re-
liability through persistence on stable storage. This
methodology, however, does not solve situations which
involve the definite failure of a machine hosting an
agent. Besides, recovery delays become hazardous and
computations may not be fully restored.

B. Replication in distributed computing

The replication of data and/or computation is the only
efficient way to achieve fault tolerance in distributed
systems. A replicated software component is defined

as a software component that possesses a representation
on two or more hosts [GS97]. There are two main types
of replication protocols:

1) the active one in which all replicas process every
input message concurrently,

2) and the passive one in which all input messages
get processed by a single replica which transmits
its current state periodically to the other replicas
in order to maintain consistency.

Active replication strategies lead to a high overhead.
If the degree of replication is n, which means there are
n replicas involved, there will be n treatments to pro-
duce one result. Passive replication economizes proces-
sor utilization by activating redundant replicas in case of
failures only. That is: if the active replica is found to be
faulty, a new replica is elected among the set of passive
ones and the execution is restarted from the last saved
state. This technique requires less CPU resources than
the active approach but it involves a checkpoint manage-
ment which remains expensive in processing time and
space.

The active replication provides a fast recovery delay.
This kind of technique is dedicated to applications with
real-time constraints which require short recovery de-
lays. The passive replication scheme has a low overhead
under failure free execution but does not provide short
recovery delays.

The choice of the most suitable strategy is directly de-
pendent of the environment context, especially the fail-
ure rate, and the application requirements in terms of
recovery delay and overhead. Active approaches should
be chosen either if the failure rate becomes too high or
if the application design specifies hard time constraints.
In all other cases, passive approaches are preferable.

Many toolkits include replication facilities to build re-
liable applications [RBS96]. However, most products
are not flexible enough to implement an adaptive repli-
cation mechanism.

MetaXa [GOL98] implements active and passive
replication in a flexible way using Java. The authors
extended Java with a reflective meta-level architecture.
A very interesting feature is that the provided replica-
tion scheme is transparent to the supported application.
However, MetaXa relies on a modified Java Virtual Ma-
chine.

GARF [GGMO96] realizes fault-tolerant Smalltalk
machines using active replication. Similar to MetaXa,
GARF uses a meta level but does not provide different
replication strategies.



I11. OBJECTIVES AND APPROACH

As mentioned earlier, the intended achievement of
this work is twofold:

1) provide efficient fault-tolerance to multi-agent
systems through selective agent replication,

2) take advantage of the specificities of multi-agent
platforms to develop a suitable architecture for
performing dynamic fault-tolerance within appli-
cations.

Fundamentally, multi-agent applications rely on the
collaboration amongst agents. It follows that the fail-
ure of one of the involved agents can bring the whole
computation to a dead end. Replicating specific agents
which are identified as crucial to the application may
allow to bypass easily this problem.

However, one must keep in mind that replication may
often be very costly in processing as well as in com-
munications. Moreover, a software element may loose
in criticality at some point of the application’s progress.
Therefore, it is important to be able to go back on the
previous choices and replicate other elements. The in-
trinsic properties of multi-agent systems, in particular
the fact that they are very flexible and dynamic, point
them out as a strong basis for elaborating a fault-tolerant
mechanism likely to allow on-the-fly changes.

From the start, it was decided to try and keep the
solution as independent as possible from the overlying
multi-agent platform, so as to be still valid in case of
drastic evolutions of the platform. Furthermore, this
constitutes a first step towards enabling the developed
architecture to be reusable by any multi-agent system,
and eventually offering interoperability between such
systems.

For portability and compatibility issues, it was chosen
that the architecture would be Java-based. Indeed, the
Java language and more specifically the JVM provide
— relative — hardware independence, an invaluable fea-
ture for distributed systems. Moreover, a great number
of the existing multi-agent platforms are implemented
in Java. In addition to all this, the remote method invo-
cation (RMI) facility offers many useful high-level ab-
stractions for the elaboration of distributed solutions.

Finally and most important of all, in order to simplify
the tackling of the problem, the following hypothesis
was made: the assumed system model would be syn-
chronous at first, and the obtained solution ought to be
conceived in such a way that it could be extended later
for asynchronous models. This implies that an upper
bound on communication delays is assumed for failure
detection; upgrading prospects are presented in VI.
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Fig. 1. DARX application architecture

IV. THE DARX FRAMEWORK

In this section, we present our solution, DARX, and
roughly depict its features.

A. Design and Architecture

DARX is a framework to design reliable distributed
applications. Each task can be replicated an unlimited
number of times and with different replication strategies
(see the two following sections). DARX includes group
membership management to dynamically add or remove
replicas. It also provides atomic and ordered multicast
inside every replication group.

A replication group is an opaque entity underlying ev-
ery application task. The number of replicas and the
internal strategy of a specific task are totally hidden
to the other application tasks. Each replication group
has exactly one leader which communicates with the
other tasks. The leader also acts as a fixed sequencer,
providing totally-ordered multicast and failure detection
within its replication group.

DARX provides a global naming service, whereas
RMI does not include this functionality. To each appli-
cation task corresponds a generic name which is inde-
pendent of the current location of the replication group
elements. The naming service is called upon when the
ongoing location of the leader in charge of a generic ap-
plication task is requested. In case of failure of a leader,
it is also the naming service which is responsible for
electing a new one among the set of remaining replicas;
thus ensuring at all times that every replication group
comprises exactly one leader.



In order to benefit from the fault tolerance abilities
offered by DARX, each agent gets to inherit the func-
tionalities of a DarxTask object (Figure 1), enabling
the underlying system to handle the agent execution and
communication. It thus becomes possible for DARX to
act as an intermediary for the agent, committed to de-
ciding:

« when an agent should really be started, stopped,

suspended and resumed,

« and exactly when a message reception should take

effect.

Each task is itself wrapped into a TaskShell,
which acts as a replication group manager (see 1V-B)
and is responsible for delivering received messages to
all the members of the replication group, thus preserv-
ing the transparency for the supported application. In-
put messages are intercepted by the TaskShell, en-
abling message caching. Hence all messages get to be
processed in the same order within a replication group,
and messages duplicated by mistake can be discarded.
When replicating an agent, its replication group is sus-
pended and the corresponding DarxTask is copied to
a newly created TaskShell on the requested host be-
fore resuming the group execution.

A task can communicate with a remote task, dis-
regarding whether it is a single agent or a replication
group, by using a local proxy implemented by the Re -
moteTask interface. Each RemoteTask references
a distinct remote entity considered as the leader of its
replication group.

B. Replication and Failure management

DARX provides both passive and active replication
strategies. The main originality is that the strategy is
not fixed. Each agent can change, at runtime, its repli-
cation protocol and tune internal parameters such as the
number of replicas or the period between back-ups in
case of passive replication. As mentioned earlier, the
replication features of each agent are totally transparent
to the others.

A replication manager is associated to each agent. It
provides four functionalities:

« group information maintenance: It keeps track
of all the replicas included in the group, and of the
current strategy in use.

« activity suspension/resumption: It is responsible
for suspending or restarting the group. Suspension
is necessary when the internal parameters of the
group, such as the number of members or the strat-
egy, are changed. Theses functions depend on the
current strategy. In the active replication scheme,

group suspension implies sending a suspend order
to each replica. In the passive one, only the leader
has to be suspended.

« Mmessage diffusion: It provides the means to propa-
gate communications within the replication group.
This function also varies following the current
strategy. For example, in the active replication
scheme, every message will be broadcasted to the
replicas; whereas in the passive one, the message
will only be computed by the leader of the replica-
tion group.

« replication strategy switching: Finally, the repli-
cation manager carries out the change of the cur-
rent replication policy, and the tuning of its param-
eters. When switching from an active to a passive
scheme, the operation solely consists in informing
the replicas of the policy change; whereas in the
opposite case, the whole group is suspended and
all the replicas are updated before resuming the ex-
ecution.

This replication manager represents a fast way of han-
dling failure recovery. When the active replica of a repli-
cation group fails, any other replica within the group
already possesses the right information in order to be
elected as the new active replica.

V. PERFORMANCE

This section presents a performance evaluation of the
basic DARX components. Measures were obtained us-
ing JDK 1.1.6 on a set of Ultra-Sparcll 333 MHz linked
by a Fast Ethernet (100 Mb/s).

A. Migration

Firstly, the cost of adding a new replica at runtime is
evaluated. In this protocol, a new DARX task is created
on a remote host and the leader sends its local data to
the new replica. This mechanism is very close to a task
migration.

Figure 2 shows the time required to “migrate” a server
as a function of its data size. A relatively low-cost mi-
gration is observed. For a 1 megabytes server, the time
to add a new copy is less than 0.6 seconds.

The performance of our server migration mechanism
is also compared with the Voyager framework, which it-
self provides a migration facility to move agents across
the network. In this particular test the server is moved
between two Pentium 111/550MHz PCs running linux
with JDK 1.1.8. As shown in Figure 3, DARX is gener-
ally more than twice faster than Voyager. The anomalies
in this graph come from the fact that the performances
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were measured in a non-dedicated environment subject
to chaotic variations.

B. Active replication

The cost of sending a synchronous message to a repli-
cation group using the active replication strategy is then
evaluated. The time displayed is that measured between
the emission of a message whose size is given in ab-
scissa and the reception of a basic reply. Each message
is sent to a set of replicas. Figure 4 presents three config-
urations with different replication degrees. In the RD-1
configuration, the task is local and not replicated. In the
RD-2 configuration, the task is replicated on a remote
host. In the RD-3 configuration, there are three replicas;
the leader being on the sending host and the two other
replicas residing on two distinct remote hosts.

C. Passive replication

To estimate the cost induced by passive replication,
the time to update remote replicas is measured. The up-
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dating of a local replica was set aside as the obtained re-
sponse times were too small to be significant. Figure 5
illustrates the measured performances when updating a
replication group at different replication degrees.

D. Replication policy switching
Finally, we evaluate the times required to switch
replication strategies:
« in the RD-2 configuration, it takes 4.5ms to pro-
ceed from the active strategy to the passive one;
« Whereas in the RD-3 configuration, 4.56ms are re-
quired for the same operation.

VI. CONCLUSION

We have presented in this paper a framework for
fault-tolerant multi-agent systems. Our architecture
does not only provide the means to build reliable dis-
tributed applications, but also brings a certain amount



of flexibility to such software. Indeed it gives one the
possibility to decide which parts of the computation are
more critical than the others, and hence should be made
to bypass failures through replication. It moreover al-
lows to control dynamically the way the application
safeguards its components, enabling the reliability of the
computation to be fine-tuned on the fly.

The proposed architecture is a reality: it has been im-
plemented using Java and its RMI facility and presently
interfaces with the DIMA multi-agent platform. Tests
have already been conducted with the current versions
of DARX and DIMA,; as shown in the above section,
the results are promising.

There are still some issues left unsolved as of today,
however. For instance, the global naming system men-
tioned in section 1V-A constitutes DARX’s main weak
spot as it is centralized and based on a synchronous
system model. We are presently studying the creation
of a distributed global naming service that would fully
benefit from the characteristics of multi-agent systems,
as well as integrating asynchronous failure detection
[HN99].

Another field to work on is the way the replication
schemes are chosen. Presently, it is the sole application
designer’s responsibility to decide in advance, for every
component:

« which one is to be replicated,

« how many replicas must be made,

« Where those replicas should be located,

« Wwhich strategy should be used,

« and when a given replication scheme ought to be

modified.

Within the DARX project, research on the artificial in-
telligence side is currently under way concerning agent-
monitored decisions [LBGS00]. We are looking into de-
centralized solutions for observing the application be-
haviour so as to provide an optimized fault tolerance
for each agent. The low-level informations collected by
DARX, once passed on to the multi-agent system and
matched with the agent semantics and needs, could be
used to automatically reach intelligently fine-tuned deci-
sions regarding the right replication schemes to choose.

Other system-specific research issues include pin-
pointing the common needs and constraints of multi-
agent platforms in terms of mobility and communica-
tion, so as to provide interfacing with other multi-agent
systems, and furthermore offer a simple way of interop-
erating them.

In order to validate the work achieved up until now,
several applications are being developed. Those include
a distributed agenda, as well as a basic crisis manage-

ment system destined to test viability and utility of our
architecture in terms of such software.
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