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& Laboratório de Engenharia de Software (LES), DI, PUC-Rio
Rua Marquês de São Vicente 225, Gávea
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Abstract—This paper describes the progress of our work
on autonomic fault-tolerant multi-agent systems. Our starting
point is that new generation distributed applications are increas-
ingly dynamic and open, e.g., new agents can join or leave,
they can change roles or strategies and interdependences with
other agents. Thus the traditional approach of configuring fault
tolerance techniques (e.g., through replication) at design time
may turn out inadequate. We propose to make autonomous the
management of fault tolerance, more precisely by replication,
along the course of the computation. Therefore, in a first step, we
propose a framework for dynamic replication with some specific
features (e.g., dynamic adaptation of replication strategies). We
then propose several metrics for identifying dynamically what
agents are more critical. In this paper, after surveying 2 metrics
based on dependences and on roles, we detail our most recent
metric, based on plans. We also discuss the issue of creation of
replicas as a resource allocation problem.

I. INTRODUCTION

The possibility of partial failures is a fundamental charac-
teristic of distributed applications. Standard solutions for fault
tolerance (e.g., replication, exception handling) are usually
designed and configured at design time. In other words,
this is the task of the designer to identify in advance the
most critical software components of the application and to
decide what strategies (e.g., active or passive replication)
and their configurations (how many replicas, their placement,
etc.) will be applied. But this traditional approach reaches
its limits when considering new generation of cooperative
distributed applications (e.g., multi-agent systems) which are
more open and dynamic. Examples of such applications are:
e-commerce, air traffic control, crisis management systems,
and ambient intelligence. In these applications, the roles and
relative importance of the agents can greatly vary during the
course of computation and interaction, because the agents may
change roles, plans and strategies as well as the nature of
their interdependences. Also, new agents may join or leave the
application (as an open system). It is thus very difficult, or even
impossible, to identify in advance the most critical software
components of the application. As a consequence, early design

decisions on where and how to apply fault tolerance techniques
(e.g., decision to replicate an agent) may turn out inadequate.
Therefore, in this paper we propose an approach of self-
adaptation of fault tolerance techniques to make this fault
tolerance management dynamic and automatic.

Our starting point is the technique of software replication.
As discussed by [10], software replication in distributed en-
vironments has some advantages over other fault tolerance
solutions. First and foremost, it provides the groundwork for
the shortest recovery delays. Also, generally it is less intrusive
with respect to execution time. Finally, it scales much better.
Another important advantage, on the design perspective, is
that the use of software replication is relatively generic and
transparent to the application domain. The designer does not
have to explicitly specify the nature of the possible abnormal
behaviors and the way to handle them.1

As we show in the paper, our solution is furthermore
transparent, as the task of deciding what entities to replicate
and how to parameterize replication is handled automatically,
in an autonomic way. A key issue is then the identification
of the most critical components (agents) of the application at
a certain time. Therefore, we consider using various levels of
information: system level, e.g., communication load, or/and
application/agent level, e.g., roles or plans, as metrics to esti-
mate criticality. This paper will report on some of our current
strategies and experiments, in order to estimate criticality and
to control replication.

II. CONTEXT OF THIS WORK

A. Model of Failure Considered

Any software/hardware component may be subject to faults
resulting in output errors, which can lead to a deviation of

1That said, software replication focuses mostly on processor or network
faults, and does not address the whole spectrum of possible faults (design,
timing. . . ). Thus, a general issue, and still subject of open research - not
addressed in this paper -, is how to combine various approaches for fault
tolerance in a single articulated methodology.



its specified behavior, i.e. a failure. In distributed systems,
and even more so in scalable environments, failures are
unavoidable. A subdomain of reliability, fault tolerance aims at
allowing a system to survive in spite of faults, i.e. after a fault
has occurred, by means of redundancy in either hardware or
software architectures. In this work, we consider the crash type
of failures, that is when a component stops producing output.
It is the simplest type of failure to contend with. However,
in various cases our solution allows to deal with other types
of failures (omission, timing, byzantine). They are currently
being investigated, but will not be considered in this paper.

B. Types of Techniques Considered

Replication is an effective way to achieve fault tolerance
for crash types of failures. A replicated software component
has representations (replicas) on two or more hosts [10]. The
two main types of replication protocols are: active replication,
in which all replicas process concurrently all input messages ;
passive replication, in which only one of the replicas processes
all input messages and periodically transmits its current state
to the other replicas in order to maintain consistency.

Active replication strategies provide fast recovery but lead
to a high overhead. Passive replication minimizes processor
use by activating redundant replicas only in case of failures.
Then a new replica is elected among the set of passive ones
and the execution is restarted from the last saved state. This
technique requires less CPU resources than the active strategy
but it needs an expensive checkpoint management. Note that
when applied to agents with a deterministic behavior, active
replication strategies ensure consistency between replicas,
thanks to the total ordering of messages. For non deterministic
agents, a (light weight) additional consistency management
mechanism is required.

III. A FRAMEWORK FOR DYNAMIC REPLICATION

To overcome the limitations of static or explicit replication,
we propose an approach with automatic and dynamic control
of replication. At first, we need a replication architecture
which allows dynamic replication and dynamic adaptation of
the replication policy (e.g., passive to active, changing the
number of replicas). Current replication toolkits rarely support
such dynamicity. Therefore, we designed a novel replication
framework, named DarX, with such dynamic features.

DarX is a framework for designing reliable distributed ap-
plications based on adaptive replication. One of DarX specific
features is the reification of the replication strategy, so that
it may be dynamically changed. In DarX, a replication group
is an opaque entity underlying every application agent. The
number of replicas and the replication strategy of a specific
agent are totally hidden to the other application agents. Each
replication group has exactly one leader which communicates
with the other agents. The leader also checks the liveness
of each replica and is responsible for reliable broadcasting.
In case of failure of a leader, a new one is automatically
elected among the set of remaining replicas. DarX includes
group membership management to dynamically add or remove

replicas. It also provides atomic and ordered multi-cast for
the replication groups’ internal communication. Messages be-
tween agents, that is communication external to the group, are
also logged by each replica, and sequences of messages can
be re-emitted for recovery purposes. See, e.g., [15] for further
details about DarX.

IV. AUTONOMOUS CONTROL OF REPLICATION

Provided the architecture for dynamic replication, we need
a control mechanism for deciding which agents should be
replicated and with what strategy (active or passive, how many
replicas, where to create the replicas, etc.). As discussed in
Section I, in dynamic and open applications, control should
be dynamic. Moreover, a manual control is not realistic, as
the application designer cannot directly monitor the evolu-
tion of a distributed cooperative application of a significant
scale. Therefore, the control mechanism should be autonomous
although it may use some information as provided by the
designer of the application.

A. An Example of Scenario

In this paper, let us consider an application of assistance for
air traffic control through assistant agents. (This is a simplified
scenario of an ongoing collaborative project with EuroControl,
the European Organisation for the Safety of Air Navigation).
The airspace is divided into sectors, each sector being con-
trolled by a human controller. Each controller is assisted by
an assistant agent who cooperatively monitors the air traffic to
suggest decisions about traffic control (see Figure 1). Agents
communicate in order to assist with collaborative procedures,
e.g., hand off procedures, i.e., when a controller passes the
responsibility of an airplane exiting from its supervision sector
to the controller of the sector the plane is entering.

Fig. 1. Air traffic control

While trying to accomplish their tasks, agents can be faced
to different kinds of failures. In our work, we initially consider
the crash type of failures, which can be caused by internal
(operating system crashes, hardware problems) or external
factors (malicious attacks, power failures, environmental dis-
asters). Additionally, the failure of one agent can also impact
on the agents who depend on it (hand off procedures). To
minimize the impact of failures, agents can be replicated. It
is clear that replicating every agent in every machine is not



a feasible approach since not only the available resources are
often limited, but also the overhead imposed by the replication
could degrade performance. Thus, the problem consists in
finding a replication scheme which minimizes the probability
of failure of the most critical agents. This scheme must also
be revised over time, considering that the contexts of tasks
are dynamic and, thus, the criticalities of the agents vary at
runtime.

B. Replication Control = Metric + Allocation

To control replication in an autonomous way, we will
address two successive issues: 1) a metric problem - estimating
the criticality of agents; 2) an allocation problem - which
agents should be replicated and where to deploy the replicas.
Here we may informally define the criticality of an agent as
follows: the criticality of an agent, relative to an organization
of agents it belongs to, is the measure of the potential impact
of the failure of that individual agent on the failure of the
organization.

V. METRICS FOR ESTIMATING THE CRITICALITY

Some metrics have been proposed for identifying most
critical software components (see, e.g., [5]). However, these
metrics are often based on the static structure and local
nature of software components, e.g., size, complexity, and
dependences. Some recent directions are considering more
dynamic properties, e.g., frequency, that is the number of
times that a function is executed during a period of time, and
mechanisms for updating them automatically (see e.g., [7]).

We believe that, because of the very dynamic nature of
multi-agent systems (agents changing roles, non determin-
istic behavior), as well as thanks to the higher conceptual
level (organizational and cognitive levels of knowledge), more
appropriate metrics should be explored. Therefore, we have
designed alternative metrics for estimating agent criticality
(static dependences, dynamic dependences, roles, norms, and
plans) [4]. Note that each metric has its pros and cons: static
or dynamic, cost (overhead), and nature of assumptions of
abstractions available (e.g., messages, roles, norms, plans).
In this paper, we will survey three of them, and detail our
most recent one, based on plans, which has the advantage of
estimating future criticality and not just instantaneous one.

A. Dependences

This first metric is based on the concept of dependence (be-
tween agents). We explicitly represent dependences between
agents as an oriented graph, where each node represents a
domain agent and each arc between two nodes is labelled
with a weight which reflects the importance of the dependence
between the associated agents.

Intuitively, the more an agent has other agents depending
on it, the more it is critical in the organization. Thus, the
criticality of an agent is computed as the aggregation of the
weights representing dependences of other agents on it.

At design time, the interdependence graph is initialized by
the designer. It is then dynamically and automatically adapted

at run time. Several parameters may be used to update the
interdependences between agents. A first strategy is using
communication load (number of messages) as the parameter.
We also proposed using performatives as additional input
information (e.g., request has a weight greater than cancel).

B. Roles

An alternative metric that we studied is based on the concept
of role. A role, within an organization, represents a pattern
of services, activities and relations. For example, in an e-
commerce organization, agents can play the roles of service
provider, client, broker, etc. A role will be fulfilled (played) by
one or more agents, and the same agent may simultaneously
play several roles in different organizations. The notion of role
captures some information about the relative importance of
roles and their interdependences. We ask the designer to grade
the various roles along their criticality (relative importance).
We compute the estimated criticality of an agent as the
aggregation of the weights of the roles it is currently playing.

Note that, in order to monitor roles, we may assume that
agents signal explicitly when they take or leave a role (this
information may be made explicit for several models of orga-
nizations and also for some models of interaction protocols). In
order to be more general, we also designed a role recognition
mechanism, based on the recognition of patterns of interaction.

C. Plans

This most recent metric is based on the plans of an agent,
i.e., the actions that the agent has planned to execute in the
near future. We consider that each agent of the system knows
which sequence of actions (plan) must be executed in order
to accomplish its current goals. We represent the plan of an
agent as an acyclic Recursive Petri Net (RPN) [6], where each
place represents a state of the plan and a transition models an
action. As opposed to classical Petri Nets, RPNs allow the
representation not only of elementary actions (an irreducible
task which can be performed without any decomposition) but
also of abstract actions (the execution of which requires its
substitution by a new sub-plan). Actually, using RPNs, one
can represent partial plans which briefly describe the actions
of the agents at a certain iteration of the resolution. These
plans can then be refined according to the evolution of the
execution of the agents.

In the example of Figure 2, we show two plans elaborated
by two assistant agents. After solving the conflict between
plane1 and plane2, Assistant1 asks plane3 to land and hands
off plane4 to sector2 (controlled by Assistant2). The action
SolveConflict is an abstract action (transition in black) and,
thus, Assistant1 needs to refine it during execution. The
action HandOff is a joint action which needs synchronization
between the two agents. As a consequence, when Assistant1
proposes to hand off plane4 to sector2, it must ensure that
Assistant2 is ready to receive the details of the transfer. At
the implementation level, this is done by a synchronizing
transition.



Fig. 2. Examples of two interacting plans

The criticality of an agent at any time can be calculated
based on the criticalities of the forthcoming actions which
belong to its plan. An agent who executes critical actions
must be considered critical. In a given time t, the criticality
of the agent will be given by the relative criticality of the
initial place of its plan. Before defining the relative criticality,
let’s first introduce the concept of absolute criticality. The
absolute criticality (AC) of an action (transition) is defined
without taking into account the current plans of the agents. It
is given a priori by the system designer and can be determined
in function of a number of factors: number of agents capable
of performing the action, resources required for the execution
of the action, application dependent information. The relative
criticality (RC) of a place in a plan estimates the aggregation
of the criticalities of the children (transitions) of the place
in the plan. The relative criticality of a transition executed
by an agent (possibly jointly with other agents) estimates the
impact of its failure to the multi-agent system as a whole. The
RC depends on the absolute criticality of the action and on the
usefulness of its results to all the agents which depend on it to
perform their tasks. In other words, for an external transition,
the RC is equal to the sum of the children relative criticalities.
For a non-external transition, the RC is equal to its absolute
criticality plus the sum of the relative criticalities of all of its
children in all the plans to which it belongs.

To deal with the dynamicity of multi-agent systems, criti-
calities need to be updated along time. We proposed two main
types of strategies to revise the criticality: time-driven strate-
gies and event-driven strategies (action completion, failure).
More details are presented in [2].

VI. RESOURCE ALLOCATION

Our mechanism for deciding which agents should be repli-
cated and where to deploy the replicas is considering the
failure probability of the replicas. Indeed, it is better to have
only one replica which will have in the future an almost
zero probability of failure than having many replicas which
are not reliable. We formally define replica allocation as an
optimization problem and use event-driven policy for updating
the probability of machines failures and then of replicas
failures, based on the history of machine failures. Because
of space limitation, more details are presented in [1].

VII. EXPERIMENTS

A preliminary serie of experiments were run using our plan-
based strategy on a simplified air traffic control scenario. In our
experiments, each agent has to accomplish its own sequence
of 5 plans, one at a time, each with 10 actions. The average
duration of actions is of 2 seconds. We repeated ten times
each experiment (the results shown are the mean of those
several runs). We maintained the same sequence of plans and
actions that each agent must execute in those runs. We set
the number of resources available at the machine as half of
the number of agents. In order to assess the quality of a
replication mechanism, we considered the sum of the absolute
criticalities of the actions which were executed with success
using the corresponding mechanism. During the execution of
each experiment, at each interval of 2s and for each agent, a
failure generator will cause the agent to fail with a probability
equal to the probability of failure of its resources. Whenever
an agent fails (because all its resources failed), its current
plan fails, the agent is restarted with its next plan and all
the resources which were allocated to it are made available
for use.

Fig. 3. Quality of the replication mechanism used vs. a failure-free execution

Figure 3 shows the maximum quality that could be obtained
(in a completely reliable environment) compared to the quality
of our strategy of replication and to a random one, which
allocates randomly each resource available. We varied the
failure rate of the resources, but due to space constraints, only
a fixed value of 10 failures per minute is reported. The results
are encouraging in the sense that the quality of our mechanism
is quite close (80% at average) to the maximum value that
could be obtained in a failure-free execution. Additionally, our
strategy is more accurate to determine and replicate the most
critical agents than a random strategy. In fact, the probability
that a critical agent fails with our strategy is lower than with
a random strategy. We also ran experiments to compare the
CPU time required by our mechanism and by the execution
of the multi-agent system with no replication at all. Using no
replication always outperforms our replication mechanism, but
the overhead of our mechanism is negligible (less than 4%).



VIII. RELATED WORK

A seminal project about autonomic computing is the Auto-
nomic Computing Program of IBM. They propose a general
blueprint architecture (monitor, analyze, plan, execute). A
prototype architecture, named ABLE (Agent Building and
Learning Environment) [3], partially implements it and pro-
vides a toolbox of components (implemented as JavaBeans)
for manipulating and using monitored information (rules,
neural networks, statistics. . . ). An example application is on
autonomic load balancing of application servers. Accord [14]
is another framework, focusing on the development of auto-
nomic applications using dynamic composition of autonomic
elements. However, ABLE or Accord does not provide built-in
mechanisms for fault tolerance such as replication strategies.

[17] is a general analysis on how to incorporate fault toler-
ance concerns in an autonomic setting. It identifies fault toler-
ance at the level of service registry, and discusses mechanisms
for identifying faulty servers. It considers using replication but
does not address adaptation mechanisms.

[16] addresses the issue of fault-tolerance in the context
of the use of mobile agents, both for workflow management
and grid computing contexts. They propose a model and a
mechanism for automatic selection of checkpointing mecha-
nisms (local or remote) in order to minimize the workflow
execution duration. Their choice is based on some variables
specific to the workflow execution domain (e.g., agent size,
number of stages in the sequence path). The use of model
characteristics (namely the variables in their model) as input
for selection and mapping is analog to our use of information
and metrics to estimate and control the application of fault-
tolerance techniques (in our case, replication). However, the
type of information we use is more generic to the multi agent-
systems domain.

Chameleon [12] is an adaptive fault tolerance system us-
ing reliable mobile agents. The methods and techniques are
embodied in a set of specialized agents supported by a
fault tolerance manager (FTM) and by host daemons for
handshaking with the FTM via the agents. Adaptive fault
tolerance is achieved by making the Chameleon infrastructure
reconfigurable. Static reconfiguration guarantees that the com-
ponents can be reused for assembling different fault tolerance
strategies. Dynamic reconfiguration allows component func-
tionalities to be extended or modified at runtime by changing
component composition, and components to be added to or
removed from the system without taking down other active
components. However, this reconfiguration must be specified
and applied in a non-automatic way during the execution of
the system.

Hagg introduces sentinels to protect the agents from some
undesirable states [11]. Sentinels represent the control struc-
ture of their multi-agent system. They need to build models
of each agent and monitor communications in order to react
to faults. Each sentinel is associated by the designer to one
functionality of the multi-agent system. This sentinel handles
the different agents which interact to achieve the functionality.

The analysis of his believes on the other agents enables the
sentinel to detect a fault when it occurs. Adding sentinels to
multi-agent systems seems to be a good approach, however
the sentinels themselves represent failure points for the multi-
agent system.

Fedoruk and Deters [8] propose to use proxies to make
transparent the use of agent replication, i.e. enabling the
replicas of an agent to act as a same entity regarding the other
agents. A proxy manages the state of the replicas. All external
and internal communications of the group are redirected to the
proxy. But this increases the workload of the proxy which is
a quasi central entity. To make it reliable, they propose to
build a hierarchy of proxies for each group of replicas. Their
approach lacks some flexibility and reusability, in particular
concerning replication control. Replication is indeed set up by
the designer before run time.

The work by Kraus et al. [13] proposes a solution for
deciding allocation of extra resources (replicas) for agents.
They proceed by reformulating the problem in two successive
operational research problems (knapsack and then bin pack-
ing). Their approach and results are very interesting but it is
based on too many restrictive hypothesis to be made adaptive.

IX. CONCLUSION

Large-scale multi-agent systems are often distributed and
must run without any interruption. To make these systems
reliable, we proposed an architecture (DarX) for dynamic
replication and its control. In this paper, we discussed some
metrics for estimating criticality of agents, inferred automat-
ically from various kinds of information (messages, roles,
plans). The agent criticality is then used to replicate agents
in order to maximize their reliability and availability based
on available resources. We believe that our current results
are promising. Meanwhile, more experiments are needed to
better evaluate our approach, various metrics and strategies,
and classify their respective classes of applications.
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