B

OOCP = OOP + C

Jean-Pierre BRIOT

LITP - RankXeroxFrance Joint Team,
Université Pierre et Marie Curie,

4 place Jussieu, 75005 Paris, France
briot@litp.ibp.fr

Abstract

This position paper ar-
gues that Object-Oriented Program-
ming (OOP) is currently the best tool
to prototype Object-Oriented Concur-
rent Programming (OOCP). Three as-
pects are considered: implementation,
description ability, and programming
environment. The Actalk system
(which stands for actors in Smalltalk)
is used along the discussion as an ex-
ample supporting our position state.
ment.

The tutorial on Concurrent Ob ject-
Oriented Programming in this confer-
ence has also been based on such an
approach.

Keywords

object, concurrency, actor, im-
plementation, prototyping, classifica-
tion, modularity, extensibility, inher-
itance, genericity, visualization, pro-
gramming environment, Smalltalk-80,
ConcurrentSmalltalk, Actalk.

417

1 Introduction

The position we defend in this paper
is:

“Object-Oriented
Programming (OOP) is currently the
best paradigm to describe Ob Jject-
Oriented Concurrent Programming
(OOCP) [OOCP 87)”

We sumrnarié?d this statement in
the title “equati“an”:

/
“O0CP = OOQP + Concurrency”

If we take a reflective approach,
OOCP itself would be the best can-
didate to describe OOCP. Reflection
is a very promising research direc-
tion. However it is still in in-
fancy in the field of OOCP, the most
advanced proposal being the reflec-
tive description of the ABCL/1 lan-
guage by Watanabe and Yonezawa
[Watanabe and Yonezawa 89). Thus
we chose to restrict the complete
OOCP model to some subset: (se-
quential) OOP. Because QOP is still
much more developed than OO0OCP, we
gain efficient and sophisticated envi-
ronments to quickly design, classify
and visualize OOCP.

A system, named Actalk [Briot 89),
will be used along this position pa-
per to examplify and validate our po-

W

|*5

AN R &

- B

sition. Actalk uses descriptive and vi-
sual ability of the Smalltalk-80' en-
vironment to provide a testbed for
designing and classifying actor-based
languages. Actor-based languages
[OOCP 87, pages 37-53] are one of
the most active and open family of
OOCP languages. For this reason we
did not want to set a new OOCP lan-
guage. Our goal is to provide an open
testbed to model various OOCP lan-
guages and to experiment them within
a single and unified environment. Be-
sides its different concern, Actalk is
also much related to the ConcurrentS-
malltalk language [OOCP 87, pages
129-158], which extends Smalltalk-80

towards concurrency.

2 Advantages of
OOP to Describe
O0CP

The merits of choosing OOP as a ba-
sis to describe OOCP will now be dis-
cussed along three successive points:

e At first we will discuss the imple-
mentation support. We will re-
view why OOP gives for free the
best support for OOCP, regard-
ing minimality and modularity.

e The second point is about the de-
scriptive ability of OOP. We will
show that classes, inheritance and
genericity are very useful tools to

describe OOCP.

e We will complete our survey by
discussing the gain of reusing the
integrated and modular program-
ming environment of Smalltalk-
80. This underlying environment

1§malltalk-80 is a trademark of ParcPlace
Systems.

418

will be used to prototype environ-

ments suitable for OOCP.

3 Implementation
Ease

3.1 Minimality for Peda-
gogy

OOCP languages introduce the no-
tion of active and concurrent ob-
jects. Smalltalk-80 provides all en-
tities needed to build them: ob-
jects, classes and messages, and to
express CONCUITENCy: processes and
semaphores. Thus implementation is
both high level and minimal. This
allows focusing on the semantics of
OOCP and the differences with stan-
dard OOP, rather than dealing with

low level concerns.

3.2 Combination for
Reuse

Actalk models OOCP by defining a
sub-world of active objects embedded
into the world of standard objects.
This leads to a modular implementa-
tion and a good combination between
passive and active objects. This re-
sults in the maximal reuse of the un-
derlying system.

3.3 Modularity for a Lay-
ered Architecture

The kernel of the Actalk system
which describes the minimal seman-
tics of active objects is defined by
two simple classes. The first class,
named Actor, defines the semantics
of active objects (actors) and their
asynchronous communication, and the

class ActorBehavior defines the se-
mantics of their behaviors. The
class Actor simply defines an actor
through its two components, the mail-
box or queue which will contain the
incoming messages, and the behavior
which will process them. The class
ActorBehavior expresses the default
semantics of the activity of behav-
iors, i.e., keep dequeueing and per-
forming messages from the mailbox.
Both classes may be extended by using
inheritance in order to simulate vari-
ous OOCP models.

4 Descriptive Abili-
ties

Classes for Abstrac-
tion

4.1

Classes of behaviors of actors are im-
plemented by standard abstractions
available in OOP, i.e., classes. Con-
sequently, the language designer and
the programmer may use the standard
Smalltalk-80 classification system and
environment (browser) to define new
OOCP models and programs.

4.2 Inheritance for Clas-
sification

In order to simulate some of the
most representative OOCP computa-
tion models and programming lan-
guages based on the actor concept,
we use the main classification tool of
OQP, i.e., inheritance. Various mod-
els will be described as progressive ex-
tensions of the primitive kernel.

A first extension simulates the Ac-
tor computation model of Agha and
Hewitt [OOCP 87, pages 37-53] as

a subclass of class ActorBehavior,

419

named AghaActorBehavior. Only
two methods need to be defined in
class AghaActorBehavior to imple-
ment the concept of behavior replace-
ment, i.e., how to process next incom-
ing message.

The second example simulates the
Abcl/1l programming language of
Yonezawa [OOCP 87, pages 55-89] as
a subclass of class Actor. This ex-
tension easily implements three dis-
tinct types of communication proto-
cols between actors: asynchronous,
synchronous and eager types of mes-
sage passing.

These simulations show the merits
of modularity for our kernel. Because
the kernel and its extensions are re-
lated by inheritance, one could easily
compare them. Inheritance helps not
only to classify various actor models,
but also to clearly relate and to reuse
their various implementations.

4.3 Genericity for Modu-
lar Control

Another extension of the Actalk ker-
nel introduces a generic control of ac-
tor events (i.e., receiving a message,
computing it...) into Actalk. This is
implemented by defining generic event
methods instantiated for various ap-
plications. We currently use this facil-
ity to design actor event driven rep-
resentations (views) of actors. This
may also be used to control pseudo-
parallel execution of actors by associ-
ating scheduling to actor events.

5 Environment Sup-
port

5.1 Reuse of the Stan-
dard Programming
Environment

A good programming environment is
important for prototyping and experi-
menting with sequential languages. It
becomes a near necessity when exper-
imenting with concurrent languages.
However it is usually lacking because
the task, specially for debugging, is
not trivial. Building a complete pro-
gramming environment is a long and
big task. Smalltalk-80 is the most
achieved and flexible OOP system
with a fully integrated programming
environment. Because of the integra-
tion of our actors into the Smalltalk-
80 model and environment, the de-
signer of actor languages and the pro-
grammer could automatically reuse
the standard Smalltalk-80 program-
ming environment.

5.2 Extension Towards a
Specific Environment

However, the standard Smalltalk-
80 programming environment cannot
take into account some specificities
of OOCP. For example, the debugger
does not show much relevant infor-
mation when asynchronous message
passing is used. Also the Smalltalk-
80 MVC (Model View Controller)
paradigm for interface design makes
strong hypotheses about the sequen-
tiality of the language. Therefore re-
framing a view on some active ob-
ject updating itself may cause some
chaotic redisplay.

Consequently it is necessary to cus-
tomize the standard programming en-

vironment. By using inheritance to
extend it, we may quickly design such
specific environments. We extended
the standard Smalltalk-80 program-
ming environment in order to visual-
ize, interactively monitor, and debug
the activity of concurrent objects. We
added some tools such a preemptive
generic scheduler, a scheduling moni-
tor, and an automatic interface gener-
ator [Briot and Lescaudron 90].

6 Conclusion

In this paper we advocated the use
of current OOP support, precisely the
Smalltalk-80 system, to design and ex-
periment with OOCP programming.
We believe this is a promising ap-
proach both for designers wishing to
prototype OOCP systems and users
wishing to study and experiment pro-
gramming with them.

As an example of application,
Actalk is being used by another re-
search team in order to describe var-
ious Distributed AI systems, by ex-
tending the concept of actor into the
concept of agent. One such realiza-
tion is the Mages multi-agent system
[Bouron et al. 90].

The views expressed in this pa-
per were first discussed at the
Workshop on Object-Based Concur-
rent Programming, held during the
ECOOP’89 Conference.

420

References

[Bouron et al. 90]

[Briot 89]

[Briot and Lescaudron 90]

[OOCP 87]

[Watanabe and Yonezawa 89]

T. Bouron, J. Ferber and F. Samuel, A Multiagent
Testbed for Heterogeneous Agents, 2nd European
Workshop on Modelizing Autonomous Agents and
Multi-Agent Worlds (MAAMAW’90), also pub-
lished as a Laforia Research Report, No 20/90,
July 1990.

J.-P. Briot, Actalk: a Testbed for Classi-
fying and Designing Actor Languages in the
Smalltalk-80 Environment, European Conference
on Object-Oriented Programming (ECOQOP’89),
British Computer Society Workshop Series, Cam-
bridge University Press, pages 109-129, 1989.

J.-P Briot and L. Lescaudron, Building Unified
Programming Environment for Object-Oriented
Languages, the Fifth International Symposium on
Computer and Information Sciences (ISCIS V),
also published as RXF-LITP Research Report, No
90-76, October 1990.

Object-Oriented Concur-
rent Programming, edited by A. Yonezawa and
M. Tokoro, Computer Systems Series, MIT Press,

1987.

T. Watanabe and A. Yonezawa, Reflection in an
Object-Oriented Concurrent Language, Confer-
ence on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’88), Spe-
cial Issue of SIGPLAN Notices, ACM, pages 306-
315, Vol. 23, No 11, November 1988.

421

