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A B S T R A C T

In this paper we address the collective management of environmental commons with multiple usages in the
framework of mathematical viability theory. We consider that stakeholders can derive from the study of
their specific socioeconomic problem (i) the variables describing the different usage of the commons and its
evolution (ii) and a representation of the desirable states for the commons. We then consider the guaranteed
viability kernel, subset of the set of desirable states where it is possible to maintain the state of the commons
even when its evolution is represented by several conflicting models. This approach is illustrated on a problem
of lake eutrophication.
1. Introduction

Sustainable use of natural resources, environmental conservation,
social inclusion and welfare, economic activity and development entail
generally conflicting management objectives. In The Tragedy of the Com-
mons, Hardin (1968) highlights the exhaustion of open-access resources
by numerous users who hold similar views, but the same analysis can
be made with different types of users whose activity is based on the
resources. A lot of work on sustainability of natural resources is still
focused on the allocation problem, where stakeholders are considered
competitors for the share of quotas, for example, for the regulation of
fisheries or water sharing (see references, for instance, in Parrachino
et al. (2006) and Oubraham and Zaccour (2018)).

In order to take into account the interests of the different types of
stakeholders, significant efforts have been made using the economics
approach to assess the value of environmental and social services
(see, for example, a framework in de Groot (2006)). When points of
view are considered to be incommensurable, multi-criteria or viability
theory approaches offer interesting alternatives. Even when stakehold-
ers are considered to be competitors for one common resource, these
approaches make it possible to take into account more indicators than
the level of renewable resource and the profit directly based on it. For
example, in a quantitative work on fishing regulation (Dowling et al.,
2020), 21 score functions are designed for the regulation of fishing,
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depending on fish biomass and parameters computed each year accord-
ing to the control scenario. Stakeholders’ weighted preferences over the
score functions are then optimized each year for different levels of the
control variable. When stakeholders express different points of view,
the mathematical viability theory (MVT) approach makes it possible to
combine the different constraints placed on the system, without direct
connection to the underlying profit of the related activity. For instance,
in a hydro-power dam management problem (Alais et al., 2017), the
main concern is maximizing the profit of the electricity provider with
water control under uncertainty in water inflow and electricity price.
Recreational and agricultural activities impose an additional seasonal
constraint on the water level without further profit analysis. In Wei
et al. (2013), the multi-objective concern of a tourist city is studied
through the joint evolution of the number of tourists, tourism infras-
tructure and environment quality. The different stakes are represented
by constraints on the level of these variables. The MVT algorithm
identifies the area where it is possible to maintain the evolution of
the three variables between these bounds. The potential of the MVT
approach has been demonstrated in many other domains as described
in the review by Oubraham and Zaccour (2018). In all these works, the
model of the evolution of common resources or land uses, together with
the impact of controls on the system (such as the total allowable catch
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in fishery regulations), is supposed to be consensual. It is generally
taken from the literature or from previous work and parameters are
calibrated from data and time series. In works cited in Oubraham and
Zaccour (2018), the model representing the system at stake is always
considered as consensual. In theoretical works, models can certainly be
generic functions of variables, controls and uncertainties (as is the case
in De Lara and Martinet (2009), Křivan (1991), Křivan and Colombo
(1998) and Martinet et al. (2016)). But in their applications and in the
other works cited in Oubraham and Zaccour (2018), when uncertainty
is explicitly taken into account, it is in fact related to data and measure-
ments used to assess parameters in the model, not to the definition of
the model itself. As stated in Martinet et al. (2016), uncertainty affects
parameters such as growth rate, recruitment or mortality in dynamic
population models, unknown or unpredictable events such as climate
fluctuations, or externalities such as price, as in games against nature.
Models are supposed to be consensual with their explicit hypotheses
(which are generally discussed). In Little et al. (2007) three models
are considered for larval dispersal and modelers can parameterize the
system to run simulations with their own choice of model. This is
motivated by the possibility of studying different species, therefore for
the viability study only one model is parameterized.

However, the ComMod approach (Etienne, 2014) has shown that
modeling the evolution of the system at stake is difficult and hardly
consensual, since scientific or technical viewpoints can be considered
by stakeholders as viewpoints among others. The ComMod approach
addresses this problem with serious games supported by simulation
models (Barreteau et al., 2001) where stakeholders can test their hy-
potheses about the system evolution and the impact of actions. The
process continues, with additional research if necessary, until a consen-
sus on the model is reached. To take into account this discrepancy at the
model level, we consider here that stakeholders have their own model
of the evolution of the system with the impact of controls. We consider
that stakeholders are able to define constraints on the key variables of
their usages of the commons, such as the number of tourists, the quality
of water (for example, measured in terms of concentration of pollutants
or bacteria), the quality of the environment (for example, measured
with biodiversity indicators related to the population of local species),
etc. These constraints are generally seen as thresholds. We consider that
the objective of the group of stakeholders is to define a set of states
where the system can be maintained with appropriate controls. We
use viability theory, in particular the concept of guaranteed viability
set (Aubin, 1997), which is defined to take into account uncertainties
(such as a move by nature, see, for instance, Bates and Saint-Pierre
(2018)).

The paper is organized as follows: we first describe the problem and
our hypotheses, together with a brief summary of MVT. We describe
individual and group viewpoints as viability problems, and show why
in this context of several models it is more difficult to seek a technically
sound agreement. We illustrate this approach with a problem of lake eu-
trophication. In Section 3, we first present the perturbation embedding
function, which allows us to consider each model as a perturbation of a
central model. This formulation enables the definition of a guaranteed
viability problem. In Section 4 we present and discuss the application to
the management of the lake. We summarize the results and perspectives
in the concluding section.

2. A viability-based framework

Here, we propose a framework for using MVT for collective manage-
ment problems when stakeholders have their own view of the dynamics
of the system.
2

2.1. Definition of the problem of collective management

2.1.1. Prototypical situation
Let us consider an entity or system  (for instance, a preserved

area), in evolution, which is submitted to the management decision
of a group of 𝑁 stakeholders. We are interested here in collective
management situations with the following characteristics:

(C1) All stakeholders are dealing with the same system, described by
the same variables.

(C2) All stakeholders can have their personal view of the admissible
controls which should be taken into account depending on the
state of the system. However, we will only consider the control
variables and values which are common to all so as to find a
consensus solution.

(C3) All stakeholders have their own personal view of the evolution
of the state of the system, including the impact of controls,
which is represented by a controlled dynamical system as a set
of differential inclusions (or difference equations).

(C4) All stakeholders can define a set of desirable states in which the
state of the system must remain, so that they should be able to
satisfy their own objectives.

(C5) All stakeholders have a management objective for the system:
Maintaining its state in their own set of desirable states.

(C6) All stakeholders trust the same third party (for instance, an
assistant software), and share with it their admissible control
map (noted 𝑈𝑖), their set of desirable states (noted 𝐾𝑖) and their
dynamics (noted 𝑆𝑖).

We consider here that the objective of the collective management
f system  is to fulfill the objective of all stakeholders. It means main-
aining the state of the system in all their desirable sets simultaneously.

In this situation and with this objective of collective management,
inding a solution to this problem means finding a subset 𝐻 of the state

space of the system , and a control map 𝑈̃ defined on this subset,
such that from any of its states, and for all stakeholders, every evolution
governed by their own model 𝑆𝑖 (with control selected from 𝑈̃) remains
in their own set 𝐾𝑖 forever. When the set 𝐻 is not the empty set (and
when the associated control map 𝑈̃ defines non empty control sets),
they form a consensus solution in the sense that they make it possible
to derive a satisfactory evolution of  for all parties.

Actually, if stakeholders’ positions are too far apart, the solution
will be the empty set. In particular, it will be the case if there are no
common controls, or if the intersection of all desirable sets is the empty
set. Thus in practice two more consensus conditions must be added:

(C7) Taking into account all the different stakeholders’ sets of desir-
able states, it is possible to define a non-empty consensus set of
desirable states, which is a subset of each of them.

(C8) Taking into account all the control maps of the different stake-
holders, it is possible to define a consensus control map, defined
for all the states of the consensus set of desirable states.

However, we do not require a consensual model.

2.1.2. Consideration of uncertainties and constraints
In this framework we address the problem of uncertainty in a worst-

case approach (as is possible in the MVT approach). We want to find
solutions which are still valid when stakeholders consider uncertainties
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in some parameter of their model: The proposed solutions will be valid
for all the parameter values envisaged.

We also want to find solutions even when stakeholders have dif-
ferent views on the laws or processes that govern the dynamics. Com-
paring models, or developing a consensual model, can be a very time
consuming and difficult task if data are scarce or imprecise, and if
experiments are costly or difficult to perform. Here we focus on the
management objective and propose solutions that are valid for all the
models considered.

Regarding the set of desirable states, we are not interested in
proposing a solution for an ‘‘average’’ stakeholder, which could be
obtained by averaging the different constraints and, if needed, the
different models. We are not looking for compromise solutions, but for
a solution corresponding simultaneously to all the constraints expressed
by the stakeholders.

We use as an illustration a problem of lake eutrophication as stated
in Carpenter et al. (1999). Agricultural practices and other human
activities can lead to lake pollution with phosphates. Phosphorus dy-
namics in the lake can lead to eutrophication, which negatively impacts
the biodiversity of ecosystems, and represents a serious annoyance
to residents and tourism activities. We consider that a committee is
formed to study and manage the problem. It is composed of farmers
and local elected authorities.

2.1.3. Notation and formalization
We consider a situation as described in the preceding subsection.

An entity  is submitted to the management decision of a group of 𝑁
takeholders. We note  ∶= {1,… , 𝑁}. All conditions C1 to C8 are

fulfilled.
We note 𝑥 ∈ R𝑛 the vector of state variables that describes the state

f .
We note 𝐾 the consensual set of desirable states. We have from C7:

=
⋂

𝑖∈
𝐾𝑖 ≠ ∅.

From C8 we can consider the set-valued map of consensual admis-
ible control 𝑈 ∶ R𝑛 ⇝ R𝑝 defined on 𝐾. It associates the state of 𝑥 ∈ 𝐾

with 𝑈 (𝑥) ≠ ∅, the set of controls admissible at state 𝑥.

efinition 1. (𝐾,𝑈 ) is the group project for .

From C3 we consider that all group members describe the dynamics
f the state of  as a (possibly discrete) controlled dynamical system.
e note 𝑆𝑐(𝑓, 𝑈 ) the continuous dynamical system defined by:

𝑐(𝑓, 𝑈 )
{

𝑥′(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡))
𝑢(𝑡) ∈ 𝑈 (𝑥(𝑡)) ⊂ R𝑝 .

(1)

here 𝑓 is a function from R𝑛 ×R𝑝 to R𝑛 and 𝑈 a set-valued map from
𝑛 to R𝑝. Similarly, we note 𝑆𝑑(𝑓, 𝑈 ) the discrete dynamical system

defined by:

𝑆𝑑(𝑓, 𝑈 )
{

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘)
𝑢𝑘 ∈ 𝑈 (𝑥𝑘) ⊂ R𝑝 .

(2)

We note 𝑆𝑖 the dynamical system that described the evolution of 
for member 𝑖. We have 𝑆𝑖 = 𝑆𝑐(𝑓𝑖, 𝑈 ) in the continuous case and
𝑆𝑖 = 𝑆𝑑(𝑓𝑖, 𝑈 ) in the discrete case. The function 𝑓𝑖 ∶ R𝑛 × R𝑝 → R𝑛

associates the variations of  state variables with the current values of
the state and control variables, according to member 𝑖.

We consider here that the different stakeholders do not necessarily
agree on dynamics, and that they are not compelled to make their belief
public. But (from C6) they agree to share this information with a trusted
third party.

In the lake and nearby farms problem, following Carpenter et al.
(1999) and Martin (2004), we consider that all members agree that
the key variables to the problem are the phosphorus input (noted 𝐿)
and the phosphorus concentration in the lake (noted 𝑃 ). Everyone
3

wants to keep the lake in an oligotrophic state, which supposes setting
a concentration limit of phosphorus 𝑃𝑚𝑎𝑥 in the lake (for example,
established from previous observations). Everyone also wants to main-
tain or develop the agricultural activity, which supposes allowing a
minimum amount of phosphorus input 𝐿𝑚𝑖𝑛 in the lake. Thus, everyone
agrees to maintain the state of the lake described by (𝐿, 𝑃 ) in a set
of desirable states 𝐾 =

[

𝐿𝑚𝑖𝑛,+∞
)

×
[

0, 𝑃𝑚𝑎𝑥
]

. We consider that the
committee agrees to the possibility of controlling the rate of variation
of the phosphorus input and to maintain this rate between boundaries,
hence 𝑈 =

[

𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥
]

. This can be done by farmers controlling their
fertilizer input, by the greater or lesser use of wetlands or by the use
of water treatment plants (Gajardo et al., 2017).

We suppose in this simple illustration that the models of the dif-
ferent stakeholders differ only in the value of some parameters. The
dynamics for member 𝑖 are defined according to Carpenter et al. (1999)
and Martin (2004) with the constraints on 𝐿𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥:

𝑆𝑖 = 𝑆(𝑏𝑖, 𝑟𝑖, 𝑞𝑖, 𝑚𝑖)

⎧

⎪

⎨

⎪

⎩

𝑑𝐿
𝑑𝑡 = 𝑢 ∈ 𝑈 =

[

𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥
]

𝑑𝑃
𝑑𝑡 = −𝑏𝑖𝑃 (𝑡) + 𝐿(𝑡) + 𝑟𝑖

𝑃 (𝑡)𝑞𝑖
𝑚𝑞𝑖
𝑖 +𝑃 (𝑡)𝑞𝑖

(3)

where 𝑏𝑖 is the rate of loss (due to sedimentation and outflow), 𝑟𝑖,
𝑞𝑖 and 𝑚𝑖 are parameters of the sigmoid-like (s-shaped) dynamics of
hosphorus recycling in the lake, which are generally set by calibration
rom observations: 𝑟𝑖 is the maximum rate of recycled phosphorus, 𝑚𝑖
s the concentration of phosphorus at which the recycling rate is half
ts maximum and 𝑞𝑖 is a parameter of the steepness of the dynamics
see Carpenter et al. (1999) for more details).

The objective of all stakeholders is to maintain the state of  in 𝐾,
ccording to their own dynamical model 𝑆𝑖. The objective of the group
s to fulfill all these objectives simultaneously.

.2. Brief summary of mathematical viability theory

Referring to Aubin (1991), we define viable evolutions and the
iability kernel. We note 𝑆 = 𝑆(𝑓, 𝑈 ) the system 𝑆𝑐(𝑓, 𝑈 ) (1) (resp.
𝑑(𝑓, 𝑈 ) (2) in the discrete case).

efinition 2. An evolution of the system 𝑆 is viable in 𝐾 if and only
f its trajectory remains in 𝐾. In the continuous case: ∀𝑡 ∈ R+ 𝑥(𝑡) ∈ 𝐾.
n the discrete case: ∀𝑘 ∈ N 𝑥𝑘 ∈ 𝐾.

efinition 3. A set 𝐿 is viable for the system 𝑆 if for all 𝑥 ∈ 𝐿 there
s an evolution of 𝑆 starting at 𝑥 and viable in 𝐿.

efinition 4. The viability kernel associated with system 𝑆 under
onstraint 𝐾 is the set of all states in 𝐾 from which there is an evolution
f 𝑆 starting at 𝑥 and viable in 𝐾.

Under some general conditions listed in Appendix A, the viability
ernel is a closed set. In the interior of the viability kernel, all controls
re viable, hence viable controls on the boundary show how it is
ossible to maintain the system in the constraint set. This information
an be used to define control strategies.

efinition 5. A control map with images restricted to viable controls
nly is called a ‘‘viable regulation map’’.

roposition 1 (Aubin (1991)). If 𝐿 is a viable set for the system 𝑆(𝑓, 𝑈 ),
et 𝑈̃ be a viable regulation map, then 𝐿 is a viable set for the system
(𝑓, 𝑈̃ ). Moreover, for all 𝑥 ∈ 𝐿, any evolution starting from 𝑥 and
overned by 𝑆(𝑓, 𝑈̃ ) is viable in 𝐿. 𝐿 is called an ‘‘invariant set’’ for
ynamics 𝑆(𝑓, 𝑈̃ ).

From any state in the viability kernel, it is always possible to find
control function that allows the state of the system to stay in the

iability kernel indefinitely. Conversely, from any initial state outside
he viability kernel, there is no way to prevent the exit in finite time of
n evolution governed by system S.



Ecological Modelling 475 (2023) 110186I. Alvarez et al.
Fig. 1. Viability kernel (in gray) of the lake and neighboring farms problem, with 𝐿𝑚𝑖𝑛 = 0.1, 𝑃𝑚𝑎𝑥 = 1.4 (𝐿 and 𝑃 in μg L−1), 𝑈 = [−0.9, 0.9], dynamics parameters 𝑞 = 8, 𝑚 = 𝑟 = 1,
𝑏 = 0.7. Constraint set boundary is in solid black lines (𝐿 = 𝐿𝑚𝑖𝑛, 𝑃 = 𝑃𝑚𝑎𝑥). The curve of equilibria is dashed. Viable controls are shown as a black line in cartouches. A viable
trajectory starting from A is shown (𝑢 = −0.09 from 𝐴 to 𝐵, then a cycle with 𝑢 = +0.09 from 𝐵 to 𝐶, 𝑢 = −0.09 from 𝐶 to 𝐷, 𝑢 = +0.05 from 𝐷 to 𝐵). From S where the lake
is still in an oligotrophic state, even with maximum effort from the farmers (𝑢 = 𝑢𝑚𝑖𝑛) the concentration of phosphorus becomes too high. From state R also outside the viability
kernel, all trajectories leave the constraint set, leading the lake to an eutrophic state or farmers’ activity to an unsustainable state.
In the case of the lake and its neighboring farms, it is shown
in Martin (2004) that the viability kernel associated with system (3)
submitted to the constraint (𝐿, 𝑃 ) ∈ 𝐾 =

[

𝐿𝑚𝑖𝑛,+∞
)

×
[

0, 𝑃𝑚𝑎𝑥
]

is not
empty when 𝑃𝑚𝑎𝑥 is greater than the smallest 𝑃 -value of the equilibria
associated with 𝐿𝑚𝑖𝑛 (an equilibrium 𝑃 -value is defined by 𝑑𝑃

𝑑𝑡 = 0). For
example, in Fig. 1, the state (𝐿𝑚𝑖𝑛, 𝑃𝑒) is an equilibrium with 𝑃𝑒 ≤ 𝑃𝑚𝑎𝑥,
and thus the viability kernel is not empty. When the curve of Equilibria
intersects the half-line (𝐿 ≥ 𝐿𝑚𝑖𝑛, 𝑃 = 𝑃𝑚𝑎𝑥) at (𝐿𝑒, 𝑃𝑚𝑎𝑥), the boundary
of the viability kernel is delimited by the segment line (𝐿 = 𝐿𝑚𝑖𝑛, 𝑃 ≤
𝑃𝑚𝑎𝑥), the segment line (𝐿𝑚𝑖𝑛 ≤ 𝐿 ≤ 𝐿𝑒, 𝑃 = 𝑃𝑚𝑎𝑥) and the integral curve
of the dynamics with control 𝑢 = 𝑢𝑚𝑖𝑛 arriving in (𝐿𝑒, 𝑃𝑚𝑎𝑥). When the
equilibrium curve do not intersect the half-line (𝐿 ≥ 𝐿𝑚𝑖𝑛, 𝑃 = 𝑃𝑚𝑎𝑥),
as in Fig. 1, we note 𝑃𝑒 the 𝑃 -value of the highest equilibrium on the
segment line (𝐿 = 𝐿𝑚𝑖𝑛, 𝑃 ≤ 𝑃𝑚𝑎𝑥). In that case, the boundary of the
viability kernel is delimited by the segment line (𝐿 = 𝐿𝑚𝑖𝑛, 𝑃 ≤ 𝑃𝑒)
and the integral curve of the dynamics with control 𝑢 = 𝑢𝑚𝑖𝑛 passing
through (𝐿𝑚𝑖𝑛, 𝑃𝑒).

Fig. 1 shows the viability kernel for the lake and neighboring farms
problem in this latter case, for a given set of parameters for system (3)
and constraint set 𝐾. From any state in this viability kernel, it is pos-
sible to find a trajectory that stays in the viability kernel indefinitely.
Fig. 1 presents an example of a viable trajectory from a state in the
viability kernel. It also shows examples of states outside the viability
kernel; even the most severe control cannot prevent trajectories from
leaving the constraint set. Either the lake will shift to an eutrophic state,
or the economic activity will be jeopardized.

From a state outside the viability kernel, every evolution governed
by system (3) with this particular set of parameters, choice of constraint
set and control interval will exit the constraint set. In general, dealing
with states outside the viability kernel entails studying the resilience
(as in Martin (2004)) or redefining the problem. This can be done by
relaxing the constraints on the desirable set (when it is possible), by
allowing more efficient controls which are not presently part of the
admissible controls, or by modifying the dynamics. This last option is
generally more difficult to implement, since it involves modifying the
lake itself (see Liu et al. (2015) for example of such actions).
4

2.3. Viewpoints as viability problems

Objectives. Let (𝐾,𝑈 ) be the group project. We recall the objectives
stated in Section 2.1: The objective of all stakeholders is to maintain
the state of  in 𝐾, according to their own dynamical model 𝑆𝑖 =
𝑆(𝑓𝑖, 𝑈 ). The objective of the group is to fulfill all these objectives
simultaneously.

Fig. 2 summarizes the implications of considering different usages
and stakeholders for the lake and nearby farms problem. All stakehold-
ers can work on a solution to this project according to the dynamics
they assume for . Then the group can work on a solution from all
members’ solutions. Although the intuition is to work from the set
of individual solutions, in this section we show that this approach is
difficult to implement.

2.3.1. Individual viewpoint
Let 𝐿𝑖 ⊂ 𝐾 be a non-empty viable set for system 𝑆𝑖 = 𝑆(𝑓𝑖, 𝑈 )

submitted to constraints 𝐾. Then from all states in 𝐿𝑖 there is at
least one viable evolution governed by 𝑆𝑖 that stays in 𝐿𝑖. From the
viewpoint of member 𝑖, 𝐿𝑖 is a solution state set to the management of
.

Definition 6. 𝐿𝑖 ⊂ 𝐾 is a solution state set for member 𝑖 for project
(𝐾,𝑈 ) if 𝐿𝑖 is a non-empty viable set for member 𝑖’s dynamics.

We note viab𝑖(𝐾) the viability kernel associated with member 𝑖’s
project with dynamical system 𝑆𝑖 submitted to the viability constraint
𝐾.

In the case of the lake and its neighboring farms, Fig. 1 shows
the viability kernel for the dynamics (3) submitted to constraint set
𝐾 =

[

𝐿𝑚𝑖𝑛,+∞
)

×
[

0, 𝑃𝑚𝑎𝑥
]

for the particular values of the dynamics
parameters (noted as farmers’ representative in Fig. 3).

2.3.2. Group viewpoint
In the following we suppose that all group members can propose

their own individual solution to the management of :

∀𝑖 ∈  , viab (𝐾) ≠ ∅
𝑖
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Fig. 2. Diagram of the finding of management solutions for the lake and nearby farms (system ) in the framework of viability theory with different stakeholders. Gray arrows
denote relationship in the dynamical model. Large gray arrows represent interaction with stakeholders’ models and dynamics (which are not explicit). Black arrows represent the
viability analysis process. Dotted lines and arrows show the main focus of the article.
We note 𝐻 =
⋂

𝑖∈ viab𝑖(𝐾). If 𝐻 = ∅, a negotiation should
obviously take place between stakeholders, since there is no way to
operate  and satisfy the group members. When the intersection is
not empty, it seems a good candidate. For example, the intersection
of viability kernels has already been proposed as a solution to ensure
the viability of two fishing fleets operating on the same resource.
In Sanogo et al. (2012), the intersection of the viability kernel of both
fleets is viable for each fleet if they change their effort at the same
time when necessary, which supposes a high level of cooperation. But
unfortunately, this is not always the case.

Proposition 2. The intersection of all members’ viability kernels is not
necessary viable for all members.

Proof. The problem of the lake and neighboring farms gives a counter-
example. We consider here two stakeholders, say, a mayor and a
farmer’s union representative (respectively noted with 𝑚 and 𝑓 indices).
Both stakeholders interpret the observations in different ways, thus
they adopt different values for the parameters of dynamics (3). Their re-
spective viability kernel (viab𝑚 and viab𝑓 ) associated with the constraint
set 𝐾 =

[

𝐿𝑚𝑖𝑛,+∞
)

×
[

0, 𝑃𝑚𝑎𝑥
]

is shown in Fig. 3. For the particular pa-
rameters chosen, the intersection 𝐻 is not empty. For 𝑥 = (𝐿, 𝑃 ) ∈ 𝑣𝑖𝑎𝑏𝑖,
viable controls are defined by 𝑈̃𝑖 with 𝑈̃𝑖(𝐿𝑚𝑖𝑛, 𝑃 ) = [0, 𝑢𝑚𝑎𝑥], 𝑈̃𝑖(𝐿, 𝑃 ) =
{𝑢𝑚𝑖𝑛} when (𝐿, 𝑃 ) is on the boundary of viab𝑖 with 𝐿 ≠ 𝐿𝑚𝑖𝑛, and other-
wise 𝑈̃𝑖(𝑥) = 𝑈 . Nevertheless, state 𝐴 in the intersection is not viable for
the mayor. State 𝐴 is on the boundary of the mayor’s viability kernel;
thus 𝑈̃𝑚(𝐴) = {𝑢𝑚𝑖𝑛} and the only viable control for the mayor is 𝑢 =
−0.09. But the trajectory starting at 𝐴 and governed by (𝑆𝑚) with 𝑢 =
−0.09 stays on the boundary of viab𝑚 and therefore it leaves 𝐻 . ■

Definition 7. Let 𝐿 ⊂ 𝐾 and let (𝑈𝑖)𝑖∈ be control maps defined on
𝐿. Let 𝑈 be defined for all 𝑥 ∈ 𝐿 by 𝑈 (𝑥) =

⋂

𝑖∈ 𝑈𝑖(𝑥). 𝑈 is called
‘‘the intersection of (𝑈𝑖)𝑖∈ on 𝐿’’.

We note 𝑈̃ the regulation map defined on the intersection 𝐻 of all
viability kernels of the group members by the intersection of all the
corresponding viable regulation maps: 𝑈̃ (𝑥) =

⋂

𝑖∈ 𝑈̃𝑖(𝑥). Obviously,
if there is a state 𝑧 ∈ 𝐻 such that 𝑈̃ (𝑧) = ∅, it means that members
cannot agree on a way to control the evolution of  for this particular
state. Unfortunately, even if all members agree on controls on 𝐻 , it is
not sufficient to reach a consensus.
5

Fig. 3. Viability kernels of two stakeholders in the lake and neighboring farms problem,
with 𝐿𝑚𝑖𝑛 = 0.1 and 𝑃𝑚𝑎𝑥 = 1.4 (𝐿 and 𝑃 in μg L−1), 𝑈 = [−0.9, 0.9], shared parameters
value 𝑞 = 8, 𝑚 = 1. In white, the intersection 𝐻 of the viability kernels. In dark (resp.
light) gray, the complementary area of the mayor (resp. farmer) viability kernel. State
A is not viable in the intersection for the mayor. The arrow shows the trajectory of
state A according to the mayor: it leaves the white area.

Corollary 1. Let 𝑈̃ be the intersection on𝐻 =
⋂

𝑖∈ viab𝑖(𝐾) of the viable
regulation map 𝑈𝑖 on each viab𝑖(𝐾) of each member 𝑖 ∈  . 𝐷𝑜𝑚(𝑈̃ ) = 𝐻
is not a sufficient condition for 𝐻 to be a viable set for all members.

Proof. In the previous example, we can derive that 𝑈̃𝑚(𝐿, 𝑃 ) =
𝑈̃𝑓 (𝐿, 𝑃 ) for all (𝐿, 𝑃 ) in the intersection except on the set 𝐻𝑏 of the
boundary of 𝐻 wherever 𝐿 ≠ 𝐿𝑚𝑖𝑛. On the part of the boundary of
𝐻 which is the boundary of 𝑣𝑖𝑎𝑏𝑚 only, 𝑈̃𝑚(𝐿, 𝑃 ) = {𝑢𝑚𝑖𝑛}, while
𝑈𝑓 (𝐿, 𝑃 ) = 𝑈 (and conversely on the boundary of 𝑣𝑖𝑎𝑏𝑓 only). Thus,
for (𝐿, 𝑃 ) ∈ 𝐻𝑏, 𝑈̃ (𝐿, 𝑃 ) = {𝑢𝑚𝑖𝑛} so 𝐷𝑜𝑚(𝑈̃ ) = 𝐻 . Nevertheless, state 𝐴
is not viable in 𝐻 for the mayor. ■

From Proposition 2 and Corollary 1 we propose the following def-
inition for a technically sound consensus solution to the management
of .
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Fig. 4. A consensus state set for the two stakeholders in the lake and neighboring
farms problem with parameters from Fig. 3. In very light gray, the consensus state set
G, delimited in dash-dotted line by the trajectory following the mayor’s dynamics that
is tangent to the boundary of the viability kernel of the farmer at state 𝑇 (solid line).
From each state (𝐿, 𝑃 ) of this trajectory before the tangent state 𝑇 (with 𝐿 > 𝐿𝑇 ), the
evolution governed by the farmer’s system starting at these states with 𝑢 = 𝑢𝑚𝑖𝑛 leaves
the boundary to evolve inside G, as is shown for state C. Correspondingly, from each
state of the boundary of the viability kernel of the farmer with 𝐿𝑚𝑖𝑛 < 𝐿 < 𝐿𝑇 , the
evolution governed by the mayor’s system starting at these states with 𝑢 = 𝑢𝑚𝑖𝑛 leaves
the boundary to evolve inside 𝐺, as it is shown for state B. G is a guaranteed viability
kernel for both dynamics. The dashed line represents the line of equilibrium for the
farmers’ representative.

Definition 8. Let (𝐾,𝑈 ) be the project of the management group for .
A set of state 𝐻 ⊂ 𝐾 is a consensus solution if 𝐻 is a viable set for each
member and if the domain of the intersection 𝑈̃ of the viable regulation
maps of each member on 𝐻 , (𝑈𝑖)𝑖∈ , is such that 𝐷𝑜𝑚(𝑈̃ ) = 𝐻 .

In fact, to be a consensus solution, a subset 𝐻 of the constraint set
has to be viable for all members and each viable state has to share at
least one viable control for all members. In that case it is possible for
the group member to reach an agreement on the control, regardless
of trajectories. For example, in the discrete case, from any state 𝑥0
of 𝐻 , all group members share at least one viable control value that
allows the state of  to stay in 𝐻 . Since the dynamics they consider
are different, there is generally no consensus on state 𝑥1. But as long
as the group members still share a viable control value, they can still
agree on it. When this is no longer the case, for example, at step 𝑛, the
true value of the state of  can be measured to continue this process
from 𝑥𝑛 as a new starting point. In the continuous case, when 𝐻 is a
closed set, such situations arise only on the boundary of 𝐻 .

Fig. 4 shows a consensus state set for the lake and neighboring farms
system (3) with the parameters of Fig. 3. The associated regulation map
𝑈̃ is such that 𝑈̃ (𝐿𝑚𝑖𝑛, 𝑃 ) = [0, 𝑢𝑚𝑎𝑥], 𝑈̃ (𝐿, 𝑃 ) = {𝑢𝑚𝑖𝑛} when (𝐿, 𝑃 ) is on
the boundary with 𝐿 ≠ 𝐿𝑚𝑖𝑛, and otherwise 𝑈̃ (𝐿, 𝑃 ) = [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥]. For
every state (𝐿0, 𝑃0) of the consensus state set 𝐺, there is an evolution
governed by system (3) for each stakeholder, starting at (𝐿0, 𝑃0), with
the same 𝑢(0) ∈ 𝑈̃ (𝐿0, 𝑃0) that stays in 𝐺. In the interior of the intersec-
tion of the viability kernels, this property is also verified since for every
state in the interior, all controls are viable in the viability kernel of each
stakeholder. For states on the boundary with 𝐿 = 𝐿𝑚𝑖𝑛, for both the
mayor and the farmers’ representative, several evolutions are viable,
in particular with 𝑢 = 0. The consensus state space is delimited by the
boundary of the farmers’ representative and the trajectory governed by
the mayor’s dynamics with the minimum control value that stays in
the viability kernel of the farmers’ representative with largest 𝐿 when
𝑃 = 0.

In the case of the lake and neighboring farms problem, with only
two group members, it is possible to define a consensus state set
6

because of the properties of the dynamics, for which the line of equi-
librium is known, and the viability kernels and the trajectories cor-
responding to minimum control value 𝑢𝑚𝑖𝑛 can be easily defined and
computed (Martin, 2004). For more general cases it is necessary to
propose a method that can be applied without such knowledge. We
present such a method in the next section.

3. Consensus with guaranteed viability

3.1. Embedding function for the dynamics

Since the group members have their own definition for the dy-
namics, all members can see others’ definitions as perturbations of
their own. We show here that is possible to define the dynamics
of  embedding all members’ definitions seen as perturbations. The
dynamics of  depends on the state of , 𝑥(𝑡), on the control chosen
in 𝑈 (𝑥(𝑡)) and on perturbations occurring from a set 𝑉 (𝑥(𝑡)) ⊂ R𝑞 that
depends on the state of . In the continuous case we have:

𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 )

⎧

⎪

⎨

⎪

⎩

𝑥′(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑣(𝑡))
𝑢(𝑡) ∈ 𝑈 (𝑥(𝑡))
𝑣(𝑡) ∈ 𝑉 (𝑥(𝑡))

(4)

In the discrete case:

𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 )

⎧

⎪

⎨

⎪

⎩

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘, 𝑣𝑘)
𝑢𝑘 ∈ 𝑈 (𝑥𝑘) ⊂ R𝑝

𝑣𝑘 ∈ 𝑉 (𝑥𝑘) ⊂ R𝑞 ,
(5)

where 𝑓 associates the new state of  with its present state, a control
chosen in 𝑈 (𝑥(𝑡)) and a perturbation in 𝑉 (𝑥(𝑡)). 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) and
𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 ) are called ‘‘dynamical controlled tychastic systems’’
(Aubin, 1997).

Definition 9. We say that system 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) (4) (resp. 𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 )
(5)) embeds system 𝑆𝑐(𝑓𝑖, 𝑈 ) (1) (resp. 𝑆𝑑(𝑓𝑖, 𝑈 ) (2)) for 𝑖 ∈  , and
call the corresponding pair (𝑓, 𝑉 ) an embedding solution if and only if:

∀𝑥 ∈ 𝐾,∀𝑢 ∈ 𝑈 (𝑥),∀𝑖 ∈  ,∃𝑣𝑖,𝑢,𝑥 ∈ 𝑉 (𝑥), 𝑓𝑖(𝑥, 𝑢) = 𝑓 (𝑥, 𝑢, 𝑣𝑖,𝑢,𝑥) (6)

We show in Appendix B that under some general conditions a
system (4) (resp. (5) in the discrete case) can embed 𝑆𝑐(𝑓𝑖, 𝑈 ) (1) (resp.
𝑆𝑑(𝑓𝑖, 𝑈 ) (2)) for all 𝑖 ∈  .

For example, for the problem of the lake and neighboring farms, the
dynamics for every group member are defined from 𝑆𝑙𝑎𝑘𝑒 in Eq. (3) by
𝑓𝑖 ∶ R2 × R ⇝ R2, with:

𝑓𝑖((𝑥1, 𝑥2), 𝑢) =
⎛

⎜

⎜

⎝

𝑢

−𝑏𝑖𝑥2 + 𝑥1 + 𝑟𝑖
𝑥𝑞2

𝑚+𝑥𝑞2

⎞

⎟

⎟

⎠

(7)

where parameters 𝑚 and 𝑞 have consensus values among the group,
whereas parameters 𝑏𝑖 and 𝑟𝑖 have not. Then, by defining 𝑉 =
[min𝑖∈ (𝑏𝑖),max𝑖∈ (𝑏𝑖)] × [min𝑖∈ (𝑟𝑖),max𝑖∈ (𝑟𝑖)] and 𝑓 as:

𝑓 ((𝑥1, 𝑥2), 𝑢, 𝑣) =
⎛

⎜

⎜

⎝

𝑢

−𝑣1𝑥2 + 𝑥1 + 𝑣2
𝑥𝑞2

𝑚+𝑥𝑞2

⎞

⎟

⎟

⎠

(8)

with 𝑣 = (𝑣1, 𝑣2) ∈ 𝑉 , Eq. (6) is verified, since in this simple case we
have:

∀𝑥 ∈ 𝐾,∀𝑢 ∈ 𝑈 (𝑥),∀𝑖 ∈  , 𝑣𝑖,𝑢,𝑥 = (𝑏𝑖, 𝑟𝑖).

In the following, we assume that the trusted third party has defined
a map 𝑓 and a perturbation map 𝑉 such that system (4) (resp. (5) in the
discrete case) describes the dynamics of , embedding the viewpoint
of all group members.

The objective is then to find a consensus solution for  which will
guarantee the viability for each member with shared viable controls.
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3.2. Guaranteed viability with embedding dynamics

We recall here some definitions and properties of the mathematical
theory of viability, from Aubin (1991) and Lavallée (2020), relative to
guaranteed viability.

Definition 10. A solution 𝑥(.) of system (4) (resp. (5)) is an evolution
(𝑡 ↦ 𝑥(𝑡)) (resp. (𝑥𝑘)𝑘∈N) such that there is a control function (𝑡 ↦ 𝑢(𝑡))
resp. (𝑢𝑘)𝑘∈N) and a perturbation function (𝑡 ↦ 𝑣(𝑡)) (resp. (𝑣𝑘)𝑘∈N)
uch that system (4) (resp. (5)) is verified for almost all 𝑡 ≥ R+ (resp.
or all 𝑘 ∈ N).

efinition 11. An evolution 𝑥(.) (resp. (𝑥𝑘)) solution of system (4)
resp. (5)) is viable in 𝐿 if and only if its trajectory remains in 𝐿.

Following Aubin (1991), Doyen (2000) and Lavallée (2020), we
ecall the property of guaranteed viability.

efinition 12 (From Aubin (1997)). A set 𝐿 verifies the property of
uaranteed viability for 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) (4) (resp. 𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 ) (5)) if there

is a regulation map 𝑈̃ defined on 𝐿 with a non-empty subset of 𝑈
images, i.e., ∀𝑥 ∈ 𝐿, 𝑈̃ (𝑥) ≠ ∅ and 𝑈̃ (𝑥) ⊂ 𝑈 (𝑥) such that for all 𝑥0
in 𝐿, all evolutions starting at 𝑥0 and governed by 𝑆𝑣𝑐(𝑓, 𝑈̃ , 𝑉 ) (resp.
𝑆𝑣𝑑(𝑓, 𝑈̃ , 𝑉 )) are viable in 𝐿.

Definition 13. The guaranteed viability kernel associated with a set
𝐾 is the largest set in 𝐾 with the property of guaranteed viability
(for 𝜆 Lipschitz controls in the continuous case, see Appendix A for
definition).

We have seen that the intersection of each member’s solution is not
necessarily a solution for all members. We show now that the guaran-
teed viability kernel is a consensus solution (according to Definition 8).

Let 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) (resp. 𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 )) be an embedding solution for
all group members, which fulfilled conditions of Proposition 5. Let
Guar𝐾 ≠ ∅ be the guaranteed viability kernel for system 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 )
with 𝜆 Lipschitz constant (resp. 𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 )) associated with constraint
set 𝐾. Then we have the following property:

Theorem 1. The guaranteed viability kernel associated with 𝐾 for
𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) (with 𝜆 Lipschitz constant in the continuous case) (resp.
𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 ) in the discrete case) is a consensus solution to the management
of .

The demonstration can be found in Appendix A.3. We note 𝑈̃ the
viable regulation map associated with Guar𝐾 . The basic idea is that in
Guar𝐾 , from member 𝑖’s perspective, an evolution governed by system
𝑆𝑖(𝑓𝑖, 𝑈̃ ) is also governed by the embedding system 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) (resp.
𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 )), thus it remains in Guar𝐾 ; Therefore Guar𝐾 is a viable
set for each member 𝑖. ■

Under some general conditions, the guaranteed viability kernel is
a closed set (see Proposition 5 in Appendix A.3) and it is possible to
retrieve the value of guaranteed viable controls on its boundary.

4. Application to the problem of lake eutrophication

4.1. Lake bourget case

We consider Lake Bourget, which is the biggest lake located entirely
within France. It is monitored by the inter-syndicate committee CISALP,
which is in charge of the design, monitoring and management of
contractual actions for depollution and restoration of Lake Bourget.
The lake had experienced a long eutrophication period: in 1974, the
incoming amount of phosphorus in the lake was approx. 300 tons
per year, and in 1989 the in-lake concentration was above 150 mg
m−3 (Vinçon-Leite and Tassin, 1990), while OECD norms assess the in-

−3
7

lake concentration to be a maximum of 𝑃𝑜 = 10 mg m (equivalent
Table 1
Parameters of the Lake Bourget model. Unit conversion from tons to mg m−3 of state
values, and parameters 𝑟 and 𝑚, is done by dividing by the volume 𝑣 of the lake in
billions of 𝑚3. We have 𝑣 = 3.6 109 m3 (and it is assumed to be constant).

Parameter b r q m

Value

State unit in tons
2.2676 367.04 2.222 96.85

State unit in mg m−3 (or μg l−1)
2.2676 101.96 2.222 26.90

to 36 tons) for the oligotrophic state (from Vollenweider (1982)).
Similarly a threshold for a mesotrophic state of 𝑃𝑚 = 35 mg m−3 can
be defined. At concentrations above 𝑃𝑚 the lake is assumed to be in an
eutrophic state. Since the lake is monitored and the data are available,
it is possible to calibrate the equations of system (3) for Lake Bourget.
Calibration coefficients from Brias et al. (2018) are given in Table 1.

Lake Bourget offers multiple services apart from being a freshwater
reserve. It is an area of major ecological interest for its flora and fauna
as well as the diversity of its biotopes. Several areas of the lake are clas-
sified as protected areas. It supports extensive tourism and recreational
activities (water-sport, fishing, beaches, marinas) and cultural activities
linked in particular to historical heritage and literature. Several other
services are being considered, such as the production of hydrothermal
energy. Although the state of the lake has considerably improved, it is
still considered as oligo-mesotrophic. Its dynamics can be unstable due
to P loading and several blooms of cyanobacteria have been recently
observed.

Agriculture is now the main source of 𝑃 loading since major preven-
tion measures have been taken since 1980. In particular the effluents
of water treatment plants are no longer discharged into the lake. The
control of incoming 𝑃 is considered as essential because of the potential
lagged impact of 𝑃 release from sediments (Jacquet, 2018).

We consider a scenario where the CISALP in its mission of nego-
tiation would approach agricultural unions, local representatives and
managers of tourism activities, to form a committee for the control of
𝑃 loading in the lake to prevent eutrophication and its consequences.
The effort in 𝑃 loading we consider is a limit on its rate of variation as is
common in environmental actions. The control can be implemented by
changes in agricultural practice and by the use of wetlands or retention
basins. Currently, retention basins are being built to regulate the inflow
of polluted water.

We consider that the committee members agree on the state vari-
ables and are aware of models for Lake Bourget (such as Brias et al.
(2018)), but they disagree on the value of parameters or even on the
model formulation. We consider that they agree on a set 𝐾 of desirable
states and on a set of admissible controls 𝑈 .

4.2. Scenario and results

We consider a scenario where members of the committee agree
on the possibility of controlling the rate of phosphorus loading (𝐿).

hey consider different parameters sets for model (3), and a different
ormulation for the process of recycling from sediments. Some members
onsider that the recycling process can have a greater effect at low
alues of total 𝑃 than with model (3). A different formula for the
igmoid-like function is used in that case, as shown in Eq. (9), with
arameter 𝜆𝑖 controlling the S-shape. For a small value of 𝜆𝑖 > 0 the
ecycling occurs also for low levels of in-lake 𝑃 , hence the lower branch
f the equilibrium curve is actually higher.

′
𝑖

⎧

⎪

⎨

⎪

𝑑𝐿
𝑑𝑡 = 𝑢 ∈ 𝑈 =

[

𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥
]

𝑑𝑃
𝑑𝑡 = −𝑏𝑖𝑃 (𝑡) + 𝐿(𝑡) + 𝑟𝑖

𝑃 (𝑡)
𝑃 (𝑡)+𝑚 𝑒(−𝜆𝑖 (𝑃 (𝑡)−𝑚𝑖 ))

(9)
⎩

𝑖
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Table 2
Beliefs regarding the model and parameters of Lake Bourget dynamics. Member 1 trusts
the literature. Member 2 considers the same model with a range of values for the
steepness, as does member 3 for another parameter. Member 4 considers the alternative
model with a range of values for its steepness.

Parameters 𝑏𝑖 𝑟𝑖 𝑚𝑖 𝛼𝑖 𝑞𝑖 𝜆𝑖
b, r, m P loss max. P value model steepness steepness
in μg l−1 rate at half type model (3) model (9)

max. rate 𝑆𝑖 𝑆′
𝑖

Table 1 2.2676 101.96 26.90 1 2.222 –/Member 1
Member 2 2.2676 101.96 26.90 1 [2.2, 2.3] –
Member 3 [2.2, 2.3] 101.96 26.90 1 2.222 –
Member 4 2.2676 101.96 26.90 0 – [1∕19, 1∕16]

It is possible to embed both model types by considering an additional
parameter 𝛼𝑖 ∈ [0, 1] which controls the predominance of one type over
he other. The corresponding model is represented in Eq. (10).

𝑖

⎧

⎪

⎨

⎪

⎩

𝑑𝐿
𝑑𝑡 = 𝑢 ∈ 𝑈 =

[

𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥
]

𝑑𝑃
𝑑𝑡 = −𝑏𝑖𝑃 (𝑡) + 𝐿(𝑡) + (1 − 𝛼𝑖)𝑟𝑖

𝑃 (𝑡)𝑞𝑖
𝑚𝑞𝑖
𝑖 +𝑃 (𝑡)𝑞𝑖

+ 𝛼𝑖𝑟𝑖
𝑃 (𝑡)

𝑃 (𝑡)+𝑚𝑖𝑒(−𝜆𝑖 (𝑃 (𝑡)−𝑚𝑖 ))

(10)

The committee members’ beliefs that we consider are summarized
in Table 2. Regarding the definition of the constraint set, we consider
that agricultural activity leads to at least 25 tons of incoming P each
year. This value is arbitrary but it is lower than the mean loading
between 2004 and 2016, which was above 33 tons/year (see Brias et al.
(2018)). Thus we choose as lower limit 𝐿𝑚𝑖𝑛 = 25∕𝑣 ≈ 6.94 μg l−1.
Considering the desirable threshold for in-lake P, we consider an op-
timistic scenario with the value of the mesotrophic equilibrium as
maximum, 𝑃𝑚𝑎𝑥 = 24.76 μg l−1. The constraint set for this scenario
s 𝐾 =

{

(𝐿, 𝑃 ), 𝐿 ≥ 𝐿𝑚𝑖𝑛, 𝑃 ≤ 𝑃𝑚𝑎𝑥
}

. As admissible controls, we con-
ider that the maximum rate for the reduction of incoming P is half
he maximum difference 𝛥 of loading between two consecutive years
etween 2004 and 2016. For the increase of the loading we consider
hat the maximum rate can be 𝛥. Thus the set of admissible control
s 𝑈 = [− 𝛥

2 , 𝛥], with 𝛥 ≈ 3.15 μg l−1 y−1. When parameters are in
range, we consider the embedding dynamics 𝑆𝑣 as in Eq. (8) with

he corresponding parameter as 𝑣 and 𝑉 its range. For each member 𝑖,
t is possible to define for project (𝐾,𝑈 ) a viability problem either as
n Section 2.3.1, when parameters have fixed values, or a guaranteed
iability problem as in Section 3.2, when parameters are in a range.
ig. 5 shows member 1’s viability kernel and guaranteed viability
ernels computed for members 2 to 4.

Applying the method described in the previous section, we define an
mbedding function 𝑓𝐵 for the group from model (9) and Table 2. We
hen define the guaranteed viability problem 𝐵𝑣 (Eq. (13)) associated
ith 𝑓𝐵 .

𝐵(𝑥, 𝑢, 𝑣) =

(

𝑢
−𝑣1𝑃 + 𝐿 + 𝑟

(

(1 − 𝑣2)
𝑃 𝑣3

𝑚𝑣3+𝑃 𝑣3 + 𝑣2
𝑃

𝑃+𝑚𝑒(−𝑣4(𝑃−𝑚))

)

)

(11)

here 𝑣1 stands for parameter 𝑏𝑖, 𝑣2 for 𝛼𝑖, 𝑣3 for 𝑞𝑖 and 𝑣4 for 𝜆𝑖, with:

𝑥 = (𝐿, 𝑃 ) ∈ 𝐾
𝑢 ∈ 𝑈 = [− 𝛥

2 , 𝛥]
𝑣 ∈ 𝑉 = [2.2, 2.3] × [0, 1] × [2.2, 2.3] × [1∕19, 1∕18]

(12)

𝐵𝑣

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝐿, 𝑃 )′(𝑡) = 𝑓𝐵((𝐿, 𝑃 )(𝑡), 𝑢(𝑡), 𝑣(𝑡))
𝑢(𝑡) ∈ 𝑈
𝑣(𝑡) ∈ 𝑉
(𝐿, 𝑃 )(𝑡) ∈ 𝐾

(13)

Since 𝑈 and 𝑉 are constant functions of (𝐿, 𝑃 ), and since 𝑓𝐵 is Lipschitz,
the conditions of Proposition 5 are fulfilled. Since 𝑈 is constant, it
8

i

is Lipschitz for every 𝜆 > 0, hence the guaranteed viability kernel
𝐺𝑢𝑎𝑟𝜆,𝑓𝐵 (𝐾) associated with problem (13) is closed and has the prop-
erty of guaranteed viability. Thus from Theorem 1 it is a consensus
set of states for the four members of the committee whose beliefs are
summarized in Table 2. To compute an approximation of 𝐺𝑢𝑎𝑟𝜆,𝑓𝐵 (𝐾),
we use the ViabLab library (Désilles, 2020), developed by A. Désilles
and used in Durand et al. (2017). This library uses the convergence
conditions of the algorithm established by P. Saint-Pierre (Saint-Pierre,
1994). Since the ViabLab library currently requires discrete problems
in time and space for the computation of guaranteed viability, we
defined a discretized version of the viability problem, with function
𝑓𝐵𝑑 from Eq. (14), with a discretization parameter 𝜏 = 0.1 for which
the dynamics are stable. We also used projection on the grid method
from Lavallée (2020) to minimize discretization error.

𝑓𝐵𝑑 ((𝐿, 𝑃 ), 𝑢, 𝑣) =

⎛

⎜

⎜

⎜

⎝

𝐿 + 𝜏𝑢
𝑃 + 𝜏

[

−𝑣1𝑃 + 𝐿+
𝑟
(

(1 − 𝑣2)
𝑃 𝑣3

𝑚𝑣3+𝑃 𝑣3 + 𝑣2
𝑃

𝑥2+𝑚𝑒(−𝑣4(𝑃−𝑚))

)]

⎞

⎟

⎟

⎟

⎠

(14)

The resulting approximation 𝐺𝑢𝑎𝑟𝑓𝐵𝑑 (𝐾) is shown in Fig. 5(d). The
uaranteed viability kernel for the group is a viable set for all members,
nd the viable controls on its boundary are viable controls for all
embers.

.3. Discussion

Depending on the dynamics and the beliefs of the different group
embers, the guaranteed viability kernel computed following the ap-
roach in Section 3.1 could be smaller than the one corresponding to
he union of the parameters set of each group member. For instance,
ith (𝑏, 𝑟) ∈ {(2.1, 100), (2.2, 80)}, it is possible to design a guaranteed

viable set for these two values only, solving the problem with the com-
putation of integral curves as done in Section 2.3 for the lake problem
(see Fig. 4). Whereas following the method in Section 3.1, in order to
respect the conditions of VT theorems and use the ViabLab library it is
necessary to define a more constrained guaranteed viability problem,
with (𝑏, 𝑟) ∈ [2.1, 2.2] × [80, 100]. However when the dimension of the
tate space is greater than 2, the first method is virtually impossible
o implement with a generic module (since a formal approach and a
pecific mathematical study of the dynamics are necessary).

The viability algorithm is exponential with the dimension of the
pace in the general case, and thus it can be very slow, in particular
hen the viability kernel is empty or with high-dimensional problems.
or each alternative model definition a tyche variable has to be consid-
red, which increases the dimension of 𝑉 linearly with the number of
odels. Table 3 in Appendix C shows the computation time in several

ases.
When the consensus solution is the empty set, the dynamics and the

dmissible control map are not compatible with the set of desirable
tates in which the system should remain. Negotiations should take
lace in order to relax the constraints on the problem: by defining
bigger set of desirable states, by considering more controls, or by

onsidering more specific dynamics. Then the guaranteed viability
pproach can be used again to propose a new consensus solution. This
ind of stress relaxation can be seen as a problem of model exploration
n the parameters space (where the parameters would be, for instance,
he thresholds on the state variables, the control variables, the range of
ontrols). There exists exploration software, such as OpenMole (Reuil-
on et al., 2013), that could be used to assist stakeholders during this
tage.

Regarding the model of Lake Bourget itself, we consider here a
ingle control for different practices (use of wetlands, use of retention
asins, different farmer practices), and the value of its range is con-
istent with observations but arbitrary. The model could be improved
y taking into account more detailed mechanisms for these different
ypes of control and their relation to soil leaching and rainfall. The lake

s considered as homogeneous, which seams a reasonable assumption
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Fig. 5. Guarantied viability kernel for each member and the group versus the viability kernel of member 1. Computation with R (Team, 2010) and ViabLab (Désilles, 2020). Code
available at https://forgemia.inra.fr/isabelle.alvarez/emlake.
regarding the water resident time of 14 years (Brias et al., 2018). On the
other hand, since cyanobacteria blooms are often localized, it could be
helpful to use spatial and weekly data to assess the size of perturbations
and take them into account to consider robustness issues as defined
in Martin and Alvarez (2019).

5. Conclusion

The viability approach (also called ‘‘co-viability’’, depending on
authors; see, for instance, Mouysset et al. (2014)) studies sustainable
management problems when constraints of different nature (economic,
social, ecological, ethical, etc.) must be taken into consideration and
verified simultaneously. Guaranteed viability also addresses these is-
sues, with a worst-case approach regarding uncertainty. But it also
makes it possible to deal with different models when stakeholders
do not agree on the description of the dynamics of the system. In
this paper, we have presented a method for reaching a viability-based
consensus on the management of commons with multiple usages. We
have proposed a definition of the management project and stakeholder
viewpoints as well as a viability-based definition for the consensus
solution as a viable set for all stakeholders with conditions on their
regulation map. We have defined embedding functions that allow us
9

to compute a guaranteed viability kernel for the associated dynamics.
We have then shown that this guaranteed viability kernel is a consensus
solution (Theorem 1). It can then be computed with algorithms used for
viability kernel approximation. We subsequently applied this method
to a management scenario for Lake Bourget. The main interest of this
method is that stakeholders can retain their vision of the dynamics. Ne-
gotiations can focus on the definition of desirable states and admissible
actions. This method also prepares the way for an alternative to agent-
based modeling when dealing with stakeholders for the management of
commons. In fact, the viability approach requires that the dynamics are
represented by a set of differential equations or inclusions (difference
equations in the discrete case). However, this kind of representation is
not appropriate when a consensual model is sought among stakehold-
ers, contrary to agent-based modeling. If this consensus is no longer
seen as a priority, it could be possible in the future to assist stakeholders
to produce models more suited to the use of MVT, based on some model
databases or dynamical behavior templates. Guarantied viability can
then be used to propose management solutions despite uncertainty and
diversity of perceptions and objectives among stakeholders, avoiding
the risk of implicit average which can occur when building a consensual
model.

https://forgemia.inra.fr/isabelle.alvarez/emlake
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ppendix A. Properties of viability kernels

.1. Properties of multi-valued maps

Let 𝐺 be a multi-valued map from R𝑛 to R𝑝. The domain of 𝐺 is
𝐷𝑜𝑚(𝐺) =

{

𝑥 ∈ R𝑛, 𝐺(𝑥) ≠ ∅
}

. The graph of 𝐺 is 𝐺𝑟𝑎𝑝ℎ(𝐺) = {(𝑥, 𝑦) ∈
R𝑛 × R𝑝, 𝑦 ∈ 𝐺(𝑥)}. 𝐺 has a linear growth if there is 𝑐 > 0 such that
for all 𝑥 ∈ 𝐷𝑜𝑚(𝐺), ‖𝐺(𝑥)‖ ≤ 𝑐(‖𝑥‖ + 1). The system 𝑆𝑐(𝑓, 𝑈 ) (1)
is Marchaud if 𝑓 is continuous, 𝐺𝑟𝑎𝑝ℎ(𝑈 ) is closed, 𝑓 and 𝑈 have
linear growth and the image set {𝑓 (𝑥, 𝑢), 𝑢 ∈ 𝑈 (𝑥)} is convex for all
of 𝑥 ∈ 𝐷𝑜𝑚(𝑈 ). 𝐺 is Lipschitz for constant 𝜆 > 0, if for all 𝑥1, 𝑥2 in R𝑛,
𝐺(𝑥1) ⊂ 𝐺(𝑥2) + 𝜆‖𝑥1 − 𝑥2‖𝐵, where B is the unit ball.

A.2. Closed Viability Kernels (Aubin, 1991)

Proposition 3 (Continuous case). When the system 𝑆𝑐(𝑓, 𝑈 ) (1) is Mar-
chaud and 𝐾 is closed, the associated viability kernel is closed. It is the
largest viable set in 𝐾.

Proposition 4 (Discrete case). When system 𝑆𝑑(𝑓, 𝑈 ) (2) is such that 𝑓
is continuous, 𝑈 has a linear growth, 𝐺𝑟𝑎𝑝ℎ(𝑈 ) is closed, and when 𝐾 is
closed, the associated viability kernel is closed.

A.3. Guaranteed viability kernels

Definition 14. A dynamical controlled tychastic system 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 )
(4) is Lipschitz if 𝑓 is Lipschitz, and 𝑈 and 𝑉 are Lipschitz with compact
images.

Proposition 5. From Doyen (2000) in the continuous case and Lavallée
(2020) in the discrete case. The guaranteed viability kernel associated with
a set 𝐾 is closed when the dynamics verify the following conditions: in the
continuous case, when 𝐾 is closed and 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) is Lipschitz; in the
discrete case, when 𝑓 and 𝑉 are continuous, 𝐺𝑟𝑎𝑝ℎ(𝑈 ) is closed and 𝑈
has a linear growth (see 2.2 for the definitions).

We recall Theorem 1: The guaranteed viability kernel associated
with 𝐾 for 𝑆𝑣𝑐(𝑓, 𝑈, 𝑉 ) (with 𝜆 Lipschitz constant in the continuous
case) (resp. 𝑆𝑣𝑑(𝑓, 𝑈, 𝑉 ) in the discrete case) is a consensus solution to
the management of .
10
Table 3
Computation time of the guaranteed viability kernel with a processor i7-8650U CPU
@ 1.90 GHz × 8 and 15.5GiB RAM for different problems. Increasing the dimension of
𝑉 can lead to much longer computation time. The 𝑣𝑑𝑖𝑚 column indicates the number
of discretization steps used for the model type when appropriate.

State space Control Tyche (𝑉 ) Scenario calculation

dim. Steps dim. Steps dim. Steps time
(pts/axis) 𝑣𝑑𝑖𝑚 (in s.)

Lake Bourget model (14) 𝑃𝑚𝑎𝑥
2 1000 1 11 3 11 5 24.76 938.64
2 1000 1 11 3 11 5 15.0 1243.86

2 1000 1 11 4 11 5 15.0 7122.99a
𝑚 ∈ [26.0, 27.0]

Marine-protected area (Zaleski, 2020)
3 100 2 11 2 11 – – 437.94
3 300 2 11 2 5 – – 3153.31

aDenotes an empty guaranteed viability kernel.

Proof of Theorem 1. Let 𝐿 ≠ ∅ be the guaranteed viability kernel for
system (4) with 𝜆 Lipschitz constant (resp. system (5) in the discrete
case) associated with constraint set 𝐾. Let 𝑈̃ be the guaranteed regula-
tion map. By definition, 𝐷𝑜𝑚𝑈̃ = 𝐿. We now prove that the guaranteed
viability kernel is a viable set for each member 𝑖. Let 𝑖 ∈  , we consider
the system 𝑆𝑐′𝑖 = 𝑆𝑐(𝑓𝑖, 𝑈̃ ) (resp. 𝑆𝑑′𝑖 = 𝑆𝑑(𝑓𝑖, 𝑈̃ ) in the discrete case).
Since the guaranteed viability kernel is defined from the group project
(𝐾,𝑈 ), we have 𝐿 ⊂ 𝐾, and for all 𝑥 ∈ 𝐿, 𝑈̃ (𝑥) ⊂ 𝑈 (𝑥). Thus an
volution governed by 𝑆𝑐′𝑖 (resp. 𝑆𝑑′𝑖 ) is also an evolution governed by
𝑐(𝑓𝑖, 𝑈 ) (resp. 𝑆𝑑(𝑓𝑖, 𝑈 )). Since system (4) (resp. system (5)) embeds
𝑐(𝑓𝑖, 𝑈 ) (resp. 𝑆𝑑(𝑓𝑖, 𝑈 )), it also embeds 𝑆𝑐′𝑖 (resp. 𝑆𝑑′𝑖 ). Let 𝑥0 ∈ 𝐿,
nd let 𝑥(.) (resp. 𝑥𝑘) be a trajectory starting at 𝑥0 and governed by
𝑐′𝑖 (resp. 𝑆𝑑′𝑖 ). Because of the embedding there is a function 𝑣 such

hat 𝑓𝑖(𝑥(𝑡), 𝑢̃(𝑡)) = 𝑓 (𝑥(𝑡), 𝑢̃(𝑡), 𝑣(𝑡)) (resp. 𝑓𝑖(𝑥𝑘), 𝑢̃𝑘 = 𝑓 (𝑥𝑘, 𝑢̃𝑘, 𝑣𝑘) in the
iscrete case). Hence 𝑥(.) is also an evolution governed by system (4)
resp. (5)). Since 𝐿 is the guaranteed viability kernel for system (4)
ith 𝜆 Lipschitz constant (resp. (5)) associated with constraint 𝐾, from
efinition 12, all trajectories starting from 𝑥0 ∈ 𝐿 and governed by (4)

resp. (5)) are viable in 𝐿 for control selection in 𝑈̃ . Thus the trajectory
f 𝑥(.) governed by 𝑆𝑐′𝑖 (resp. 𝑆𝑑′𝑖 ) starting at 𝑥0 stays in 𝐿. Thus 𝑥(.)
s an evolution starting at 𝑥0 governed by 𝑆𝑐𝑖 (resp. 𝑆𝑑𝑖) viable in 𝐿.
hus 𝐿 is a viable set for member 𝑖. ■

ppendix B. Embedding system

roposition 6. If 𝑈 has a linear growth and for all 𝑖 ∈  , 𝑓𝑖 has a
inear growth, then a system (4) (resp. (5)) can embed 𝑆𝑐(𝑓𝑖, 𝑈 ) (1) (resp.
𝑑(𝑓𝑖, 𝑈 ) (2)) for all 𝑖 ∈  .

roof. We note 𝑀𝑥 = max𝑖∈ ,𝑢∈𝑈 (𝑥)(‖𝑓1(𝑥, 𝑢)−𝑓𝑖(𝑥, 𝑢)‖). 𝑀𝑥 is defined
ince 𝑈 and all 𝑓𝑖 have a linear growth. We define 𝑓 (𝑥, 𝑢, 𝑣) = 𝑓1(𝑥, 𝑢)+
(𝑥) with 𝑣(𝑥) ∈ 𝑉 (𝑥) = 𝐵(0,𝑀𝑥), where 𝐵(𝑎, 𝑟) is the closed ball
ith center 𝑎 and radius 𝑟. Then for 𝑥 ∈ 𝐾 and 𝑢 ∈ 𝑈 (𝑥) we define
𝑖,𝑢,𝑥 = 𝑓𝑖(𝑥, 𝑢) − 𝑓1(𝑥, 𝑢). We have ‖𝑣𝑖,𝑢,𝑥‖ ≤ 𝑀𝑥, and thus 𝑣𝑖,𝑢,𝑥 ∈ 𝑉 (𝑥).
hen ∀𝑖 ∈  , 𝑓𝑖(𝑥, 𝑢) = 𝑓 (𝑥, 𝑢, 𝑣𝑖,𝑢,𝑥) and Eq. (6) is verified. ■

Definitions of 𝑓 leading to smaller sets of perturbation are prefer-
ble. For instance, it can be interesting to define 𝑓 with the convex hull
f the 𝑓𝑖(𝑥, 𝑢): With 𝑖 ∈ 𝐽 =  ∖ {1} we consider 𝑣 = (𝑣𝑖), 𝑣𝑖 ∈ [0, 1] with
𝑖∈𝐽 𝑣𝑖 ≤ 1, and define 𝑓 (𝑥, 𝑢, 𝑣) = 𝑓1(𝑥, 𝑢)(1 −

∑

𝑖∈𝐽 𝑣𝑖) +
∑

𝑖∈𝐽 𝑣𝑖𝑓𝑖(𝑥, 𝑢).

ppendix C. Computing performance for guarantied viability
See Table 3.
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