Dynamic Resource Allocation Heuristics for Providing
Fault Tolerance in Multi-agent Systems

Alessandro de Luna
Almeida
Université Pierre et Marie
Curie-Paris6, UMR 7606
4 Place Jussieu
Paris, F-75005 France

Alessandro.Luna-
Almeida@lip6.fr

ABSTRACT

In this article, we propose an original method for providing
fault tolerance in multi-agent systems. Our method focuses
on building an automatic and adaptive replication policy to
solve the resource allocation problem of determining where
agents must be replicated to minimize the impact of fail-
ures. This policy is determined by taking into account the
criticality of the agents and the reliability of the machines.
We propose then different heuristics for the allocation of
the available resources. Some measurements assessing the
effectiveness of our approach are also presented.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; D.2.8 [Computer Systems
Organization|: Performance of Systems—Fault tolerance

General Terms

Algorithms, Performance, Reliability, Experimentation

Keywords

Adaptation, fault tolerance, multi-agent systems, resource
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1. INTRODUCTION

The possibility of partial failures is a fundamental charac-
teristic of distributed applications. In order to prevent that
a system stops working properly due to the occurrence of
faults, many fault tolerance approaches have been proposed,
most of which are based on the concept of replication, i.e.
creation of copies of a component in distant machines.

Replicating every single component of the application in
every machine is not a feasible approach due to the limit
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on the resources available per machine. In general, it is the
responsibility of the designer of the application to explicitly
identify what critical components should be made robust
and how to parameterize replication. This can be decided
statically before the application starts [5, 8] or in a non-
automatic way during the execution of the system [4, 7].

However, those works are not suitable for multi-agent
systems (MAS) applications for two main reasons: firstly,
MASs can be very dynamic and thus, it is very difficult
to identify in advance the most critical agents; secondly, a
manual control is not realistic, as the application designer
cannot monitor the evolution of a distributed application of
a significant scale.

In this paper, we will introduce a new approach to build-
ing reliable multi-agent systems. We define the resource al-
location problem of determining which replication resources
must be allocated to each agent so as to maximize the relia-
bility and robustness of the system. The failure probability
model used takes into account timing aspects and the choice
of the reliability level guaranteed for each agent is based on
the concept of criticality, a value (evolving in time) associ-
ated to each agent in order to reflect the effects of its failure
on the overall system. This paper also reports on different
heuristics we proposed to the resource allocation problem.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the fault tolerance problem we deal with
in this paper. Section 3 defines the resource allocation prob-
lem and Section 4 proposes different solutions to it. Section
5 shows the experimental results. Section 6 provides an
overview of the state of the art. Finally, in section 7 we
present our conclusions and perspectives for future work.

2. CONTEXT OF THIS WORK

The fault tolerance problem described in this paper con-
siders a set of agents that have to complete a set of tasks.
We consider an application of assistance for air traffic con-
trol through assistant agents (this is a simplified scenario
of an ongoing collaborative project with Eurocontrol). The
airspace is divided into sectors, each sector being controlled
by a human controller (see Figure 1). Each controller is as-
sisted by an assistant agent who monitors the air traffic to
suggest decisions about traffic control. Agents communicate
in order to assist with collaborative procedures, e.g. hand
off procedures, that is when a controller passes the respon-
sibility of an airplane exiting from its supervision sector to



the controller of the sector the plane is entering.
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Figure 1: Air traffic control

While trying to accomplish their tasks, agents can be
faced to different kinds of failures. In our model, we consider
the crash type of failures, i.e. the execution of the agents lo-
cated at the machine which fails stops definitively and they
answer no longer to messages. A machine that fails can be
restarted, but with a new state completely reinitialized.

To minimize the impact of failures, agents can be repli-
cated. Since the available resources are often limited, one
cannot replicate every agent in each machine. The problem
consists in finding a replication scheme which minimizes the
probability of failure of the most critical agents. This scheme
must also be revised over time, considering that the multi-
agent execution context of tasks is dynamic and, thus, the
criticalities of the agents vary at runtime.

To control replication in an autonomous way, we address
two successive issues. Firstly, we have proposed several met-
rics for estimating the criticality of the agents, a value that
measures the potential impact of the failure of that individ-
ual agent on the organization. More details on the metrics
(static dependences, dynamic dependences, roles, norms,
plans) can be found in [3]. The second issue, which we adress
in the next section, is a resource allocation problem which
consists of using the criticalities of the agents to determine
the resources to allocate to each agent so as to minimize the
failure probability of the most critical ones.

3. RESOURCE ALLOCATION PROBLEM

The problem of resource allocation considers a set of agents
S = {Agent., Agenta, - - - , Agentn, } and a set of machines
M = {mi,ma, -+ ,Mn,, }, where n, and n., are respec-
tively, the total number of agents and of machines.

Definition 1. A resource allocation matriz is a matrix
D, n., Where d;; is a variable that represents the number
of copies of Agent; in m;.

The resource allocation matrices are subjected to three
constraints: (1) The first one takes into account the fact
that it is useless to deploy more than one replica of the
same agent in a same machine (because our model of failure
considers machine failures):

Vi,j-dij =0Vdiy; =1 (1)

(2) The second constraint imposes a limit on the number
of resources nr; available in the machine m;, i.e. the number
of agents that can be deployed in m;:

V.] . Z di]' =nrj (2)
i=1

(3) Lastly, since every agent must be deployed somewhere
in the system, we add this last constraint:

Mm

Vi-y diy>1 (3)
j=1

Definition 2. For each machine m; of the system, we de-
fine the failure rate (denoted as ;) as the frequency with
which m; fails. The failure rate is initialized by our frame-
work at each boot of the machine.

The value of each \; can be computed using data collected
by observing the past failures of each machine. Let T; be
the total time when m; has been up and N; be the number
of failures during 7Tj:

(4)

Definition 3. Let A; be the failure rate of the machine
mj, and X; be the random variable representing the time
to failure of m;. Since A; is constant, we can define the
failure density function corresponding to X; by the following
exponential density function:

fi (@) = AjeN® (5)

Definition 4. The reliability of a machine m; at the in-
terval of time [0, ¢] (denoted by v;(t)) is the probability that
it will not crash before the time t.

vi () =P (X; > t)=e' (6)

If we assume that the failures of the machines where an
agent Agent; is deployed are independent, it is easy to show
that the probability p; that this agent Agent; will not fail
before ¢ (i.e. its reliability) is given by the equation:

Mm

() =1 (1= dye ") (7)

j=1

Definition 5. Let S be the set of agents and ¢; the critical-
ity of Agent; (calculated using one of the metrics described
in section 3). Then, we define the utility of the multi-agent
system (denoted as u(S)) as the total importance of all the
agents of the system:

u(S) :ici (8)

Definition 6. Let D be a resource allocation matrix, c;
the criticality of Agent; and p; the probability that Agent;
will not fail (the time parameter ¢ is omitted for simplicity
reasons). The expected utility of the MAS deployed using D
is defined as the expected value of the utility function. It
can be calculated as follows:
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Ep(u(S) =3 e xps (9)
i=1
The higher the value of Ep (u (S)), the more efficient and
fault-tolerant the allocation D.

Definition 7. We define the resource allocation problem as
the optimization problem of finding one resource allocation
matrix Di,q, which respects the constraints (1), (2) and (3)
and that gives a maximum value for the expected utility of
the MAS (Ep,,.., (v (S)) is maximum).

In the next section, we will present the strategies we have
proposed to solve this problem. These strategies make no
assumption about the distribution model. In fact, they can
be implemented in a centralized or in a distributed way. Fur-
thermore, the allocation matrix found by them are revised
along time. The revision strategies do not require a recal-
culation of the allocation since it can just be adapted in an
incremental way. More details can be found in [1].

4. RESOURCE ALLOCATION STRATEGIES

4.1 Optimal allocation

To find the optimal allocation, we run a depth first search
in the space of possible allocations. The agents are initially
ordered by their criticalities in different levels such that the
k" recursion level in this search corresponds to the k& most
critical agent. At each level k, the variables of the agent
Agent), are assigned (corresponding to the k" row of the
allocation matrix D).

To prune the search tree, we backtrack the search when-
ever a constraint is violated. Furthermore, a property of the
optimal solution is that an agent must be less reliable than
all the agents more critical than it. Then, when assign-
ing the variables corresponding to the agent Agenty, our
method guarantees that the reliability of Agenti (given by
the equation 7) is lower than the reliabilities of all the agents
more critical than it, otherwise we backtrack.

Another pruning technique is the branch and bound, which
consists in backtracking whenever the optimal solution can
not be obtained using the current assignment of the vari-
ables. For that, the algorithm determines an upper bound
for the value that can be obtained for Ep(u(S)) with the
current assignment of variables. If this upper bound is lower
than the best solution found until now, it is certain that the
current assignment of the variables does not correspond to
an optimum. Let k be the current level of the search and
nd; the number of resources still available in the machine j,
an upper bound is given by:

k—1 nm
bound = Z Ci X pi +cp X E nd; X vj (10)
i=1 j=1

The worst case complexity to find the optimal allocation
is exponential in the number of machines and of agents.

4.2 Proportion-based Heuristics

[6, 2] propose what we call the Proportion_Number heuris-
tic, which limits for each agent the number of machines
where it can be deployed. This limit is directly proportional

to the criticality of the agent and to the number of available
resources.

The problem of those works is that the reliabilities of the
machines are not taken into account. Hence, we propose a
new heuristic (Proportion_Reliability), where an agent can
be deployed in a set of machines as long as the sum of re-
liabilities of those machines does not exceed a threshold, as
shown by the following equation:

Nm
c; X Z (ndj X ’Uj)
j=1

Mm

VZZ(d” ij) < e
Jj=1 Z Cr
k=1

Among the sets of machines that satisfy the equation 11,
we look for the one with minimal failure probability. For
that, firstly we sort the machines in decreasing order of re-
liability. Then, for each available resource in each machine,
we allocate it to the agent that is not deployed in this ma-
chine and that has the highest threshold. After allocating
a resource to an agent, the threshold of the agent is decre-
mented by the reliability of the corresponding machine.

The complexity of the Proportion-based strategy is O(nq X
log(na) + nm X log(nm) + nr X ng), where n, is the total
number of resources available in all the machines.

(11)

4.3 Greedy Heuristics

The problem of the proportion-based heuristics is that
they do not try to maximize explicitly the expected util-
ity. We propose then greedy heuristics that incrementally
builds the solution and that takes directly into account the
expected utility so that it can be maximized.

For that, machines are initially sorted in decreasing or-
der of reliability. Each resource of each machine is then
allocated to the agent that is not deployed in the machine
and such that the value of Ep (u(S)) is maximized. The
corresponding algorithm is given by the Algorithm Greedy
Allocation.

Algorithm 1 Greedy Allocation

sort the machines in decreasing order of reliability
for all machine m; do
for all resource in m; do
Amaz — 0
for all agent i such that d;; = 0 do
D «— D
dij — 1
Ar — Bpr (u(S)) = Ep(u(S))
if A; > Ayae then
Aoz — D
Dipae < D'
end if
end for
D Dipn
end for
end for

The complexity of this algorithm is O(nq X log(ng) +nm X
log(nm) + nr X ng), the same as the proportion-based one,
but in practice it is slower since floating point operations
are necessary to calculate the values of A;.



The basic greedy algorithm does not guarantee that an
agent is less reliable than all the agents more critical than
it. We propose then two variants to solve this problem.

The first one (Greedy with ordering) consists of making
the agents exchange among them the set of machines where
they will be deployed (i.e. the rows of the allocation matrix)
in the end of the greedy algorithm. The exchanges are made
according to the reliabilities of the set of machines allocated
to each agent. The less reliable set is allocated to the less
critical agent, the second less reliable set to the second less
critical agent, and so on to the most reliable set that will be
allocated to the most critical agent. The complexity of this
variant is O(2 X nq X log(ne) + nm X log(nm) + nr X ng).

In the second variant (Greedy with swap), instead of de-
laying the swap operations to the end of the algorithm, we
make them after the allocation of each resource but only if
necessary. The complexity of this variant is O(nq xlog(na)+
Nm X log(Nm) + 2 X Ny X Ng).

4.4 Local Search Heuristics

None of the preceding heuristics guarantees to find the
optimum allocation matrix. We propose then to use two
different local search techniques to try to ameliorate a given
allocation: Hill Climbing and Tabu Search.

The algorithm Hill Climbing consists of starting with an
initial solution and moving iteratively in the search space
toward better neighbor solutions. In our case, neighbor al-
locations are obtained by reallocating one resource from one
agent to another. The problem of Hill climbing is that it
can get stuck in local optimums. The Tabu Search method
pursues the local search whenever it encounters a local op-
timum by allowing non-improving moves. Cycling back to
previously visited solutions is prevented by the use of mem-
ories that record the recent history of the search.

5. EXPERIMENTATION AND RESULTS

To implement the resource allocation heuristics described
in the preceding section, we have extended the framework
DARX [10] with an adaptive replication control module which
calculates and updates in a distributed way the criticalities
and uses the replication service to deploy the resource al-
location matrix obtained. For space reasons, we omit the
details of our architecture.

5.1 Experimental Setup

We have conducted experiments in order to evaluate the
different heuristics proposed in this paper and compared
them to a random allocation. We varied the number of
agents (100,200, 300, -- - ,1000) and used a number of ma-
chines equal to 20% of the number of agents. Moreover, we
varied the number of agents that can be deployed at each
machine in the range {6,8,10,12,14}. The criticalities of
the agents and the failure rate of the machines were varied
according to five homogeneity levels. Table 1 shows the in-
terval of values for the criticalities and for the failure rates
(in failures per minute).

For each combination (number of agents, number of ma-
chines, number of resources by machine, homogeneity level),
1000 test cases were generated, by varying the criticalities
and the failure rates. Each heuristic has been tested using
the same test cases. We have compared the expected utility
of the allocations obtained (Ep(u(S))) for each heuristic as
well as the CPU time necessary for execution. The results

Table 1: Homogeneity Levels Intervals of Values

Level Criticality Interval | Failure Rate Interval
Very Low [1,10000] [0.01, 4]
Low 1250,8750 0.1, 2]
Medium 2500,7500 [0.3, 1.3]
High 3750,6250 [0.5, 1]
Very High [4500,5500] [0.6, 0.8]

shown are the average of the 1000 test cases. For the local
search heuristics, 1000 iterations have been performed.

5.2 Results and Discussion

The order of the heuristics in increasing order of Ep (u(.S))
for all the configurations is as follows: Random, Propor-
tion_Number, Proportion_Reliability, Hill Climbing, Greedy
and, finally, Tabu Search (see Figure 2 for a very low ho-
mogeneity level and 10 resources by machine). As expected,
the Greedy heuristic is better than the other ones since it
maximizes explicitly the expected utility. Hill Climbing en-
hances the result obtained by the algorithms that define the
initial allocation. Tabu Search enhances the results of the
Greedy heuristic, but less than 0.1%.

The difference of the results between the Greedy and the
others is higher when the number of agents is augmented
(see Figure 2). This is due to the fact that when there are
fewer agents, fewer allocation matrices exist. The difference
of the results is smaller with a higher homogeneity level. In-
deed, when the homogeneity level is very high, the different
possible allocations give similar values for Ep(u(S)).

Table 2 shows the CPU time (in ms) for the very low
homogeneity level, 14 resources by machine and 1000 agents.

Table 2: Comparison of the CPU Time of the heuris-

tics (in ms)

Random | Proportion | Greedy Hill
10.3 25.5 46.6 2982.7

Tabu
3 hours

The results shows that the Greedy heuristic is the best
one with respect to the expected utility and it scales well
when the number of agents and machines augments. How-
ever, the proportion-based one can also be used if the ho-
mogeneity level is high, since it can lead to similar values
for the expected utility but with better time performance.
Finally, the small gain in the expected utility obtained by
Tabu search does not justify its use, since it is very time-
consuming.

6. RELATED WORK

Several approaches have addressed the problem of fault
tolerance. [5] implements passive replication in a trans-
parent way using proxies. All messages going to and from
a replicate group are funneled through the replicate group
message proxy. In [8], the problem of fault tolerance is de-
fined as a deployment problem and a probabilistic approach
is proposed to deploy the agents in a multiagent application.
The main problem of these two works is that replication is
applied statically before the application starts.

In distributed computing, there are some software infras-
tructures for adaptive fault tolerance [4, 7] where existing
strategies can be dynamically changed. Nevertheless, such a
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Figure 2: Comparison of the heuristics for a very low level of homogeneity and 10 resources by machine

change must have been devised before runtime or the mod-
ifications must be specified and applied in a non-automatic
way during the execution of the system.

As we said before, there are works [6, 2] that propose
an adaptive replication mechanism. However, they do not
consider the probability of failures of replicas nor the cost
of replication and they do not address the problem of where
deploying the agents.

Several distributed and asynchronous approaches exist for
Distributed Constraint Optimization Problems, such as
ADOPTI11] and OptAPO[9]. However, as noted by these
authors, their algorithms are less efficient for n-ary con-
straints, which is our case.

7. CONCLUSION

Multi-agent systems are often distributed and must run
without any interruption. In our approach to make these
systems reliable, firstly we have proposed several metrics
to evaluate dynamically the criticality of the agents. Then
we proposed different heuristics to the resource allocation
problem of deciding where to deploy each agent in order to
maximize the reliability of the system. To test the heuris-
tics, we have implemented the corresponding algorithms in
a middleware for distributed fault-tolerant applications. We
think that our current results are promising because: (1) the
algorithms allow to decide automatically and dynamically
where to deploy each agent; (2) they present a negligible
complexity and overhead; (3) they provide a very satisfac-
tory reliability level for the agents.

One of the perspectives of this work is to consider other
constraints such as the memory space available by machine,
the memory space required by each agent and the mini-
mal reliability required by the agents. Additionally, we are
currently testing other strategies to the resource allocation
problem and we will experiment our allocation strategies on
scenarios for air traffic control applications.
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