A Modeling Framework for Generic Agent Interaction
Protocols

José Ghislain Quenum?, Samir Aknine’, Jean-Pierre Briot!, and Shinichi Honiden?

! Laboratoire d’Informatique de Paris 6,

8 rue du Capitaine Scott, 75015 Paris, France
{Samir.Aknine,Jean-Pierre.Briot}@lip6.fr
2 National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan
{joque, honiden}@nii.ac.jp

Abstract. Agent-UML (AUML) extended UML in order to facilitate the mod-
eling process for agent based systems. It offers several graphical notations, in-
cluding protocol diagrams which represent agent interaction protocols. In this
paper, we describe an AUML-based framework to specify generic protocols. We
call generic protocols, agent interaction protocols where only a general behavior
of the interacting entities can be described. From AUML protocol diagrams, we
identified five fundamental concepts on top of which we defined formal speci-
fications of generic protocols. Through our specifications, we addressed a lack
in generic protocol representation by emphasizing the description of actions per-
formed in the course of interactions based on such protocols. The framework we
developed is formal, expressive and of practical use. It helps decouple interaction
concerns from the rest of an agent’s architecture. As an application, we used this
framework to publish the specifications of generic protocols for agent interac-
tions in several multi-agent system applications we developed. Additionally, the
framework helped us address two issues faced in the design of agent interactions
based on generic protocols, protocol configuration and their dynamic selection.

1 Introduction

Interaction is one of the key aspects in agent-oriented design. It allows agents to put
together the necessary actions in order to perform complex tasks collaboratively. The
coordination mechanisms needed for a safe performance of these actions are often rep-
resented as a sequence of message exchanges, called interaction protocols. Usually,
only a general description of the behavior required of agents partaking in these in-
teractions is provided. Such protocols are called generic protocols. The description of
generic protocols, especially with respect to their correct interpretation is a critical is-
sue in open and heterogeneous multi-agent systems (MAS). A subsequent issue is the
need to decouple interaction concerns from the other components of an agent, whatever
architecture is adopted for that agent.

To date, there has been some endeavor to develop new protocol specification for-
malisms. The formalisms developed thus far have several drawbacks. They usually fo-
cus on data exchange through a communication channel (Promela/SPIN [10]). Some

M. Baldoni and U. Endriss (Eds.): DALT 2006, LNAI 4327, pp. 207-2241 2006.
(© Springer-Verlag Berlin Heidelberg 2006

208 J.G. Quenum et al.

others are either informal (or semi-formal) (e.g., AUML [2]) or demand advanced
knowledge in logics (e.g., the formal notations defined by Paurobally et al [13]], Al-
berti et al [[1]] and Giordano et al [8]). Therefore, there is an obvious need for a formal,
yet practical and expressive generic protocol representation framework. Additionally,
such a framework should provide the building blocks to help fix the separation issue
between interaction aspects and the other elements of the architecture adopted for an
agent. We address this need in this paper.

The solution we developed is a framework to specify generic protocols. It con-
forms to the principles established for conversation policies by Greaves et al [9].
Our protocol notation is based on Agent-UML (AUML), a popular agent interaction
representation formalism. But, we address (in our framework) the lacks and incom-
pleteness which limit AUML. As commonly witnessed in several protocol represen-
tation formalisms, AUML only stresses the sequence of message exchanges. How-
ever, some actions are needed to produce these messages and handle them when
received. Even, as we will see later, some actions which neither send messages nor
handle them, might be executed during an interaction. Thus, in addition to the de-
scription of message exchange, our framework introduces the description of actions
needed in the course of an interaction. This provides us with the ability to describe
the behavior agents will exhibit while playing a role in a protocol. A particular as-
pect in our framework is our focus on generic protocols, which keeps us from pro-
viding a complete representation for actions. Hence, we introduced action categories
to fix this weakness.

Our framework offers several advantages. It builds on the graphical representation
of protocol diagrams in AUML, which offers the (human) designers a better message
exchange perception. In addition, it offers the means to depict what happens beyond
the message exchange layer, in the course of an interaction. The framework is expres-
sive, formal and of practical use for protocol representation. Particularly, we offer at
least the same expressiveness as in AUML (and its extensions) without introducing new
constructs (sequence, loop and other control flows). Rather, we efficiently exploit event
description to cover all these possibilities. Also, protocols in our framework are easily
implemented following a XML format. As a concrete application, we used our frame-
work to publish the specifications of generic protocols agent interactions are based on
in several MAS applications we developed. Moreover, we used this framework to ad-
dress two issues in agent interaction design for open and heterogeneous MAS: (1) an
automatic derivation of agent interaction model from generic protocol specifications, in
order to address the issue of consistency during interactions based on generic protocols
in an heterogeneous MAS; and (2) an analysis of generic protocol specifications in or-
der to enable agents to dynamically select protocols when they have to perform tasks in
collaboration.

The remainder of this paper is organized as follows. Section2]discusses some related
work. Section [3] introduces the fundamental concepts we use in the framework and
presents both the specifications and their semantics. Sectiond]discusses some properties
one can check for a protocol represented following this framework. Finally, section
concludes the paper.

A Modeling Framework for Generic Agent Interaction Protocols 209

2 Related Work

Several formalisms have been developed to represent interaction protocols. We discuss
some of them in this section.

AUML [2] and its extensions are graphical frameworks for protocol diagram repre-
sentation. These frameworks, though practical and easy to use, do not emphasize the
representation of actions performed in the context of an interaction. It is then hard to
reason about the behavior agents, playing a role in a protocol, should be required of be-
yond the message exchange layer. As well, the graphical representation is useful only
for human designers; it remains unreadable for computers. Casella and Mascardi [3]
addressed this limitation by automating the translation process from AUML to a textual
description, which is more machine readable. Winikoff [[18]] puts this textual represen-
tation of AUML protocol diagrams a step further. The work proposed a textual nota-
tion which defines a syntax for AUML protocol diagram specifications. The notation
is accompanied by a tool that helps view the graphical representation corresponding to
a textual specification. The advantage of relating a textual notation to AUML (whether
automatically or not), though undebatable, is weakened by many other AUML’s original
limitations, f.i., the lack of emphasis on the description of (generic) actions in protocol
representation, and the ambiguity about the formal semantics for protocols as well.

Some formal frameworks have been proposed for protocol representation. For ex-
ample, Walton [[17]] defined a framework using concepts similar to ours. However, this
framework directly introduces the notion of agent in protocol representation. This does
not help separate the interaction concerns from the other parts of the architecture of an
agent. In our opinion, this association between agents and roles should result from a
configuration and instantiation process of protocols. Paurobally et al [13] made signifi-
cant advances in the area of protocol representation for agent interaction. This work de-
veloped a formal framework which combines Propositional Dynamic Logic and belief
and intention modalities (PDL-BI). The framework covers a broad spectrum of issues
related to agent interactions. However, it requires advanced knowledge in logics. In our
opinion, logics is useful to define the semantics and check some properties for protocols.
But due to the complexity it may introduce, we strongly believe that it should be hid-
den at the specification stage, as usually done in programming languages. Additionally,
PDL-BI focuses on message exchanges. But, as we showed above, agent interaction
protocols demand more than message exchange. Alberti et al [1] and Giordano et al [8]]
also developed formal protocol representation notations based on temporal logic. These
formalisms are too theoretical, and thus cannot gain wide adoption in the area of proto-
col representation. Also, they suit commitment protocols, which aim at describing the
social states the agents share during an interaction, instead of their mental states. The
main difference between these two formalisms and ours is the different (representation
and) interpretation of actions and messages.

IOM/T [3]] is another recent language for agent interaction representation. Our work,
though sharing some similarities with IOM/T, departs from it in the following points.
Firstly, we focus on generic protocols, where we consider generic actions. Secondly, the
behavior of agents in [IOM/T (the actions they perform) is not associated with the events
which occur in the MAS. Thirdly, the language is Java-like. However, we believe that
a protocol description language is supposedly a declarative one. Especially for open

210 J.G. Quenum et al.

and heterogeneous MAS. We address this need in this paper by developing a formal
framework for generic protocol representation. Our framework proposes an expressive
declarative language which offers ease of use.

3 The Framework

We introduce the fundamental concepts our framework is based on. Then, we present
the specifications and the semantics of these concepts.
3.1 Fundamental Concepts

Our framework is based on the AUML protocol diagram. From AUML, we identified
five fundamental concepts: protocol, role, event, action and phase. A graphical illustra-
tion of these concepts is given in Fig.[Il

[Role: Ry [_Rote:R, | event: message
1

I_I ! reception
meSSage1
Lk

) action
1
1 message,

message3

/
phase
\

protocol

Fig. 1. Graphical illustration of concepts in generic protocols

Definition 1. (Protocol) A protocol is a sequence of message exchanges between at
least two roles. The exchanged messages are described following an Agent Communi-
cation Language (ACL) e.g., FIPA ACL [7)], KOML [12|], the commitment-based ACL
introduced in [4)].

More formally, a protocol consists of a collection of roles R, which interact with one
another through message exchanges. The messages belong to a collection M and the
exchange takes place following a sequence,). A protocol can also have some intrin-
sic properties © (attributes and keywords) which are propositional contents (actually
predicates) that provide a context for a further interpretation of the protocol. We note

def

P=<0O,R M, Q>

. m
In €, the message exchange sequence, each element is denoted by 7, ———— 7,, to
QoM —1

be interpreted as “the role r, sends the message my, to r,, and that my, is generated after
action a,,’s execution and the prior exchange of my_;”.

Definition 2. (Generic Protocol) A generic protocol is a protocol wherein the actions
which are taken, to handle, produce the contents of exchanged messages, etc. are not

A Modeling Framework for Generic Agent Interaction Protocols 211

thoroughly specified. A complete description of these actions depends on the architec-
ture of each agent playing a role in the protocol.

Each of the communicating entities is called a role. Roles are understood as standard-
ized patterns of behavior required of all agents playing a part in a given functional
relationship in the context of an organization [6].

Definition 3. (Role) In our framework, a role consists of a collection of phases. As we
will see later (Section[3.2), a role may also have global actions (which are not bound
to any phase) and some data other than message content, variables.

def

vr € R,r =< O,,II, Ag,V >, where O, corresponds to the role’s intrinsic prop-
erties (e.g., cardinality) which are propositional contents that help further interpret the
role, IT the set of phases, Ag the set of global actions and V the set of variables. In
our framework, roles can be of two types: (1) initiator, the unique role of the protocol
in charge of startin its execution; (2) participant, any role partaking in an interaction
based on the protocol.

The behavior of a role is governed by events. An event is an atomic change which
occurs during the interaction. An informal description of the types of event we consider
in our framework is given in Table 1. A formal interpretation of these events is discussed
in Section[3.3] The behavior a role adopts once an event occurs is described in terms of
actions.

Table 1. Event Types

Event Type Description

Change The content of a variable has been changed.
Endphase The current phase has completed.

Endprotocol The end of the protocol is reached.
Messagecontent The content of a message has been constructed.

Reception A new message has been received.
Variablecontent The content of a variable has been constructed.
Custom Particular event (error control or causality).

Definition 4. (Action) An action is an operation a role performs during its execution.
This operation transforms the whole environment or the internal state of the agent cur-
rently playing this role. An action has a category v, a signature 3. and a set of events it

de
reacts to or produces. We note a :f< v, X, E >.

Since our framework focuses on generic protocols, we can only provide a generaﬂ
description for the actions which are executed in these protocols. Hence, we introduced
action categories to define the semantics of these actions. Table 2 contains an informal
description of these categories. We discuss their semantics in Section[3.3

! Starting a protocol demands more than sending its initial message.
% The term general here is used in the sense of describing the skeleton of these actions.

212 J.G. Quenum et al.

Table 2. Action Categories

Action Category Description

Append Adds a value to a collection.
Remove Removes a value from a collection.
Send Sends a newly generated message.
Set Sets a value to a variable.

Update Updates the value of a variable.
Compute Computes a new information.

Definition 5. (Phase) Successive actions sharing direct links can be grouped together.
Each group is called a phase. Two actions a, and a, share a direct link, if the input
arguments (or only a part of the input) of a, are generated by (the output result of) a,.

3.2 Formal Specifications

The formal specifications are defined through an EBNF grammar. Only essential parts
of this grammar are discussed in this section. A thorough description of this grammar is
given in Appendix[Al In sake of easy implementation of generic protocols, we represent
them in XML in our framework. However, as XML is too verbose, a simpler (bracket-
based) representation will be used for illustration in this paper.

Running Example. We will use the Contract Net Protocol (CNP) [[16] to illustrate our
specification formalism. The sequence diagram (protocol diagram in AUML) of this
protocol is given in Fig.[2l Note that the labels placed on the message exchange arrows
in the figure are not performatives, but message identifiers.

-
1
1

cfp

refuse
adllne
propose

reject-proposal

accept-proposal

inform-done

D inform-ref
1
1

Fig. 2. The Contract Net Protocol

A Modeling Framework for Generic Agent Interaction Protocols 213

The rationale of CNP consists in an initiator having some participants perform some
processing on its behalf. But beforehand, the participants which will perform the
processing are selected on the basis of the bids they proposed, in-reply to the initia-
tor’s call for proposals. When the selected participants are done with their processing,
each of them notifies the initiator agent of the correct execution (or error occurrence) of
the part it committed to performing.

Protocol. The following production rules define a protocol. In As one can see from
these rules, the exchange sequence €2 contrary to Definition[T] is not explicitly specified.
Actually, it is located in the definition of roles, and precisely in the send actions of these
roles.

< protocol > := < protproperties >< roles >< messagepatterns >
< protproperties > := < protdesc >< protattributes >< protkeywords? >
< protdesc > := < identifier >< title >< location >
< protattributes > = < class >< participantcount >

< protkeywords > := < protkeyword+ >

//|

< protkeyword > := “Incremental Resolution

Example[I]l we exemplified the use of these rules to specify CNP.

(protocol
(protproperties
(protdesc :ident cnpprot

:title ContractNet :location Cnp.xml)

(protocolattributes

:class Request

:participantcount 1)

(protkeywords

‘‘containsMultipleInstanceRole’’))

(roles ..

)

)

(messagepatterns ..

Example 1. Specifying CNP

The properties of a protocol consist of descriptors (identifier, title and location), key-
words and attributes, which we identified from the experiments we carried out with our
framework. The keywords are propositional contents which help further characterize
the protocols. Currently, we consider the following keywords: (1) ContainsMultiple-
InstanceRole which means that there can be several instances of a participant role in
this protocol; (2) ContainslterativeProcess, which means that a sequence of actions
can be repeatedly executed in the protocol; (3) IncrementalResolution, which means
that an anytime algorithm can lie behind the execution of the protocol; (4) ContainsDi-
vidableProcessing which means that the processing associated with this protocol can be
divided for several participants; (5) SubscriptionRequired, which means that the
processing associated with this protocol requires a prior subscription; (6) Alterable Com-
mitment which means that the commitments are not indefeasible.

214 J.G. Quenum et al.

Concerning the attributes, they are functions which we use to refine the description
of a protocol. The current version of our framework allows two attributes to be set:
(1) class, which indicates what kind of processing is implied by the protocol, (2) par-
ticipantcount, which indicates how many types of participant roles does the protocol
contain.

Role. Protocol diagrams only show the communication flow between roles. However,
there may be some information beyond the communication layer. For example, in CNP,
the action an initiator executes, in order to make a decision upon the bids the partic-
ipants issued, is hidden behind the communication flow. Actually, this action exploits
information from different participants of the protocol. Moreover, information like the
deadline for bidding, cannot be extracted from any message content. We introduced a
global area for each role where we describe actions which are beyond the communica-
tion flow, as well as data which cannot be extracted from any message content. Note
that actions relevant to the global area are not tied up with any phase. The production
rules hereafter define a role.

< roles > := < role >< role > | < roles >< role >

< role > := < roleprop >< variables? >< actions? >< phases >
< roledesc >< roleattributes >< rolekeywords? >
< identifier >< name >

< roleprop > :
< roledesc > :
< roleattributes > :
< wariables > = < variable+ >
< wariable > := < ident >< type >
< action+ >

< cardinality >

< actions > :

Each role is described through its intrinsic properties (f.i., cardinality), its variables,
its global actions and phases. From Example [2] the initiator role of CNP has three
variables: deadline, bidsCol and deliberations. deadline informs of the
moment when bidding should stop. bidsCol is a collection where bids issued by
participants are stored. deliberations contains the decision (accept or reject) the
initiator made upon each bid. Each variable has an identifier and the type of data it
contains. The content of a variable is characterized using some abstract data types. We
also use these data types to represent message content and action signature. String,
Number and Char are some examples of the data types we use in our framework. The
description of these types is out of the scope of this paper. The only global action in this
role is named Deliberate. Through this action, the initiator makes a decision upon
the participants’ bids. Global actions are described in the same way as local (located in a
phase) ones: category (see Table[3.)), signature (input and output data types) and events
(input and output). Note that each part (input and output) of the signature as well as the
events is composite. We introduce three types of connector (and, or, xor, with their usual
meanings) to assemble the elements of these parts. Deliberate is a compute action.
It takes a date and a collection as input arguments (:dir in) and a Map as output result.
Deliberate is executed when the value of deadline changes (change event) and

A Modeling Framework for Generic Agent Interaction Protocols 215

that at least one bid has been stored in bidsCol. Once executed it changes the value
of deliberations. The reserved word eventref is used here to refer to an event
defined elsewhere (change event which occurred against the bidsCol variable). As
we will see later, this special word sometimes helps define causality between actions.

(role :ident initiator
(roleprop (roledesc :ident initiator :name Initiator)
(roleattributes :cardinality 1)
(variables (variable :ident bidsCol :type collection)
(variable :ident deliberations :type map)
(variable :ident deadline :type date))
(actions (action :category compute :description Deliberate
(signature (arg :type date :dir in)
(arg :type collection :dir in) (arg :type map :dir out))
(events (event :type change :dir in :object deadline :ident evtO)
(eventref :dir in :ident evt))
(event :type change :dir out :object deliberations :ident evtl))))
(phases ...))

Example 2. Specifying the initiator role of CNP

Phase. As stated above, each phase is a group of actions that share direct links. We use
the following rules to define a phase.

< phase+ >

< phases > :
< phase > := < actions >
< action > := < category >< description? >< signature >< events >

For example, in the initiator role of CNP, the first phase consists of producing and
sending the cfp message. This phase contains two actions: prepareCFP and
sendCFP. prepareCFP produces the cfp message. It is followed by sendCFP
which sends the message to each identified participant. The description of this phase is
given in Example[3

(phase :ident phsl
(actions (action :category compute :description prepareCFP
(signature (arg :type date :dir in) (arg :type any :dir out))
(events (event :type variablecontent :dir in :object deadline)
(event :type messagecontent :dir out :object cfp :ident evt2)))
(action :category send :description sendCFP
(signature (message :ident cfp))
(events (eventref :dir in :ident evt2)
(eventref :type custom :dir out :ident cus01)
(event :type endphase :dir out :ident evt3)))))

Example 3. Specifying the first phase of the initiator role of CNP

216 J.G. Quenum et al.

Message. Though we did not define messages as a concept, we use them in the formal
specifications because they contain part of the information manipulated during interac-
tions. The concept of message is well known in ACL, and their semantics is defined
accordingly. We propose an abstract representation of messages, which we call mes-
sage patterns. A message pattern is composed of the performative and the content type
of the message. We also offer the possibility to define the content pattern, a UNIX-like
regular expression which depicts the shape of the content. Note that at runtime, these
messages will be represented with all the fields as required by the adopted ACL. In our
framework, we represent all the message patterns once in a block and refer to them in
the course of the interaction when needed. In our opinion, it sounds that only one ACL
be used all along a single protocol description. The following rules define message pat-
terns. Example] describes the message patterns used in CNP.

< messagepatterns > = < acl >< messagepattern+ >
< acl > :="fipa'|'kqml’

< messagepattern > = < per formative >< identifier >< content >
< content > = < type >< pattern? >

(messagepatterns :acl Kgml

(messagepattern :performative achieve :ident achmsg
(content :type any :pattern ...))
(messagepattern :performative sorry :ident refuse
(content :type null :pattern ...))
(messagepattern :performative tell :ident propose
(content :type any :pattern ...))
(messagepattern :performative deny :ident reject
(content :type null :pattern ...))
(messagepattern :performative tell :ident accept
(content :type string :pattern ...)) ...)

Example 4. Specifying message patterns in CNP

Design Guideline. As a guideline for protocol design and specifications in our frame-
work, we recommend several design rules. Following these rules ensures that the result-
ing protocol specifications are wellformed and correct (ambiguity and inconsistency-
proof). In the future, we envision to devise some algorithms (and a tool) which automate
the process of checking whether a protocol specification complies with our guidelines.
We introduce these guidelines here.

Proposition 1. For each role of a protocol, there should be at least one action which
drives into the terminal state. Every such action should be reachable from the role’s
initial state.

Corollary 1. From their semantics, roles can be represented as graphs. And for every
path in this graph, there should be an action which drives to a terminal state.

A Modeling Framework for Generic Agent Interaction Protocols 217

Proposition 2. For every message m, of the message set M of a protocol, there is at
least one send action of a role in the protocol, which sends m,.

Proposition 3. When two distinct actions can be executed at a point in a role definition,
the set of events which fire each action, though intersect-able, should be distinguishable.

Proposition 4. When an action produces a message, it should be immediately followed
by a send action, which will be responsible for sending the message.

3.3 Semantics of the Concepts

Event. As we saw, an event informs of an atomic change. This change may have to do
with the notified role’s internal state. But usually, the notification is about other roles’
internal state. Therefore, events are the grounds for role coordination. In this section,
we briefly discuss the semantics of some events used in our framework. When needed
in the definition of the semantics of our concepts, we introduce some expressions in a
meta-language, which we call primitives.

change: this event type notifies of a change of the variable’s value. Let v be a variable,
change(v) denotes the event. We introduce the value primitive, which returns the value
of a data at a given time point. Let d and ¢ be a data and a time point respectively,
Value(d, t) denotes this function. Value(d, t) = () means that the data d does not exist
yet at time point . We interpret the change event as follows:

Jt1,ta(ty < ta) A (Value(v,ty) # 0) A (Value(v, 1) # Value(v, t2))

endprotocol: this event type notifies of the end of the current interaction. The phases
in each role, have either completed or are unreachable. Also any global action of each
role is either already executed or unreachable. A phase is unreachable if none of its
actions is reachable. Actually, if the initial action is unreachable, the phase it belongs to
will also be unreachable. We introduced three new primitives: Follow, Executed and Un-
reachable. Follow is a function which returns all the immediate successors of a phase.
Let m; and 75 be two phases, mo immediately follows 7y, if any of the input events of
the initial action of 7 refers to a prior event generated by one of the actions (usually
the last one) of m;. Unreachable is a predicate which means that the required conditions
for the execution of an action do not hold, therefore preventing this action from being
executed. Finally, Executed is a predicate which means that an action has already been
executed. Let IT be the set of phases for a role r and A, the set of executable actions
for a phase 7 in r. Let also Ag, be the set of global actions of r. We interpret the
endprotocol event as follows:

Vr € R,Vaq € Ag,., (Unreachable(a,) V Executed(aq)) A (Vo € II, (Follow(w)=0)
V(VYa; € A, Unreachable(a;)))

reception: this event type notifies of the reception of a new message. Let m’ denote
the received message, we interpret this event as follows (notation being reception(m’)):

3 tl,tQ(tl < tg) A\ (m’ ¢t1 9)?’) AN (m’ Eto m/)

218 J.G. Quenum et al.

The symbol €, (resp. ¢;) means belongs (resp. does not belong) at time point ¢t. 9 is
the set of messages an agent received during an interaction.

variablecontent: this event notifies of the (fresh) construction of the content of a
variable. Let v be a variable, variablecontent(v) denotes the event, which we interpret
as follows:

Jt1,t2(t; < ta) A (Value(v,t;) = 0) A (Value(v, t2) # 0)

Action. Actions are executed when events occur. And once executed, they may gener-
ate new events. Events are therefore considered as Pre and Post conditions for actions’
execution. Here again, we only discuss the semantics of some action categories: ap-
pend, set, compute and send. Let E be the set of all the event types we consider in our
framework and E' = E — {endphase, endprotocol }.

append: this action adds a data to a collection. Let a; be such an action. In the
following we introduce two primitives: isElement() and Arguments(). isElement() is a
predicate which returns true when a data belongs to a collection at a given time point.
Arguments() returns the input arguments of an action.

Pre = {e;,e; € E'}
Post = {e;, 3k ey, = change A (Ft1,ta,d, v € Arguments(a;), (t1 < t2) A
(isElement(v, d, t1) = false) A (isElement(v, d, t2) = true))}

send: this action sends a message. It is effective both at the sender and the receiver
sides. Let a; be such an action. We interpret it as follows:
at the sender side:

Pre = {e;,Vm, € Arguments(a;), 3 k, e, = messagecontent(m;)}
Post = {Trans(m;) = true}

at the receiver side:

Pre =)
Post = {e;,Vm; € Arguments(a;), 3! k, e, = reception(m;)}

set: this action sets the value of a data. Let a; be such an action,

Pre = {¢;,e; € E'}
Post = {e;, Vv; € Arguments(a;), 3! e;, e; = variablecontent(v;)}

compute: this action computes some information. Let a; be such an action,

Pre = {e;,e; € E'}
Post = {e;,e; € E' — {reception}}

ACL usually define the semantics of their performatives by considering the belief and
intention of the agents exchanging (sender and receiver) these performatives. This ap-
proach is useful to show the effect of a message exchange both at the sender and the
receiver sides. In our framework, we adopt a similar approach when an action produces

A Modeling Framework for Generic Agent Interaction Protocols 219

or handles a message. We use the knowledge the agent performing this action has with
respect to the message. Hence, we introduce a new predicate, Know(¢, ag), which we
set to true when the agent a4 has the knowledge ¢. Know is added to the post con-
ditions of the action when the latter produces a message. It is rather added to the pre
conditions of the action when it handles a message. Note that ¢ is the content of the
message. In the future, we wish to extend the interpretation of this predicate and enable
agents to share some social states. Thus, our specification formalism could cover the
commitment protocols.

Moreover, when an action ends up a phase or the whole protocol, its Post condition
is extended with endphase and endprotocol, respectively.

Phase. The semantics of a phase is that of a collection of actions sharing some causal-
ity relation. The direct links between actions of a phase are augmented with a causality
relation introduced by events. We note 7 Hc A, < >, where A is a set of actions
and < a causality relation which we define as follows:

Va,,a, € A, a, < a, <= Je € Post(a,),e € Pre(a,)).
Proposition 5. Let a, and a, be actions of a phase m, such that a, always precedes a,,

(a, <a,)V(Jap,...,ax,a, <ap... <ax < a,)

Role. The causality relation between actions of phases can be extended to interpret
roles. Indeed, an event generated at the end of a phase can be referred to in other
phases. On this basis, we defined an operational semantics for roles. The inference
rules behind this semantics cover sequences, loops, alternatives, etc. In these inference
rules, defined as usually, the statements are replaced by actions. We do not discuss
these rules in this paper due to space constraint. Thanks to the operational seman-
tics, we interpret a role is a labeled transition system with some intrinsic properties.
r =< 0,,S,A,— > where ©, are the intrinsic properties of the role, S is a fi-
nite set of states, A contains transitions labels (these are the actions the role performs
while running), and — C S x A x S is a transition function. As an illustration, we
give the semantics of the initiator role of CNP, which we call rg. Note that the mes-
sages associated with the send actions are numbered following their position in Fig. 2l
ro =< 0,,,S,A, — > O, = {"cardinality = 17 N\ isInitiator = true’} S =
{S0,S1,S2,83,84,Ss5,S6,S7, S8, S9, S10, 511,812} A = {ag,a1,az,a3,a4,as,
ag,ar,a11} — = {(So,a0,81),(S1,sendpy,,),S2),(S2,a1,S7),(S2,a2,Ss3),
(S3, aq, S4)7 (S47 asg, S5), (S5, send[ms], Sll)a (Sg,7 send[m4] y SG)7 (SG7 as, Ss)7
(Se,a6,S9), (Se, a7, S10), (S2,a11, S12)}.

Protocol. The semantics of a protocol is that of a collection of interacting graphs (the
roles) which coordinate their execution following the message exchange sequence {2.
This collection also has some intrinsic properties, some propositional contents which
are true in the environment of the MAS. Nevertheless, some limitations subsist in this

220 J.G. Quenum et al.

way of interpreting generic protocols. Usually a priori semantics is proposed for proto-
cols. However, a priori semantics is not sufficient to interpret a generic protocol. Two
main reasons account for such an insufficiency. Firstly, the message exchange sequence
can be mapped to a graph of possibilities in the regard of exchanged messages. There-
fore, the semantics of an interaction based on this protocol corresponds to a path in this
graph. Secondly, the semantics of communicative acts defined in ACL is not enough
to define the semantics of a protocol. The semantics of the executed actions should be
included too. However, except send actions, all the other actions can only have general
interpretation before the execution of the interaction, or its configuration for an agent.
A more precise semantics of these actions can only be known at runtime (or sometimes
the design time for agents). To this end, we introduce a posteriori semantics for proto-
cols in our framework. Particularly, we draw on Protocol Operational Semantics (POS)
developed by Koning and Oudeyer [[11]]. In our framework, this additional interpretation
feature consists in refining the path followed in each graph corresponding to the roles
involved in the interaction. Also, the semantics of the actions is enriched by that of the
methods executed in place.

As an illustration, let us assume that the semantics of each role of CNP is known,
we define that of the whole protocol as follows. p =< &, R, M, Q2 >, where R =

mo m1|ma|msg mz|mg
{ro,r1} and M = {mg, m1,... mg}. Q@ =<1y — 71,71 70,70
aop az7,mo asz,msa

ms|me|mz
T, T ——— To >.
a10,Ma

4 Properties

When one designs a generic protocol, it is mandatory to formally prove its properties,
in order to ease a wide adoption of this protocol. In this section we discuss some gen-
eral properties for protocols designed in our framework. Here, we focus on two prop-
erties, liveness and safety, related to the correctness of protocols specified following
our framework. Finally, we discuss the termination property, which one of the critical
ones, for generic protocols. Note that we assume that the design guidelines discussed
in Section [3.2] are respected. There are other properties specific to generic protocols,
equivalence, compliance, similarity, which we do not discuss in this paper.

4.1 Liveness

Definition 6. Liveness A role of a protocol is alive when it still has a sequence of ac-
tions to perform before reaching its terminal state. As a consequence, a protocol is alive
when at least one of its roles is still alive.

Proposition 6. For every role of a protocol, events will always occur and fire some
transition until the concerned role enters a terminal state.

Proof. We prove this property only on a design standpoint, i.e. we do not assume any-
thing about what actually happens in the MAS at runtime. Each role is considered a
transition system; and from the description of transition systems, unless a faulty situa-
tion is encountered, an event will always occur and require to fire a transition until the
role enters a terminal state, where the execution stops.

A Modeling Framework for Generic Agent Interaction Protocols 221

4.2 Safety

Definition 7. (Safety) A safe protocol is one where nothing inconsistent happens dur-
ing its execution. Particularly, we focus on two aspects of safety: (1) consistent message
exchange, which means that each sent message is received and handled by at least one
role; (2) Unambiguous execution, which explicitly requires some clear conditions to
hold every time a role has to take an action.

Proposition 7. (Consistent message exchange) The message exchange sequence of
a protocol, designed in our framework and which respects our design guidelines, is
consistent. Precisely, any message a role sends is received and handled at least by one
role. By the same token, any message a role receives has a sender (generally another
role).

Proof. From Proposition[2] each message in M is sent at least by one send action. On
the other hand, every reception event in any role is related to a received message which
belongs to M too. Thus, every received message has been generated and automatically
sent (see PropositionH) by a send action, supposedly of a different role.

Proposition 8. (Unambiguous protocol execution) For each action a role can take,
there is an unambiguous set of events which fire its execution.

Proof. Let a, be an action of a role r and E,, be the set of events which fire the ex-
ecution of a,. If a, is the unique action that can be performed at the current execution
point of r, the proposition is straightforward. Let’s now assume that there exists another
action a, which can be executed at the same point as a,. If E,, N E,, = (, then the
proposition is also straightforward. In the case where £,, N E,, # (), from Proposi-
tion 3] we know that £, # E,,. Thus, for a, to be performed events in £, — E,,
should occur. And E,, — E,, is a unambiguous subset of £, .

4.3 Termination

Proposition 9. (Termination) Each role of a protocol represented in our framework
always terminates.

Proof. From Proposition [I] each role has a sequence of actions which bring that role
to a terminal state. Once this terminal state is reached, the interaction stops for the
concerned role. When all the roles enter a terminal state, the whole interaction definitely
stops. However, this proof is insufficient when there are several alternatives or loops in
the protocol. Corollary [[laddresses this case. Actually, only one path of the graph (with
respect to the transition system) corresponding to the current role will be explored. And
as this path ends up with an action driving to a terminal state, the role will terminate.

5 Conclusion

We believe that a special care is needed for the specifications of generic protocols,
since only partial information can be provided for them. Therefore, we developed a

222 J.G. Quenum et al.

framework to represent generic protocols for agent interactions. Our framework puts
forth the description of the actions performed by the agents during interactions, and
hence highlights the behavior required of them during the execution of protocols. In this,
we depart from the usual protocol representation formalisms which only focus on the
description of exchanged messages. Our framework is based on a graphical formalism,
AUML. It is formal, at least as expressive as AUML (and its extensions) and of practical
use. As we discussed in the paper, this framework has been used to address various
issues in agent interaction design.

Since actions in generic protocols can be described only in a general way, a more
precise description of these actions is dependent on the architecture of the agent that
will perform them in the context of an interaction. This is usually done by hand by
agent designers when they have to set up agent interaction models. Doing such a con-
figuration by hand may lead to inconsistent message exchange in an heterogeneous
MAS. We address this issue by developing an automatic generic protocol configuration
mechanism (see [[15]). This mechanism consist in looking for similarities between the
functionalities in the architecture of an agent and actions of generic protocols.

Protocol selection is another issue we faced while designing agent interactions based
on generic protocols. Usually, agent designers select the protocols their agents will use
to interact during the performance of collaborative tasks. However, this static protocol
selection severely limits interaction execution in open and heterogeneous MAS. Thus,
we developed a dynamic protocol selection mechanism (see [14]) to address these lim-
itations. During the dynamic protocol selection, agents reason about the specifications
of the protocols known to them and the specification of the task to perform. Again, we
used this framework, since it enables us to accomplish the reasoning about the manda-
tory coordination mechanisms for the performance of collaborative tasks.

References

1. M. Alberti, D. Daolio, and P. Torroni. Specification and Verification of Agent Interaction
Protocols in a Logic-based System. In ACM Symposium on Applied Computing (SAC), pages
72-78. ACM Press, 2004.

2. B. Bauer and J. Odell. UML 2.0 and Agents: how to build agent-based systems with the new
UML standard. Journal of Engineering Applications of Artificial Intelligence, 18:141-157,
2005.

3. G. Casella and V. Mascardi. From AUML to WS-BPEL. Technical report, Computer Science
Department, University of Genova, Italy, 2001.

4. M. Colombetti, N. Fornara, and M. Verdicchio. A Social Approach to Communication in
Multiagent Systems. InJ. A. Leite, A. Omicini, L. Sterling, and P. Torroni, editors, Declara-
tive Agent Languages and Technologies (DALT), number LNCS 2990, pages 191-220, Aus-
tralia, Melbourne, 2003. Springer.

5. T. Doi, Y. Tahara, and S. Honiden. IOM/T: An Interaction Description Language for Multi-
agent Systems. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 778785, 2005.

6. M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal Specifi-
cation of Electronic Institutions. In Agent-mediated Electronic Commerce (The European
AgentLink Perspective). 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A Modeling Framework for Generic Agent Interaction Protocols 223

. FIPA. FIPA Communicative Act Library Specification. Technical report, Foundation for

Intelligent Physical Agents, 2001.

. L. Giordano, A. Martelli, and C. Schwind. Specifications and Verification of Interaction

Protocols in a Temporal Action Logic. In Journal of Applied Logic (Special Issue on Logic-
based Agent Verification), 2005.

. M. Greaves, H. Holmback, and J. Bradshaw. What is a Conversation Policy? In Proceedings

of the Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents
1999, 1999.

G.J. Holzmann. The model checker spin. [EEE Transactions on Software Engineering,
23:279-295, 1997.

J-L Koning and P-Y Oudeyer. Introduction to POS: A Protocol Operational Semantics.
International Journal on Cooperative Information Systems, 10(1 2):101-123, 2001. Special
Double Issue on Intelligent Information Agents: Theory and Applications.

Y. Labrou and T. Finin. A proposal for a new KQML specification. Technical report, Uni-
versity of Maryland Baltimore County (UMBC), 1997.

S. Paurobally, J. Cunningham, and N. R. Jennings. A Formal Framework for Agent Interac-
tion Semantics. In Proceedings. 4th International Joint Conference on autonomous Agents
and Multi-Agent Systems, pages 91-98, Utrecht, The Netherlands, 2005.

J. G. Quenum and S. Aknine. A Dynamic Joint Protocols Selection Method to Perform
Collaborative Tasks. In P. Petta M. Pechoucek and L.Z. Varga, editors, 4th International
Central and Eastern European Conference on Multi-Agent Systems (CEEMAS 2005), LNAI
3690, pages 11-20, Budapest, Hungary, September 2005. Springer Verlag.

J. G. Quenum, A. Slodzian, and S. Aknine. Automatic Derivation of Agent Interaction Model
from Generic Interaction Protocols. In P. Giorgini, J. P. Muller, and J. Odell, editors, Pro-
ceedings of the Fourth International Workshop on Agent-Oriented Software Engineering.
Springer Verlag, 2003.

G. Smith. The Contract Net Protocol: High-level Communication and Control in a Dis-
tributed Problem Solver. IEEE Trans. on Computers, 29(12):1104-1113, 1980.

C. Walton. Multi-agent Dialogue Protocols. In Proceedings of the Eight Int. Symposium on
Artificial Intelligence and Mathematics, 2004.

M. Winikoff. Towards making agent UML practical: A textual notation and tool. In Proc.
of the First Int. Workshop on Integration of Software Engineering and Agent Technology
(ISEAT), 2005.

224

A EBNF Grammar

J.G. Quenum et al.

< protdescriptors > :
< protattributes > :

< protocolkeyword > :
< roles > :

< messagepatterns > :
< role >:

< roledescriptors > :
< roleattributes > :

< rolekeywords > :

< variables > :
< variable > :
< type > :

< actions > :

< phases > :

< phase > :

< action > :

< category > :
< stgnature > :

< arguments > :

< argdesc > :
< messages > :
< message > :
< messageset > :
< settype > :

< events > :

< eventset > :
< event > :

< eventtype > :
< object > :

< eventref > :

< messagepattern > :

< protocol > :=

< cardinality > =

< argset > :=

< protproperties >< roles >< messagepatterns >
< protdescriptors >< protattributes >< protkeywords? >
< class >< participantcount >

? containsconcurrentroles

| iterativeprocess”| . ..

< role >< role > | < roles >< role >

< acl >< messagepattern+ >

< roleproperties >< variables? >< actions? >< phases >
< roledescriptors >< roleattributes >< rolekeywords? >
< cardinality >< concurrentparticipants? >

< rolekeyword+ >

< digit+ > |"n”

< variable+ >

< identifier >< type >

char

"number”|”

string”|” 7 |”boolean” | . . .
< action+ >

< phase+ >

< identifier >< actions >

< category >< description? >< signature? >< events >

"append” |” custom” | remove”|” send” | set” |” update”
< arguments > | < messages >

(< argset > | < argdesc >) +

< settype > (< argset > | < argdesc >) +

< identifier >< type >< direction >

(< message > | < messageset >) +

< identifier >

< settype > (< messageset > | < message >) +
Tand”|” or” | zor”

(< event > | < eventref > | < eventset >) +

< settype > (< event > | < eventref > | < eventset >) +
< identifier? >< eventtype >< object >

2] |7>

custom”|” 7.

" change endphase
< message > | < variableid >
< identifier >

< identifier >< per formative >< content >

< per formative > := < fipaper formative > | < kqmlper formative >
< content > 1= < type >< pattern? >

	Introduction
	Related Work
	The Framework
	Fundamental Concepts
	Formal Specifications
	Semantics of the Concepts

	Properties
	Liveness
	Safety
	Termination

	Conclusion
	EBNF Grammar

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

