
Agent-based Grid Resource Management

A. Lenica1, F. Ogel1, F. Peshanski2, J.-P. Briot2

1 France Telecom - R&D/MAPS/AMS,
38-40 rue du general Leclerc 92794 Issy les Moulineaux, France

firstname.name@francetelecom.com
2 Laboratoire d’Informatique Paris VI,Université Pierre et Marie Curie,

4, place Jussieu, 75252 Paris Cedex 05, France
firstname.name@lip6.fr

Abstract. As grid computing becomes a de facto standard for host-
ing calcul-intensive applications, current grid middleware technologies
do not deal with interactive (i.e. non-batch) applications. From a Telco
(or any service-provider) perspective, such class of applications is highly
sensitive. We propose a grid service platform that dynamically provisions
resources for both interactive and batch applications to meet their QoS
constraints while ensuring good resource mutualization. Moreover, we be-
lieve that relying on an agent-based approach for resource management
will allow a more flexible, robust and scalable solution.

1 Introduction

Traditionaly, business and multimedia applications are deployed on top of iso-
lated clusters, statically over-provisionned to handle peak loads. As a conse-
quence, resource utilization rates within such infrastructures are typically low
(most often between 20% and 30%). Pooling resources together to form a grid
service-platform seems a natural way to enhance resource utilization as well as to
reduce costs. However, even though grid computing becomes a widely spread so-
lution in support of calcul-intensive applications, both within the academic and
industrial worlds, non-batch applications (interactive, multimedia, etc.) are not
addressed. Actual grid middleware technologies do not deal with applications
such as VoIP or visioconference. Hence, the need for a grid service-platform
aimed at hosting highly heterogeneous applications, ranging from multimedia
servers (such as VoIP or videoconfernce) to more traditionnal calcul-intensive
applications (such as magnetic field simulations and codecs optimization), and
data-oriented applications (such as billing or datamining for fraud detection and
churn analysis). Whereas resource allocation can be delayed or statically per-
formed in case of batch applications, interactive ones exhibit dynamic and strin-
gent QoS requirements on a possibly long run. Hence, their load is variable over
time, requiring dynamic resource allocation. To enable the cohabitation of both
classes of applications while satisfying QoS requirements during the complete
lifecycle of each application requires from a grid platform: (i) to perform service
differentiation; (ii) to perform dynamic allocation; (iii) to adapt resource allo-
cation policies; (iv) while maintaining a good resource utilization rate. Besides,



in a grid world, this arbitrator would be a central component, like any resource
broker. However for scalability and dependability issues, a decentralized arbitra-
tor would exhibit better properties. We join [8] in the belief that the specificities
of an interactive grid are best matched by a multi-agent based approach. To
supply our grid resource allocator with the necessary flexibility, scalability and
dependability, we propose in this paper a distributed agent-based abstract model.
We consider the various allocation semantics as agent behaviours and rely on
negociation between agents to achieve matchmaking.

The remainder of this paper starts by presenting a case study based on exist-
ing applications in Section 2. Section 3 describes our architecture with respect
to the previous case study. Related works appear in Section 4, followed by con-
clusions and perspectives in Section 5.

2 Case study

To illustrate our proposition, we use a case study based on existing applications:
a videoconference service, a data-oriented fraud detection application and a more
calcul-intensive videocodecs optimization/benchmark tool.

Our goal is to design an architecture that will allow such heterogeneous
applications to coexist on a single platform with respect to their QoS and per-
formance needs. Every available resource should be used and most important,
services should be able to preempt resources from less important ones. The im-

portance of a service corresponds to a business value, which can be defined using
various utility functions: based on the service contribution to the global bene-
fits, on client class, their workload, etc. In our case, we consider static business
values representing class of importance with respect to business activities: the
visioconference service is more important than internal batch applications.

2.1 Resources

Physical resources in a Telco grid may include clusters of workstations and
servers geographically distributed over long distances, with arbitrary architec-
tures, operating systems and libraries. Each resource is described by a resource
profile, providing the necessary semantic markup (architecture, physical resources
such as RAM or storage, operating systems, etc.) to manage it. Resources might
be virtual resources multiplexed on top of physical resources, as with Xen-like [6]
virtualization tools. Although on-going work is also done on the mapping of vir-
tual resources to physical resources, we do not present it here.

2.2 Hosted applications and services

In this paper, we do not distinguish between the terms application and service
and therefore we use them interchangeably. Since we consider legacy applica-
tions, external controllers have to be specifically developped to interface with



the underlying platform. Application controllers encapsulate some application-
specific features such as QoS monitoring and associated resource requesting, as
well as application components’ setup and configuration.

We gather batch applications behind a Batch Queue Service that deploys
them for execution upon a pool of known resources. Its associated controller has
a greedy behaviour: it claims each idle resource available for executing batch
jobs. The Batch Queue Service corresponds to the traditional entry point of a
data/calcul oriented grid that manages its own resources to handle submitted
workflows. We currently use Condor [17] for such purpose.

The visioconference service represents a legacy application, originally written
to be deployed on a dedicated cluster. It balances visioconferences amongst a
set of pre-existing conference bridges, hence it needs a controller to: (i) monitor
the QoS associated with the service and some specific performance/load metrics
(typically the number of active videoconferences); (ii) interact with the under-
lying platform, and in particular negociate additional resources when needed.

3 Architecture for dynamic resources provisionning

Most grid middleware technologies are explicitly designed to deal with batch-
oriented applications and thus implicitly use this hypothesis for resource man-
agement. Adversely, supporting heterogeneous applications requires having an
application-neutral resource manager. Thus we propose to provide a dynamic re-
source allocator that provisions resources to requesting services. However, deal-
ing with heterogeneous applications implies heterogeneous QoS requirements
and business values. Consequently, we introduce service differentiation concern-
ing resource management to arbitrate amongst requests. Available resources are
allocated to most valued requests and resources used by low-value services can
be preempted for dynamic re-allocation to higher-value applications. Moreover,
hosting heterogeneous applications requires supporting different allocation se-
mantics. Whereas, a Batch Queue Service simply requests any resource matching
a given profile, more constrained services can exhibit additional requirements,
such as timeouts (i.e. a delay after which the resource is not useful anymore),
or different semantics, such as atomic co-allocation (i.e. allocate a whole set of
resources matching some given criteria or none).

To capture the heterogeneity of allocation semantics, we adopt a heteroge-
neous society of software agents, each allocation policy being implemented as
an agent behaviour. To add a novel policy to the platform boils down to enrich
it with a new class of agents, without having the need to modify the existing
ones. Moreover, ensuring good resource management starts by ensuring a good
dependability of the resource allocator, so that resources remain available when
faults occur. Hence the use of a distributed set of cooperating agents for resource
management. Using cooperative distributed agents also helps with scalability and
reactiveness issues in such potentially large scale distributed environments.



3.1 A generic architecture for resource management

Our architecture deals with resource-centered decision-making. To achieve this
purpose, we propose an agent-based resource manager supporting arbitrary re-
source allocation semantics. The following figure 1 gives an overview of the
general agent-based architecture. It consists of four layers: (i) an applicative
layer; (ii) associated application controllers responsible for maintaining all meta-
data associated to the application, monitoring its performance (through QoS
metrics) and issuying the requests for the adequate resources when needed; (iii) an
infrastructure layer consisting of virtualized grid resources; (iv) the core layer of
resource management agents.

(each Ctrl knows 1..M agents)

BQS

Ctrl

Visio

Ctrl

VoIP

Ctrl Ctrl

AS J2EE

(Physical) Ressources

(Virtual) Ressources

Naming/Discovery

Service

agentsmanager1..M

each has 0..M−1 neighbour(s)cooperating

Primary manager
Secondary known manager

Ressource Manager

Fig. 1. A generic resource manager.

Application controllers use a Naming/Discovery service to find one or more
resource management agents that advertise desired semantics and properties
(atomic co-allocation, timed-out allocation, etc.). They send requests (resource
profiles and possible QoS constraints) to those agents. A resource profile typi-
cally describes both hardware and software informations (such as architecture,
operating system, available memory and storage, etc.). Requests also contain
additional metadata, such as an allocation mode (agents can support multiple
allocation semantics) and some semantic-specific metadata, such as a time-out if
any or a locality1 constraint on requested resources. We do not directly address
consistency issues emerging from parallel requests between multiple resource

1 Locality can be expressed in terms of network latency or, at a coarser grain, as a
subnetmask.



management agents: controllers are responsible for dealing with it, for example
by sending requests sequentially or split them into smaller independant requests
that agents can handle in parallel.

Each resource interact with the platform, and in particular with the resource
management agents, through a local agent. Resources are dynamically priced

with a business value. We use a simple model: idle resources have a null value,
while allocated resources inherit from the business value of the application they
were allocated to. Hence, a resource is considered to be available for any appli-
cation having a strictly higher (business) value. As a consequence, idle resources
are available to anyone. This model will be further extended to differentiate re-
sources: for example, powerful resources and very specific (rare) profiles could be
given higher values than common resources. Towards our first prototype, we rely
on application controllers to release unused resources. However, we plan to use
resource local agents to implement a garbage collecting mechanism: allocated
but unused resources use a timeout to trigger an alarm toward their primary
manager agent, which sends in turn a release message to the corresponding con-
troller. The resource is then preempted and put back to an available/idle state.

Considering the mapping between resources and their managers, having a
strict one-to-many mapping (i.e. one manager dedicated to an exclusive set
of resources, brings dependability issues: when the manager fails, associated
resources are not available anymore. On the other hand, having multiple agents
managing shared resources typically raises consistency issues. We use a simple
replication schema: any resource has a single primary manager, but is also known
by some of its manager neighbours. Those neighbours are also known by the
resource and will act as secondary managers, in case of failure of primary. In
such case, we propose to let the resource detect its primary’s fault and register
itself to a known neighbour.

Resource management agents match requests to available resources (Match-

Making) and arbitrate between requests with respect to Business Values (service
differentiation). Each agent implements one or more allocation semantics, and
advertises its capabilities to the Naming/Discovery Service. Their behaviour
depends on the allocation semantic they implement and extends the basic be-
haviour consisting in matching a requested resource profile (including a business
value) with an available resource (i.e. idle or allocated to a lesser-valued ap-
plication) within its set of primary resources. Upon failure, the agent behaves
as an application controller to negociate resources from a neighbour. Based on
its knowledge about its neighbours and their potential resources, an agent can
determine the most suitable neighbour to handle the request. It then uses a
delegation scheme so that the request can be routed through agents toward
completion (or expiration). Delegated requests inherit the business value associ-
ated with the application controller they originated from. Metadata management
between agents is similar to cooperation protocol between Web caches, such as
Relais [12] or Summary Cache [7]. This basic behaviour is common to all the
management agents, enabling them to “understand” each other and cooperate
during this phase of matchmaking. Agents further specialize according to differ-



ent allocation policies. For example, co-allocation requires further cooperation
between agents to perform end-to-end resource reservation.

3.2 A simple example

In order to illustrate how resource arbitration works, we consider the applications
presented in section 2.

We introduce service differentiation by associating priorities (or Business

Values) to services. Batch applications are typically considered less important
than interactive applications: in our case the visioconference service is considered
to be of higher importance from a business perspective. The Batch Queue Service
has a greedy resource consumption: it claims every available resources to execute
its jobs. The visioconference only needs resources to maintain QoS and thus asks
for more when its load (defined as the number of visioconferences per bridge)
crosses a predefined threshold.

Applications deployment and configuration is handled by application con-
trollers: they find a resource manager and ask for resources to setup a running
service. Once up and running, the Batch Queue Service controller asks for re-
sources as long as it has jobs waiting for execution: it simply tries to form a
resource pool large enough to handle all its jobs in parallel. The controller of
the videoconference service simply monitors conference load and sends a request
containing a description of a resource needed to host a videoconference server.
Thus it tries to anticipate peak loads to prevent QoS perturbations or user re-
quests rejection. In this configuration, the Batch Queue System uses most of idle
resources, until the videoconference-service load increases.

The above allocation semantics may translate to the following agent be-
haviours: when requested by the controller of the videoconference service, re-
source manager agents will start preempting resources from the Batch Queue
Service.

As a result, on one hand Batch Queue Service will only get idle resources, on
the other hand videoconference service gets both idle and preempted resources.
At the end, the videoconference service gets as much resource as it needs (if
enough) and, due to its greedy behaviour, the Batch Queue Service makes use
of every remaining resource.

Introducing a third service, for example a J2EE application server, having
an intermediate business value, results in a similar hierarchy: the most valuable
services gets all the resources they need, with respect to their priority and the
Batch Queue Service, which represents internal low-priority applications in our
case-study, exploits the remaining idle resources. Hence we preserve application
priorities (and QoS constraints) while ensuring a good resource rationalization.

4 Related works

As stated in the introduction, resource management systems explicitly targeted
at interactive grids are scarce. Recent projects include [11], which proposes an



abstract agent-based architecture to enforce SLAs during application runtime.
Compared to the work presented here, dynamic allocation is not adressed: the
QoS requirements are supposed static and the only enforcement policies envis-
aged are prioritization mechanisms (or application termination), which are not
compatible with the interests of a telecommmunication operator. Besides, most
integrated management systems in grids exhibit static resource management
services, incompatible with our purposes. In most cases, jobs are submitted and
exit without the possibility of reallocation in course of execution, as in Globus
[9], Sun’s Grid Engine or Ninf [13]. As for Condor [17], if a participating
node is overloaded or becomes unavailable, the Condor daemon takes a snapshot
of the job and resumes it on another node. But due to its snapshot algorithm,
Condor is suitable only for batch jobs. In Legion [14], neither the scheduler
nor the scheduling policies are mandated. The framework provides mechanisms
to construct ad-hoc schedulers and permits resource specification directly for
a run. But the general scheduling architecture supports only one-shot negocia-
tions between client and provider and therefore, no dynamic reallocation (same
for Nimrod/G [2]. Other constraints are the noninterference with the applica-
tive code, which is violated by projects like NetSolve [16] (where applications
must use one of the APIs provided by the system to perform RPC-like computa-
tions) or the automation of administrative tasks, which is not found in AppLeS
[1] (no tool level scheduling solution provided but instead, an ad-hoc scheduler
agent must be developped for each application).

Few projects investigate the dynamic resource allocation on grids. Amidst of
them, CoordAgent [10], [15] and ARMS [3]. CoordAgent proposes an agent-
based solution where mobile agents represent user job requests. The agent en-
capsulates the code, searches the grid for adequate resources, launches the job,
and migrates it to another node in case the current host becomes unavailable. Al-
though the system uses migration for fault-tolerance purposes, it could indeed be
used to support dynamic resource allocation for interactive processes, given the
possibility to plug-in user/administration policies. In regard to our objectives,
the project shortcomings of CoordAgent lie in that it requires modification of
the applicative code in order to insert checkpoints and mandates Java or C++.
Without alteration of the user code, [15] also proposes to enhance the resource
broker by providing it with migration capabilities via reflective techniques. The
broker gathers dynamic information about the state of the resource during run-
time and reports it to a monitor which in turn computes predictive information.
This predictive information is used by an Adapter Manager to make a decision
whether job migration is required. The principal drawback to this proposal is the
obligation for the applications to be developped in OpenJava, and thus its in-
ability to handle legacy applications. The last project presented here is ARMS.
ARMS tackles the issues of scalability and adaptability in resource manage-
ment systems though the use of reconfigurable agents. Each agent represents a
grid resource which it manages locally, and cooperates with the other agents
to enable resource allocation by exchanging with them service advertisements
and discovery requests. A special agent possesses a global view of the system



and is capable of modeling and simulating the peer agent’s performances during
runtime, while optimizing its behaviour (e.g. service advertisement frequency).
The system is both scalable (the agents compose a homogeneous society except
for the special agent, which does not constitue a single point of failure) and
adaptive (through the use of PACE performance prediction toolkit to compute
a tradeoff between complexity of advertisement and complexity of discovery).
But the model relies on hypothesises about the application as the attribution of
one job per machine, which is relevant for batch applications but not interactive
ones, targeted in this work.

5 Conclusion and perspectives

Whereas most grid middlewares focus on batch jobs execution, a grid service
platform in a Telco or service-provider context has to deal with both batch and
interactive applications. Not only does static resource provisoning lead to poor
resource rationalization, but it fails also to support dynamic QoS requirements.
To face such heterogeneous and dynamic context, we propose a generic resource
manager able to support arbitrary classes of applications, while avoiding sys-
tematic over-provisioning of resource and ensuring service differentiation.

This paper presented the architecture of such a resource manager. It is based
on a multi-agent approach to capture the heterogeneity of hosted applications
(in terms of allocation semantics) as well as to provide good dependability.

We are currently investigating self-organization heuristics to provide this
architecture with autonomic capabilities. In particular we would like to handle
transverse aspects, such as fault tolerance, through organizational strategies. A
first prototype is under development, based on the ProActive Java platform [4,
5].

References

1. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, S. Spring, A. Su, and D Zagorodnov.
Adaptive computing on the grid using apples. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 14(4):369–382, 2003.

2. R. Buyya, D. Abramson, and J Giddy. Nimrod/g: An architecture for a resource
management and scheduling system in a global computational grid. In USA IEEE
Computer Society Press, editor, Proceedings of the Fourth International Conference
on High Performance Computing in Asia-Pacific Region (HPC ASIA’2000), China,
2000.

3. J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd. Arms: an agent-
based resource management system for grid computing. Scientific Programming,
Special Issue on Grid Computing, 10:135–148, 2002.

4. Denis Caromel. Toward a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90–102, 1993.

5. Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards seamless comput-
ing and metacomputing in Java. Concurrency: Practice and Experience, 10(11–
13):1043–1061, 1998.



6. B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham,
and R. Neugebauer. Xen and the art of virtualization. In Proceedings of the ACM
Symposium on Operating Systems Principles, October 2003.

7. Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a
scalable wide-area Web cache sharing protocol. IEEE/ACM Transactions on Net-
working, 8(3):281–293, 2000.

8. I. Foster, N. Jennings, and C. Kesselman. Brain meets brawn: Why grid and agents
need each other, 2004.

9. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl
J. Supercomputer Applications, 11(2):115–128, 1997.

10. M. Fukuda, Y. Tanaka, N. Suzuki, L. F. Bic, and S. Kobayashi. A mobile-agent-
based pc grid. In Autonomic Computing Workshop Fifth Annual International
Workshop on Active Middleware Services (AMS’03), pages 142–150, 2003.

11. R. Kumar, V. Talwar, and S. Basu. A resource mangement framework for interac-
tive grids. In Concurrency and Computation: Practive and Experience, volume 16,
pages 489–501. ”John Wiley & Sons, Ltd.”, 2004.

12. Mesaac Makpangou, Guillaume Pierre, Christian Khoury, and Neilze Dorta. Repli-
cated directory service for weakly consistent replicated caches. In Proceedings of the
19th IEEE International Conference on Distributed Computing Systems (ICDCS
’99), May 1999.

13. H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. The design and imple-
mentation of a fault-tolerant rpc system: Ninf-c. In Proceedings of the Seventh
International Conference on High Performance Computing and Grid in Asia Pa-
cific Region (HPC Asia 2004), pages 9–18, July 2004.

14. A. Natrajan, M. Humphrey, and A. Grimshaw. Capacity and capability computing
in legion. International Conference on Computational Science, May 2001.

15. A Othman, P Dew, K Djemame, and I Gourlay. Toward an interactive grid adaptive
resource broker. In S J, editor, Proceedings of the Second UK All Hands e-Science
Meeting 2003 (EPSRC’03), 2003.

16. K. Seymour, A. Yarkhan, S. Agrawal, and J. Dongarra. Netsolve: Grid enabling
scientific computing environments. In Grid Computig and New Frontiers of High
Performance Processing, volume 14 of Advances in Parallel Computing. Elsevier,
2005.

17. T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor – a distributed job
scheduler. In Thomas Sterling, editor, Beowulf Cluster Computing with Linux. MIT
Press, October 2001.


