
Birds-Of-a-Feather: Reflection

Meta-Objects, Classes, Metaclasses:

Similitudes and Differences

Jean-Pierre Briot, Nicolas Graube∗

Equipe Mixte L.I.T.P. & Rank Xerox France
Jacques Ferber
L.A.F.O.R.I.A.

Université Paris VI
Tour 45-55 Porte 209

4, Place Jussieu
75252 Paris cedex 05

France

Abstract

Reflection and Metaclasses are two very popular concepts in Object
Oriented Languages based on Class taxonomy. However, if the second
term is clearly described and documented, the first one is still surrounded
by some artistic fog. This position paper is intended to bring into focus
some new definitions in order to clarify the debate and lay a safe basis
for further investigation. After proposing some definitions, we discuss
several aspects of reflection. Then we briefly review the basic interests
of reflection. Finally we will exhibit how reflection is already partially at
work in class taxonomy-based languages. This gives us opportunity to
compare the concepts of meta-object and metaclass.

1 Introduction.

The concept of reflection was engineered by Brian Smith in order to describe
and control Lisp semantics in Lisp. It soon became very popular and rapidly
spread outside the boundaries of the pure Lisp world.

Within Object Oriented Languages the concept of reflection was not clearly
used nor described until Patti Maes’ work on knowledge representation systems
(3-KRS) and Watanabe’s description of a reflective concurrent actor-based lan-
guage (ABCL-R).

∗This research was partly funded by the GRECO de programmation du CNRS.

1



Goals of reflection are description and control of implementation and acti-
vation of objects. However, the notion of meta-object still is not that clear for
most popular paradigms, such as class taxonomy-based languages.

2 Meta-Object.

2.1 Definition.

Definition: 2.1 (Meta-Object.) The meta-object is an explicit, consistent
and usable representation of another object in terms of some object(s).

The representation includes:

structure: data and physical implementation,

reactive abilities: message acceptance, processing and sending,

meaning: semantics, goal and finality.

A meta-object can fully or partially describe an object. Thus, an object
could hold several meta-objects, each one depicting a specific point of view.
In the case of a complete meta-object, all information held by the object is
contained by the meta-object with no loss.

2.2 Consistency.

Information described by a meta-object must always be consistent with the
object. This implies a bidirectional and causal connection between them.

2.3 Level and Meta-Level distinction.

An object holds two kinds of information, explicit and implicit. The object
is conscious about its explicit information (e.g., a point knows the value of
its “x” coordinate) while it unconsciously undergoes implementation decisions
(e.g., a point implementation holds at its second location the value of its “x”
coordinate).

Following the definition, implicit information is manipulable within the meta-
object, while only explicit information is at the object level.

A good programmation methodology is to clearly separate the object level
and the meta-object level.

One can note that Smalltalk-80 does not clearly draw these boundaries as
it is possible for any object to use both level and meta-level tools (e.g., a point
can access its “x” coordinate both through object level access (message pass-
ing or implicit reference) and by using the method instVarAt: to access the
corresponding value which requires the knowledge of the related index).

2



3 Goals and Uses of reflection.

4 Reflection at work in class taxonomy-based
languages.

The notion of class was introduced for abstraction and factorization of objects
which do similar things.

4.1 Classes.

A class describes both structural components and the behavior of its instances.
The structural components depicted by the class are usually known as instance
variables or slots. These elements are only partially related with the physical
implementation of the instances. In terms of behavior, a class usually describes
the reaction of instances regarding certain messages sent to its instances or
regarding the application of certain generic functions. On the other hand a
class does not depict the way messages or generic functions are applied to its
instances, nor the way method lookup is achieved.

4.2 Metaclasses.

A metaclass is a class whose instances are classes. The goal of metaclasses is to
bring classes up to first class object level. Metaclasses are themselves classes.
ObjVLisp and CLOS are such systems.

The main advantages of such a consideration are:

uniformity: classes and instances are treated in the same way,

parametrization: possibility of adding both new instance variables and meth-
ods to classes, in order to extend their functionnalities,

implementation control: metaclasses control the allocation of instances of
their instances, thus the physical description of these objects.

4.3 Metaclasses, Classes, Instances and Reflection.

Once the duties of class and metaclass regarding instances have been clarified,
a major step is to describe the relations that may be drawn between these three
entities and the meta-object.

Reflection has to be split into two distinct fields: structural reflection and
behavioral reflection. Following the definition, structural reflection is only con-
cerned with the ability of depicting structural organisation of objects, whereas
behavioral reflection is focused upon the description of all the “activity” part
such as message passing handling.

3



4.3.1 Structural Reflection.

This kind of reflection is the easiest one to highlight within such systems.
The structure of an object is described by its class. The implementation of

an object is described by its metaclass. Thus together these two components can
be considered as a implicit and partial structural meta-object. Note that this
meta-object is shared between all instances of the class, reflecting the factoriza-
tion brought by classes in class taxonomy-based systems. A major consequence
of this remark is that the modification of this meta-object (e.g., adding instance
variable, changing structural representation) must be propagated among all in-
stances of the class.

This consequence is already present within both Smalltalk-80 and CLOS
as the change of a class triggers the updating of its instances. CLOS exposes
this mechanism through the change-class generic function while Smalltalk-80
keeps it hidden. Within these systems, an instance cannot directly modify its
class nor its metaclass, thus the causal connection between the object and its
meta-object is only to be set from the meta-object to the object(s).

5 Behavioral Reflection.

Aside from the fact that class describes the behavior of instances regarding
message passing or generic functions, in standard systems very little control of
message application is provided.

In Smalltalk-80, for efficiency reasons both message acceptance, sending and
method lookup mechanism are frozen within the virtual machine. In order to
gain control on these mechanisms the implementor needs to use tricks, usually
based on the use of the doesNotUnderstand: method (see for instance Foote’s
OOPSLA paper). It is also possible to provide a more general and complete
behavioral reflection by using already existing tools such as “thisContext”

In CLOS the situation is a little bit more sheerful as several “hooks” are
provided in order to enable modification of some parts of the generic function
execution protocol.

6 Conclusion.

This short study was intended to bring into focus the relationship between the
concepts of meta-object and class/metaclass. We showed that the class/metaclass
as a whole is equivalent to a partial structural meta-object, shared by instances
of the class.

4


