
Computer Languages, Systems & Structures 36 (2010) 142 -- 157

Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

journal homepage: www.e lsev ier .com/ locate /c l

Flexibility and coordination in event-based, loosely coupled,
distributed systems

B. Silvestrea, S. Rossettoc, N. Rodrigueza,∗, J.-P. Briota,b
aDepto Informática, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22451-900, Brazil
bLIP6-Paris6, France
cUniversidade Federal Fluminense (UFF), Brazil

A R T I C L E I N F O A B S T R A C T

Article history:
Received 9 July 2008
Received in revised form
28 April 2009
Accepted 10 June 2009

Keywords:
Coordination
Synchronization
Distributed programming
Interpreted language
Closures
Coroutines
First-class functions
Asynchronous remote procedure call

The scale and diversity of interactions in current wide-area distributed programming environ-
ments, specially in Internet-based applications, point to the fact that there is no single solution
for coordinating distributed applications. Instead, what is needed is the ability to easily build
and combine different coordination abstractions. In this paper, we discuss the role of some
language features, such as first-class function values, closures, and coroutines, in allowing
different coordination mechanisms to be constructed out of a small set of communication
primitives, and to be easily mixed and combined. Using the Lua programming language, we
define a basic asynchronous primitive, which allows programming in a direct event-driven
style with the syntax of function calls, and, based on this primitive, we build different well-
known coordination abstractions for distributed computing.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last years, the focus of distributed computing has shifted from local to wide-area networks. In these new environ-
ments, because of unknown latencies and of the need to allow systems to scale up to large numbers of participants, loosely
coupled, asynchronous systems have gained popularity.

In this setting, a lot of attention has been directed to event-driven programming. As opposed to conventional programming,
in which a program is written as a sequence of actions, in event-based programming the developer writes a set of event handlers,
which are activated by incoming events. However, understanding a program that is coded as a series of responses to different
events is not easy when the number of interacting peers is large. One single process may, at any moment, be interacting with
dozens of other processes, and each of these interactions may require its own state information. This highlights the need of
abstractions to coordinate interacting processes.

The concept of a coordination language as a tool to describe the interactions among the parts in a distributed program
was much discussed in the nineties [22,40]. At the time, most discussion focused on the idea of using a pre-defined set
of coordination primitives, such as Linda's [17] tuple space manipulation operations, to define the communication and syn-
chronization of the application. Coordination models proposed at that time were often focused on tightly coupled application
models. Typical distributed applications today rely on complex communication patterns among machines placed in different
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geographical and administrative domains. To deal with the uncertainty of communication across domains, communication
abstractions must support loosely coupled interactions, often supplied by event-oriented application models. Many interactions
are in fact naturally captured by the event-based paradigm. However, many applications include interactions which would
be best captured by other communication abstractions. (Imagine, for instance, an application for news dissemination based on
publish–subscribe. Enrollment of newusersmay require that they be authenticated or registered, and thismay best be done using
RPC.)

It is important to allow the programmer the flexibility of choosing the most appropriate abstraction for each interaction.
Primitives for communication and synchronization have classically been offered either through special-purpose programming

languages or through libraries. Languages that are designed from scratch to support distribution usually provide a consistent
programming model, typically because language architects designed them with a chosen communication pattern in mind. This
makes them easy to master for the programming tasks for which they were imagined, but can lead to little maleability when
dealing with new interaction patterns. Communication libraries for conventional languages, in contrast, can be freely com-
bined in a single application, allowing the programmer to choose the preferred pattern for each set of interactions. On the
other hand, gaps between the host programming language and the model the libraries implement often result in awkward
APIs.

These classical approaches must be reviewed in light of the requirements for flexibility discussed above. No single pre-
defined set of interaction patterns will be appropriate for designing wide-area and large-scale applications. What we need are
environments in which different abstractions and coordination patterns can be built and combined. The programmer should
be free to experiment and combine abstractions without having to resort to the relatively low-level programming interfaces
traditionally offered by libraries.

We believe programming language features could make a significant contribution to this issue. Using appropriate language
constructs, it is possible to build an arbitrary number of coordination mechanisms from a small set of primitives. Furthermore,
thesemechanisms canbe smoothly integratedwith theprogramming language, even if they are implementedas extensions. This is
not a new claim. In [14], the authors discuss how reflection can help integrate protocol libraries intimately within a programming
language or system, providing a bridge between the library and language approaches. Besides reflection, there are a number of
other programming language features that can help in this integration, creating environments in which different coordination
techniques canbeusedandcombined to composenewmechanisms. So, insteadof looking for the specific coordinationmechanism
whichwill be better than others for event-driven programs,we should concentrate on such environments, allowing programmers
to create and combine coordination constructs easily.

To evaluate this claim, over the last few years, we have developed a series of coordination libraries in Lua [31], a dynamically
typed interpreted language with a procedural syntax but with several functional characteristics. In this paper, we discuss the
results of this development and the role of language features in allowing these libraries to be easily combined. We emphasize
the role of first-class functions, closures, and coroutines. The distributed environment which we analyze is composed by several
Lua processes. We also consider that each of these processes has a single-threaded structure. This has considerable weight in our
discussion and is a decision based on the several complexity issues associated to preemptive multithreading [39].

Our main contribution is not to present yet another system for distributed programming, but to show the role of language
features in allowing different coordination mechanisms to be constructed out of a very small set of primitives, and to be easily
mixed and combined.

The rest of this paper is organized as follows. In the next section, we present a brief introduction to Lua and to the event-driven
library we use as a low-level communication mechanism. Section 3 presents the design and implementation of an asynchronous
RPC primitive which is the basis for the discussion in the rest of the work. In Section 4, we discuss different coordination patterns
that can be built over this asynchronous primitive. Section 5 presents some remarks on performance. In Section 6, we discuss
related work and, finally, in Section 7, we present some final remarks.

2. Event-driven distributed programming in Lua

Over the last years, we have been investigating the advantages and limitations of creating distributed programs with a simple
event-driven model, based on the Lua programming language [31,29,30]. Lua is an interpreted programming language designed
to be used in conjunction with C. It has a simple Pascal-like syntax and a set of functional features. Lua implements dynamic
typing. Types are associated to values, not to variables or formal arguments. Functions are first-class values and Lua provides
lexical scoping and closures. Lua's main data-structuring facility is the table type. Tables implement associative arrays, i.e., arrays
that can be indexed with any value in the language. Tables are used to represent ordinary arrays, records, queues, and other data
structures. Tables are also used to represent modules, packages, and objects.

The Lua programming language has no embedded support for distributed programming. ALua [50] is our basic library for
creating distributed event-based applications in Lua. ALua applications are composed of processes that communicate through
the network using asynchronous messages. Processes use the alua.send primitive to transmit the messages.

An important characteristic of ALua is that it treats each message as an atomic chunk of code. It handles each event to
completion before starting the next one. This avoids race conditions leading to inconsistencies in the internal state of the process.
However, it is important that the code in amessage does not contain blocking calls, as itwould block thewhole process, precluding
it from handling new messages.
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1 -- Initialize global variables

2 acc = 0

3 repl = 0

4 expected = 0

5

6 function avrg (ret)

7 repl = repl + 1

8 acc = acc + ret

9 if (repl == expected) then

10 print ("Average: ", acc/repl)

11 end

12 end

13

14 function request(peers)

15 -- Save the number of peers in the array

16 expected = peers.n

17 -- Create string to be executed by remote peers

18 local req = "alua.send (" .. alua.id ..

")’)’..ereHeulav..’(grva’,"91

20 -- Request the remote values

21 for i = 1, expected do

22 alua.send (peers[i], req)

23 end

24 end

Fig. 1. ALua code for evaluating average returned value.

The ALua basic programmingmodel, in which chunks of code are sent as messages and executed upon receipt, is very flexible,
and can beused to construct different interaction paradigms, as discussed in [50]. However, programmingdistributed applications
directly on this programming interface keeps the programmer at a very low level, handling strings containing chunks of code.

As an example, consider a simple situation in which a process wants to evaluate an average of values retrieved from a list of
peers. Fig. 1 presents the ALua code for this example. Function request receives as an argument a list of peers, peers, stored as
a Lua table, and sends the string stored in variable req to each process in this list. This string contains code that, when executed
in the destination process, will make it send back to the current process a new string, containing a call to function avrgwith the
current value of variable valueHere in the remote process passed as argument.

Some remarks are in place about string manipulation in Lua. Both quotes and double quotes may be used as string delimiters.
The .. is the string concatenation operator in Lua. So, supposing that the value of alua.id (a variable containing addressing
information for the current process) is ‘139.82.20.1:2100:1’, the resulting string in lines 18 and 19 will be:

‘‘alua.send (‘139.82.20.1:2100:1’, ‘avrg(‘.. valueHere .. ’)’)’’

After receiving this message, each peer process will execute:

alua.send (‘139.82.20.1:2100:1’, ‘avrg(‘.. valueHere .. ’)’)

whichwill make it evaluate the current value of valueHere in its environment, creating a new string (such as ‘avrg(3)’) which
will be sent back to the original caller.

This example illustrates a programming model that is typical of event-oriented programming. After sending the requests,
global variables acc, repl, and expected maintain the state of the application, which behaves as a state machine, moving
between states upon handling each new event.

3. Asynchronous RPC

Although this basic message-oriented event-driven programming model is powerful, it can be quite error-prone and hard to
use. Programmers need tools that allow them to model high-level interaction patterns. This is where programming abstractions
come into play. To allow the programmer to deal with higher-level concepts, we have implemented several communication
libraries over the last few years, providing support for tuple spaces [33], publish–subscribe [43], and remote procedure call [42],
among others. In this work, we use remote procedure call as the basic communication mechanism, and so we discuss it next.
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1 -- Initialize global variables
2 acc = 0
3 repl = 0
4 expected = 0
5
6 -- Callback function
7 function avrg (ret)
8 repl = repl + 1
9 acc = acc + ret
10 if (repl == expected) then
11 print ("Average: ", acc/repl)
12 end
13 end
14
15 function request(peers)
16 -- Save the number of peers in the array
17 expected = peers.n
18 -- Request the remote values
19 for i = 1, expected do
20 -- Create asynchronous remote function
21 local sendRequest = rpc.async(peers[i], "getCurrentValue", avrg)
22 -- Remote invocation
23 sendRequest("valueHere")
24 end
25 end

Fig. 2. Using rpc.async.

The RPC abstraction has been adopted in systems ranging from CORBA [46] to .NET [19] and SOAP [38]. From its inception,
however, critiques to the paradigm were made [49,11]. They mostly discuss the imposition of a synchronous structure on the
client application and the difficulty of matching RPC with fault tolerance, partly due to its point-to-point architecture. These
critiques gain further importance in the context of wide-area networks. However, the familiarity that programmers have with
the model must not be ignored. If the synchronous nature of the original proposal is somewhat incompatible with the loose
coupling we need in wide-area distribution, we can resort to an asynchronous RPC model. Asynchronous invocations have been
long discussed as an alternative [3], but the fact is that they are not comfortable to use in traditional sequential programs,
specially when return values are involved. (Because the program may be in any arbitrary point of execution when these return
values become available, theymust be handled either in a new thread of execution or though the use of special primitives.)When
the program is event-based, however, asynchronous invocations are natural, and can be associated to callback functions to be
executed upon the completion of the remote invocation.

Our remote procedure mechanism [42], provided by the rpc library, explores this idea, associating asynchronous invocations
with callback functions over an event-driven model. The basic execution model remains the one we described in the last section
with a process handling each incoming message at a time, with the difference that now messages are function invocations.

To provide the same flexibility as we have with normal function values in Lua, the rpc.async primitive does not directly
implement the invocation, but, instead, returns a function that calls the remote method (with its appropriate arguments). As an
example, consider that a process offers remote access to values of its global variables through a function calledgetCurrentValue,
which sends the value of a global variable to the process specified as its first argument. Fig. 2 illustrates the use of rpc.async to
implement the same example of Section 2, which evaluates the average of values provided by a set of peers.

Mandatory parameters for rpc.async are the remote process (peers[i]) and the remote function name
(‘‘getCurrentValue’’). The third argument is an optional callback function (avrg). In Fig. 2, the function returned by
rpc.async is stored in variable sendRequest (remember that rpc.async does not invoke the remote function, but instead,
creates a function that invokes it). When function sendRequest is called (with ‘‘valueHere’’ as the single argument to
getCurrentValue, so that it can return the required value), control returns immediately to the caller. At some later point, when
the program returns to the event loop and receives the result of the remote function, callback function avrg will be invoked,
with the received value as an argument. avrg then proceeds as before, keeping current state in global variables repl, acc, and
expected.

Two language features are specially important for allowing the rpc.async primitive to return a function that can be manip-
ulated as any other value: (i) functions as first-class values; and (ii) closures.

Having functions as first-class valuesmeans they can be passed as arguments or be used as return values from other functions.
A closure is a semantic concept combining a function with a set of data that is neither local to this function nor global to the
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1 function rpc.async(dest, func, cb)
2 local function f(...)
3 -- Get the function arguments
4 local args = {...}
5 -- Register the callback
6 local idx = set_pending(cb)
7 -- Process the arguments
8 marshal(args)
9 local chunk = string.format("rpc.request(%q, %s, %q, %q)",
10 func, tostring(args), localId, idx)
11 -- Send the request
12 alua.send(dest, chunk)
13 end
14 return f
15 end

Fig. 3. Implementation of rpc.async.

program. These are typically variables defined in the new function's lexical scope. Closures can be used to hide state, implement
higher-order functions and defer evaluation. With these two mechanisms, a function can return a nested function, and the new
function has full access to variables and arguments from the enclosing function.

Fig. 3 shows the (complete) implementation of the rpc.async primitive. Basically, it creates a function (called f) that
encapsulates the remote invocation. This function receives a variable number of arguments (the ..., captured in table args),
which are serialized and sent to the remote process. The callback function (cb) is registered to handle the results when they
arrive. The request is sent to the remote process through a call to alua.send. We believe the concision of this implementation
reflects the importance of using a programming language with appropriate flexibility and support for extension.

Thus, the rpc.async primitive returns a function, defined inside it, which depends on values passed as arguments on each
specific invocation of this operation. Each time the returned function is invoked, a new remote call is performed, which uses the
same values for the remote process, remote function, and callback function (a closure), but with different actual arguments for
the remote function.

3.1. Maintaining state in event-driven programs

The rpc.async primitive allows us to program in an event-driven style with the syntax of function calls for communication.
The event-driven programming model is convenient in that it mirrors asynchronous interactions among processes. However,

because we have only one execution line, whenever a process needs to receive an event before continuing execution, the current
action must be finalized to wait for the message (that is, the process must return to the event loop to be able to handle the
next message). Moreover, to maintain the interactivity, the system must make sure that no message handler takes too long to
execute. So, event handlers must run quickly, i.e., long tasks must also be broken into small pieces, between which the system
saves the current state and returns to the main loop. In order to do that, the event handler can post a request and schedule the
remainder of the current computation to be executed later, as explored in [54]. Typically, to maintain state information between
the function that is being executed and the one that will be executed later, the programmer must resort to global variables,
because the current locals will not exist anymore at this future point. This process, illustrated by the use of global variables repl,
acc, and expected in our example, and referred by Adya et al. as stack ripping [1], is one of the main difficulties for developing
applications using the event-driven programming style [53].

The closure mechanism can once again come into play to reduce this stack ripping process, by allowing local variables to be
maintained in nested functions. When a process makes a remote request and needs to register a continuation (or callback) to be
executed when the request reply is received, the closure mechanism can be used to encapsulate the values that need to be kept
during the request manipulation.

To illustrate this idea, Fig. 4 presents once again the example of evaluating an average value, nowusing a closure. rpc.async is
again used to build asynchronous requests to take values in each remote process and the avrg function is defined as the callback
function. The main difference is that avrg is a closure of request, and it is thus able to keep the values of (local) variables acc,
repl, and expected (used to compute the average) even when the process returns to the main event loop.

The pattern used in this example can be implemented in any system supporting closures, and is useful in a number of
situations. Because closures capture state, they are able to preserve the relevant part of the activation stack from the moment in
which the asynchronous invocation is issued until the activation of the callback.
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1 function request(peers)
2 local acc = 0
3 local repl = 0
4 local expected = peers.n
5
6 local function avrg (ret)
7 repl = repl + 1
8 acc = acc + ret
9 if (repl == expected) then
10 print ("Average: ", acc/repl)
11 end
12 end
13
14 -- Request the remote values
15 for i = 1, expected do
16 -- Create the asynchronous function
17 local sendRequest = rpc.async(peers[i], "getCurrentValue", avrg)
18 -- Invoke the remote function
19 sendRequest("valueHere")
20 end
21 end

Fig. 4. Exploring the closure mechanism do avoid stack ripping.

4. Coordinating concurrent activities

The model we described in the previous sections avoids many synchronization issues. Because each event is handled to
completion, the fine-grained kind of synchronism one needs with preemptive multithreading, due to the possibility of arbitrary
execution interleavings, is not required. However, support is still needed for a number of synchronization and communication
issues.

Gelernter and Carriero [22] discuss the advantages of viewing communication and synchronization primitives as means of
coordinating a concurrent or distributed application. In this section,we adopt this approach anddiscuss howdifferent coordination
abstractions can be provided by libraries that can be combined, either as building blocks, to create further abstractions, or simply
as alternative to be used inside an application, as needed. We again focus on language features that allow libraries with these
abstractions to be seamlessly integrated into the language.

The issues we discuss can be classified in two major lines. The first of them is the need for different communication abstrac-
tions. Programmers do not always want to deal directly with the asynchronous programming model we introduced, based on
asynchronous invocations and callbacks. This model is interesting when there is an inherent asynchronism in the interaction
itself, as is the case, for instance, in the example presented in Fig. 4, in which the contacted peers can reply in arbitrary order.
Some other interactions, on the other hand, are inherently synchronous. Consider the case of a client contacting a server for a
file which is to be viewed by the user. It may well be more natural for the programmer to code this interaction as a synchronous
invocation. Inside a single application, the programmer will typically need to code different interactions, and it would be nice
for him to be able to code each of these in the most convenient way. In Sections 4.1 and 4.2 we discuss support for different
interaction models.

The second class of abstractions we discuss is the one related to classical synchronization among concurrent processes, for
mutual exclusion and cooperation [4]. Even if, in our model, fine-grained synchronization problems, such as interleaved accesses
to global variables, are avoided, we can still have problems occurring at a coarser granularity. Subsequent calls to one process
may need to occur with the guarantee that no events were handled between the two (for instance, to guarantee an atomic view
of a set of operations). Also, because we are in a distributed setting, we may need to synchronize actions occurring at different
processes. Sections 4.3 and 4.4 discuss support for classical synchronization.

4.1. Synchronous RPC

With asynchronous invocations, the programmer must turn control flow upside down, using callback functions to code the
continuation of the computation after the results of the invocation are available. This directly reflects the event-driven nature
of a program, but may not be the best model for the programmer to work with. In this section, we discuss function rpc.sync,
that creates functions that make synchronous calls to other processes over the same asynchronous communication model.
Function rpc.sync, like rpc.async, receives as parameters the process identification and the remote function name. Because
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1 get = rpc.sync("procA", "getValue")

2 set = rpc.sync("procA", "setValue")

3

4 while true do

5 oldvalue = get()

6 newvalue = transform(oldvalue)

7 set(newvalue)

8 end

Fig. 5. Example using rpc.sync.

it is synchronous, the callback parameter does not make sense (in fact, a callback which resumes the current computation will
be implicitly built by rpc.sync).

We illustrate the use of rpc.syncwith the code in Fig. 5 that repeatedly retrieves a value from a remote process procA, uses
this value to perform a calculation, and updates the remote process.

Because ALua runs on a single thread, suspending the execution during a synchronous call would block the ALua event loop
as well. As a consequence, a process would not receive new requests until the invocation is completed. One solution to this is
to introduce a multitasking mechanism, where computation can be suspended and resumed later in the same thread of control.
The most popular mechanism for multitasking is preemptive multithreading—as offered, for instance, by Posix threads [15].
Preemptive multithreading guarantees automatic scheduling of the different active threads by suspending (preempting) running
threads at arbitrary points of execution—typically after a time slice has elapsed—and scheduling other ready threads. Context
switching, however, has a cost, and in preemptive multithreading this cost must be paid by the application even if response time
and fairness are not important for it. Besides, as a result of the suspension of control at arbitrary points of execution, actions in
different threads may be interleaved also in arbitrary ways, some of which may lead to undesirable interferences. To deal with
this, programmers typically must resort to synchronization primitives originally designed for programming operating systems,
like mutexes and semaphores. These low-level constructs often make programs hard to understand and to debug.

In order to avoid the complexity added by preemptive multithreading, we rely on yet another language mechanism for the
implementation of rpc.sync: the cooperative multitasking facility offered by Lua coroutines. A coroutine is similar to a thread in
that it maintains its own execution stack, local variables and a program pointer. Themain difference is that the transfer of control
among coroutines is explicit, i.e., one must issue an explicit control primitive for control to be transferred to any other coroutine
and the execution of a coroutine is only suspended when that coroutine yields control. In essence, coroutines are concurrent
processes where the control transfer is completely described in the application algorithm [5]. This is interesting because it allows
applications tomaintain different execution lines while avoiding the complexities of race conditions. Besides, the control transfer
points are pre-defined in the application, so context switching occurs only when it is in fact needed, minimizing computational
cost.

However, one disadvantage of cooperative multitasking is that the management of scheduling is left to the programmer, in
contrast to the automatic management in preemptive multithreading. Even if this is a serious drawback only for applications
which need response time guarantees, it can be cumbersome for the programmer in any case. To avoid this burden, one alternative
is to encapsulate control transfers in wrappers for possibly blocking operations. This is what we do in the implementation of
rpc.sync. Each new computation is handled in a new coroutine and,when a synchronous call is performed, the current coroutine
is suspended and execution flow returns to the ALua loop.

To implement rpc.sync, we use rpc.async as a basis and again the mechanisms of functions as first-class values and
closures. Fig. 6 contains a sketch of this implementation.

At this point it is convenient to explain some features of Lua coroutines. Functions yield and resume, respectively, suspend
and resume the execution of a coroutine. coroutine.resume receives as its first argument the coroutine to be resumed; any
extra argument will be returned by coroutine.yield. In the same fashion, any argument passed to coroutine.yieldwill be
returned by coroutine.resume. This provides a communication channel among coroutines.

Back to the implementation of rpc.sync: when function remote is called, it first creates a callback thatwill be responsible for
resuming the current coroutine. Then, remote invokes rpc.async to perform the remote communication (passing the internal
callback) and suspends the current execution (coroutine.yield).When the results arrive,rpc.async calls the internal callback
passing these results, which are forwarded to coroutine.resume. The coroutine is then resumed and the results are returned
to the caller of remote. Fig. 7 illustrates this behavior.

4.2. Futures

As yet another example of building communication abstractions, we can also implement support for futures [34]. In some
cases, the programmer may know, at a certain point of execution, that he needs to schedule a computation whose result will
be needed only later. Futures allow the programmer to synchronize actions between processes in a looser relationship. This
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1 function rpc.sync(proc, func)
2 -- Create a function to perform the remote invocation
3 -- The ’...’ refers to the variable parameters
4 local function remote(...)
5 -- Reference to current coroutine
6 local co = coroutine.running()
7 -- Create a callback that will resume execution once the
8 -- remote invocation is completed
9 local function callback(...)
10 coroutine.resume(co, ...)
11 end
12
13 -- invoke the remote function
14 local aux = rpc.async(proc, func, callback)
15 aux(...)
16
17 -- Suspend the current coroutine execution before returning
18 return coroutine.yield()
19 end
20 return remote
21 end

Fig. 6. Implementation of rpc.sync.

Fig. 7. Coroutines in a synchronous call.

mechanism can be implemented using rpc.async as a basis and the remote call in this case returns a promise [35], which can
be used to retrieve the results later. When the promise is invoked, we use coroutines to suspend execution if the results are not
yet available—in a similar way to what we did in the implementation of rpc.sync.

Fig. 8 shows the implementation of rpc.future. The function builds and returns an internal function, which is very similar to
the one returned by rpc.async, except that this time, when the returned function is invoked, besides calling the remote function
asynchronously, it returns the promise, another closure, whichmay be invoked to synchronize on the results of the asynchronous
invocation. The future mechanism uses an internal structure, result, to control if the results for the remote call were received.
As in rpc.sync, a callback is created to handle the results of the asynchronous invocation. This callback fills the future structure
with the results and verifies whether the process is blocked waiting for them. The co field in the result structure indicates
that the process has called the promise to retrieve the results, but they were not yet available. (In this case, the promise sets
the co field and suspends execution of the running coroutine.) As the results are now available, the callback returns them to the
suspended coroutine.

4.3. Monitors

When using synchronous invocations and futures, we allow coroutines to block themselves while waiting for the result of
an invocation. While such a coroutine is blocked, other invocations may arrive and modify shared globals, leaving them in a
state different from that which the blocked coroutine expects upon being resumed. We thus introduce the possibility of race
conditions, although in a far coarser grain than that of preemptive multithreading (with coroutines, “context switches” may only
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1 function future(proc, func)
2 local function f(...)
3 -- Future structure to store the results
4 local result = {}
5 -- This callback is responsible to receive the results and
6 -- put them into the future structure above
7 local function callback(...)
8 result.ready = true
9 result.values = {...}

10 -- If the ’co’ field exists, the process is blocked
11 if result.co then
12 coroutine.resume(result.co)
13 end
14 end
15 -- Create a promise for the invocation
16 local function promise()
17 -- If the results are not available, suspend the execution
18 if not result.ready then
19 result.co = coroutine.running()
20 coroutine.yield()
21 end
22 -- Extract the result from the Lua’s table and return them
23 return unpack(result.values)
24 end
25 -- Invoke the remote function
26 local l = rpc.async(proc, func, callback)
27 l(...)
28 -- Return the promise
29 return promise
30 end
31 return f
32 end

Fig. 8. Implementation of rpc.future.

occur at explicit points in the code), and the eventual need for mutual exclusion mechanisms. Instead of providing a built-in
mechanism, we argue that the preferred abstraction can be easily implemented over the existing primitives and integrated into
a given application, either as a library or as an application module. As an example, in this section we discuss an implementation
of monitors [28]. Monitors described here are different from the classic proposals in that they are dynamic: functions may be
added to a monitor at any point in execution.

Our implementation of monitors is based on synchronous calls and closures. When a function protected by a monitor is
invoked, a synchronous call tries to acquire a lock, suspending the execution of the running coroutine until this lock is obtained.
We implement amonitor as a structure containing a boolean lock, which indicates if themonitor is free, an entrance queue, and the
identity of its creator. monitor.create creates a new monitor (with no enclosed functions) and returns a reference to it. After
an “empty” monitor is created, arbitrary functions can be placed under its protection by calling function monitor.doWhenFree,
as in:

1 local function set_internal(value)
2 -- Do some activities here
3 end
4 -- Create a monitor
5 local mnt = monitor.create()
6 set = monitor.doWhenFree(mnt, set_internal)

Fig. 9 shows the implementation of function monitor.doWhenFree. This function creates and returns a new function that
encapsulates the one received as a parameter. This new function uses the lock to guarantee the execution in mutual exclusion
with respect to other functions in the same monitor. Function monitor.doWhenFree also deals with the input parameters and
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1 -- mnt: monitor created to protect the function

2 -- func: function to execute in mutual exclusion

3 function doWhenFree(mnt, func)

4 -- Reference to the monitor structure

5 local idx = mnt.idx

6 -- ’from’ points to the monitor creator

7 local take = rpc.sync(mnt.from, "monitor.take")

8 local release = rpc.async(mnt.from, "monitor.release")

9 function f(...)

10 take(idx)

11 -- Invokes the function and captures its results

12 local rets = pack(func(...))

13 release(idx)

14 return unpack(rets)

15 end

16 return f

17 end

Fig. 9. Implementation of function monitor.doWhenFree.

the results. The pack function captures the results in a Lua table that is stored in variable rets. After releasing the lock, the result
is unpacked and returned.

Functions monitor.take and monitor.release control lock acquisition as follows. monitor.take tries to acquire the lock
on a given monitor. If the lock is free, this function switches its value and execution continues normally. If the lock is taken,
monitor.take puts the current coroutine in the lock's waiting queue and yields. Function monitor.release, symmetrically,
releases the lock on a monitor. It verifies whether there is any coroutine in the monitor entrance queue, and, if so, resumes the
first waiting coroutine. Otherwise, monitor.releasemarks the lock as free.

This mechanism for mutual exclusion is different from most classic language proposals in that it does not provide direct
syntactic encapsulation of the protected functions. This makes the monitor a dynamic mechanism, allowing functions to be
added to the monitor only as needed. This idea is possible using the fact that functions are first-class values, closures, and
dynamic function creation. As shown in Fig. 9, a new function, f, is dynamically created to wrap the unprotected func, passed
as parameter to doWhenFree. The closure mechanism allows f to keep a reference to func, so that f can invoke it in a protected
section.

In object-oriented languages like C + + or Java, we can achieve a similar mechanism instantiating a wrapper to intercept the
calls and impose the ordered entrance in the critical section. However, the fact of handling function as first-class values gives
us a fine-grained control compared to the object interception because we can redefine only a function and leave all the rest
untouched. The wrapper must keep the same object's interface, add code to protect the desired methods, and forward all the
calls to the original object.

The implementation of monitor.doWhenFree, based on remote calls, creates the possibility of having a single monitor
protecting functions from different processes, supporting distributed mutual exclusion. For instance, a process could create a
monitor and add functions to it. Next, the process could pass this monitor to another process, which adds new functions. At the
time the monitored functions are invoked, they make remote calls to acquire the lock. However, only one of them will succeed
and the otherswill wait in the queue for the lock to be released. Fig. 10 illustrates the use of a distributedmonitor. In this example,
several distributed processes could receive, upon initialization, calls to a function such as init, all of themwith the samemonitor
being received as an argument. Each of the processes could then protect, using this monitor, functions that manipulate a shared
state.

Our monitor mechanism also offers support for waiting and signalling condition variables, as traditional monitors do. Due to
limitations of space, and because it does not introduce new issues, we do not describe this support here.

4.4. Synchronization constraints and synchronizers

In this section, we continue our discussion on how we can integrate coordination mechanisms into our basic communication
model. To illustrate the flexibility we offer in this integration, we turn our attention to the possibility of defining conditions for
function execution. These conditions will allow us to model both intra and inter-process coordination. Among existing proposals
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1 local isOn = false

2 local function _off()

3 -- Only turns off if the neighbor is ’on’

4 if neighbor_state() then isOn = false end

5 end

6 function init(mnt, neighbor)

7 -- ’mnt’ is a monitor and ’neighbor’ is other process

8 neighbor_state = rpc.sync(neighbor, "get_state")

9 off = monitor.doWhenFree(mnt, _off)

10 end

Fig. 10. A distributed monitor.

in this direction, we chose to reimplement the mechanism proposed by FrBlund and Agha [21,2], because it is one of the few that
provides support for distributed as well as for concurrent synchronization.

To implement support for this abstraction, we explored the possibility of redefining event handlers for remote events. Upon
arrival of a function invocation, our implementation directs it to a handler. The default handler simply calls the requested function
passing the arguments received in the request, and returns the results to the caller. However, we can define different handlers
for different functions or even for different requests for a same function.

Intra-object synchronization in [21,2] is supported by synchronization constraints. Aswith guards [41,13], the idea is to associate
constraints or expressions to a function to determine whether or not its execution should be allowed in a certain state. This kind
of mechanism allows the developer to separate the specification of synchronization policies from the basic algorithms that
manipulate his data structures, as opposed to monitors, in which synchronization must be hardcoded into the algorithms.

As an example taken from [21], consider a radio button object with methods on and off. To ensure that these methods are
invoked in strict alternations, the programmer can define a state variable isOn, that indicates whether or not the button is turned
on. Synchronization constraints can be defined disabling method on when isOn is true, and disabling method off when it is
false.

For inter-object synchronization, FrBlund proposes the use of synchronizers. Synchronizers are separate objects that maintain
integrity constraints on groups of objects. They keep information about the global state of groups and permit or prohibit the
execution of methods according to this global state.

Keeping the rules in a central point, instead of scattering them among the processes, facilitatesmodifications and allows using
synchronizers in an overlapping fashion. Consider again the example of radio buttons. Besides the individual integrity constraint
of alternate invocation, a set of radio buttons must satisfy the constraint that at most one button is on at any time. For this
situation, FrBlund proposes the following solution. A synchronizer keeps the global group state in variable activated, whose
value is true if any radio button in the set is on. A disable clause in the synchonizer states that, for any button in the set, method
on is disabled if the value of this variable is true. To ensure the consistency of global state, synchronizers also support triggers:
code that is associated to the execution of methods in the individual members of the group controlled by the synchronizer. In
the case of our example, a trigger is associated to the execution of method on, setting activated to true, and to method off,
setting it to false.

We provide support for these mechanisms through modules sc (synchronization constraints) and synchronizer, that
interact with a new handler we defined for function invocation. Modules sc and synchronizer introduce constraints that must
be checked by this handler. In the case of the scmodule, these are local calls that verify the internal state, whereas synchronizer
permits processes to register themselves as synchronizers of each remote object (or process, in our case) they coordinate. If the
constraints are not satisfied, the handler places the request in a queuewhich is reexamined after any other invocation is executed.

Fig. 11 illustrates how a program could use synchronization constraints to ensure the properties of the radio button example.
sc.add_constraint associates guard functions to the RPC visible functions—those not defined as local. It receives as arguments
the name of function to be guarded and the function that implements verification. The latter receives as arguments the request
information and must return true if the guarded function can be executed or false otherwise.

Fig. 12 illustrates the creation of a synchronizer that coordinates a set of distributed processes that represent radio buttons,
enforcing that at most one of them is activated at any time. When one of the buttons receives a request, it contacts the
synchronizer in order to verify the remote constraints, which allow or not the button to execute the function according the global
state information.

Both synchronizer.set_trigger and synchronizer.add_constraint receive, as their argument, the remote process
identification, the name of the function in this process, and the function to be executed once the synchronizer is contacted. For
triggers, this function typically updates the global state, and for constraints, it must return, respectively, true or false to permit or
prohibit the constrained function execution. Moreover, the function to be executed receives, as a parameter, information about
the constrained function into the variable request.
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1 local isOn = false

2 local function can_turn_on(request)

3 return not isOn

4 end

5 local function can_turn_off(request)

6 return isOn

7 end

8 function on()

9 isOn = true

10 end

11 function off()

12 isOn = false

13 end

14

15 sc.add_constraint("on", can_turn_on)

16 sc.add_constraint("off", can_turn_off)

Fig. 11. Defining synchronization constraints.

1 local activated = false
2 local function can_turn_on(request)
3 return not activated
4 end
5 local function trigger_on(request)
6 activated = true
7 end
8 local function trigger_off(request)
9 activated = false

10 end
11 -- defines constraint and triggers for each distributed b utton
12 for _, bt in ipairs(buttons) do
13 synchronizer.set_trigger(bt, "on", trigger_on)
14 synchronizer.set_trigger(bt, "off", trigger_off)
15 synchronizer.add_constraint(bt, "on", can_turn_on)
16 end

Fig. 12. A synchronizer defining a remote constraint and triggers for a set of distributed buttons.

To implement synchronization constraints and synchronizers, we developed a handler that manipulates a queue of requests.
The handler processes the queue until either it is empty or the remaining requests cannot be executed due to the synchronization
rules. A request is executed only if all of its local constraints and remote verifications evaluate to true. However, when a requested
function is executed, we need to restart the queue evaluation because this function can havemodified the internal or global states,
making some request newly eligible for execution.

We first implemented the scheme as described in [21], that is, verifying and executing the requests in a sequential fashion—a
new request is handled only after the previous one is completed. However, evaluating remote constraints is expensive because
the process communicates with the synchronizer and blocks until the answer arrives. Fig. 13a shows a diagram illustrating this
scheme. Although the synchronizer imposes constraints only on function set, the process waits for the synchronizer's answer
arrival before executing the request get.

Using coroutines once again, we implemented an alternative scheme to further explore concurrency in this system. Since we
know that the verification of remote constraints will block the process, we encapsulated this verification inside a new coroutine,
so the process can suspend it while the synchronizer analyzes the constraints, and the process is free to handle another request.
The new scheme is shown in Fig. 13b.

Our implementation checks the synchronization constraints before contacting the synchronizers, avoiding the network com-
munication if the local verification fails. However, because new function calls can nowmodify the internal state during the remote
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Fig. 13. Diagram of (a) the original and (b) our proposal for constraints evaluation.

Table 1
Execution times for different constructs.

Mechanism Time (ms)

Java RMI–JIT enabled 0.426
Java RMI–JIT disabled 0.803
RPC 1.134
Monitor 1.758
Queue handler 1.328
Local constraint 1.338
Remote constraint 4.281

constraints checking, it verifies the synchronization constraints again when it receives all replies from synchronizers in order to
guarantee that the internal states still allows the request execution.

5. Performance results

In this section, we discuss performance of the mechanisms we described along the paper.1 Our goal is to evaluate the
minimal cost that these mechanisms add to the basic RPC mechanism. We measured the average time for a client to execute an
asynchronous RPC request to a remote function in the following cases:

• RPC: the basic client/server scheme that is used as reference.
• Monitor: the remote function protected by a monitor.
• Queue handler: the same basic scheme used in the case of RPC, but with the server using the queue infrastructure to handle the

client requests. This infrastructure is the basis for implementing local and remote constraints.
• Local constraint: the remote function is protected by a local constraint.
• Remote constraint: the function has a remote constraint, which is evaluated by a synchronizer.

In the tests, the client, server, and synchronizer processes execute in different hosts.Moreover, we implemented remote functions
that do not receive any argument and return no value (void), and the local and remote constraints are functions that just return
true.

Table 1 shows the average time (in milliseconds) to execute an asynchronous remote call in each case described above. As a
reference, we show the average time for a Java RMI request (using Sun JDK 6), with the same criteria. We performed two tests
with RMI, enabling and disabling the just in time (JIT) Java compiler. With JIT disabled, Java runs in interpreted only mode, and
does not generate machine native code. We performed the tests in machines equipped with a Pentium 4 1.7GHz, 256MB RAM
and Ethernet 100Mb/s, executing Linux (kernel 2.4.20).

Because wewere interested in exploring the aspect of being able to build different abstractions, we did not dedicate ourselves
to optimizing the implementation of RPC, so, when compared to RMI, which is built as part of Java's architecture, execution times
seem quite acceptable.

1 The code and results we discuss in this section are available at alua.inf.puc-rio.br/ftp/papers/CLSS09-perf/.

http://alua.inf.puc-rio.br/ftp/papers/CLSS09-perf/
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Table 2
Serial and parallel processing of requests.

Request Serial processing (ms) Parallel processing (ms)

get 5.138 2.858
set 5.247 5.314

The queue handler adds a little overhead to the basic RPC because the request is put in a queue before its execution. On the
other hand, a local constraint has almost no cost in our test case, since it is just a function call that returns true.

In the remote constraint test, the server must also contact another process, the synchronizer, in order to execute the request.
However, the synchronizer implementation is more complex than the distributedmonitor, which explains their different perfor-
mance. Besides the time spent in the network communication with the server, the synchronizer must implement mechanisms
to guarantee a consistent view of global state and prevent deadlocks. So the synchronizer uses a transactional protocol with the
server.

We performed a second experiment to measure the time for the server to process a set of requests in a serial and parallel
fashion, as described in Section 4.4. In this experiment, the server exports two functions, get and set, and receives requests of
two clients, each one invoking a specific function (Fig. 13). The set function is protected by a remote constraint, whereas get has
no protection. First, we configured the server to execute the requests in a serial fashion, i.e., the server processes the next request
only when it finishes processing the previous one. We then changed the server behavior to execute a new request while the
synchronizer evaluates the remote constraint. Table 2 shows the times (in milliseconds) for each scenario. In the serial case, the
request for the get function is limited by the evaluation of the remote constraint, so the requests for each function take almost
the same amount of time. However, in the parallel configuration, the server can process the get requests while the synchronizer
evaluates the set remote constraint, so that average time of the get request is much lower.

6. Related work

Over the years, support for synchronization and communication abstractions has been implemented in several programming
languages, such as Emerald [12], Orca [10], Java [24], Erlang [7], and E [37], and in a number of libraries, such as SunRPC [48], Linda
[17], JXTA [23], ProActive [16], and Chord [47]. Our goal in presenting the implementation of different coordination abstractions
is not to discuss the mechanisms themselves, but to support the argument that programming language features can help bridge
the gap between the simplicity and flexibility offered, respectively, by the language and library approaches [14].

We have been investigating event-driven model and with asynchronous message-passing in the development of distributed
systems. Some other works explore synchronous communication facilities over event-driven systems [44,32,52]. Haller and
Odersky [26] are explicitly interested in avoiding the problems associated to the typical “control inversion” of event-driven
systems. However, in the case of their work, the “continuation” of the current computation must be explicitly coded in a receive
clause.

Adya et al. [1] discuss advantages and disadvantages of multithreading and event-based programming, considering the
distinction between manual and automatic stack management. One point that further links their work to ours is the emphasis
on allowing the programmer to freely combine both models when coding an application. Eugster et al. [20] also discuss the
importance of combining different interaction paradigms (RMI and publish/subscribe) in a single distributed programming tool.

On top of our event-driven model, we investigated how characteristics of a language can help to create and compose abstrac-
tions of communication and coordination in order to provide more suitable mechanisms to aid the development of distributed
systems. Arbab and Papadopoulos [40] present a survey of coordinationmodels and languages, and classify the surveyedworks in
two major categories. Data-driven models offer coordination primitives which can be freely mixed with the computational code.
Proposals such as Linda and the synchronizers we discussed in Section 4.4 are placed by the authors in this category. The other
category, control-driven models, encompasses models in which the coordinating entities are separate from the computational
ones. Typical examples of this category are configuration languages [36,6], which focus on describing interconnections between
independent processes or components.

As far back as in 1978, Backus [8] argued that programming languages in general should provide an expressive core with
powerful changeable parts and combining forms, instead of incorporating a large set of features. In the specific domain of
concurrency and distribution, Briot et al. [14] discussed how reflective features can bridge the gap between the specific domain
programming language (integrative) and library approaches. However, there appears to be little recent work exploring how
language features interact with libraries in order to allow uniform forms for concurrency and distribution in the language.

One good example of language extension exploring language features is ProActive [9], a library for parallel and distributed
programming in Java. Its architecture is based on active objects that are entities with their own thread of control, andmethod calls
on them are asynchronous. The library is implemented in standard Java though use of reflection, and the result is very similar to
a specific purpose language. Thanks to polymorphism, handling of remote objects and also of the future objects that are returned
by asynchronous invocations is transparent. However, papers on ProActive do not emphasize the role of language features in
these extensions. On the other hand, Sewell et al. [45], in their presentation of Acute, argue that a language should offer explicit
primitives for distribution and communication and provide support for libraries to implement high-level abstractions, but do not
give examples of such abstractions.
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The work of Varella and Agha [51] and that of Eugster et al. [20] are among the few that approach the discussion of distributed
programming libraries from a language point of view. Varella and Agha [51] point out the need for extensions to Java, indicating
that the original set of language features is insufficient, and on the other hand defend that only a few extensions can suffice to
provide a simple distributed programmingmodel. Eugster et al. [20] identify a set ofmechanismswhich enforce language support
for publish/subscribe. Specifically, they identify the concept of closures as one of these mechanisms. Their work also intends to
contribute to the discussion about whether support for publish/subscribe communication in object-oriented languages should
be provided as a library or as part of the programming language.

With the evolution of managed run-time environments (MRTE), such as .NET and JVM, more and more compilers are being
developed to generate code for this kind of platform [27,25,18]. MRTEs provide facilities such as portability, automatic memory
management, large sets of libraries, and language interoperability. The idea behind the multilanguage platform is to use the
most suitable tool to accomplish each task, allowing languages to export their capabilities and libraries to the others. We think
this can represent another level of integration, that will have to deal with the resolution of external capability integration and
programming model mismatching.

7. Final remarks

In this work, we explore some programming language features—namely, dynamic execution environments, functions as
first-class values, closures and coroutines—to build different coordination mechanisms for distributed asynchronous computing.
Although we are particularly interested in exploring these features in the Lua programming language, our goal is not to promote
this language specifically, but, instead, to contribute to the discussion about the role of language features in bridging the gap
between the language and library approaches for distributed programming. The specific programming system we describe is
simply an environment we used to demonstrate that programming abstractions which simplify distributed applications can be
easily implemented and combined given an appropriate set of language features.

It is interesting to summarize howwe explored language features along the paper.We startedwith a very simple event-driven
programming model. The ALua model derives its flexibility from the support for executing dynamically created chunks of code.
This support is typical of interpreted languages. We then developed, over this model, an abstraction for asynchronous RPC which
allows the programmer to specify a callback function to be executed when the invocation is completed. The use of closures and
first-class functionvalues allowedus to createnewremote functions that act exactly like the local ones.Wediscussedhowclosures
could be used to encapsulate state thatmust be rememberedwhen a callback of an asynchronous invocation is executed. Next, we
went on to build different coordination mechanisms over this basis. Combined with the coroutine construct, the closure/callback
pattern allowed us to build a synchronous RPC abstraction, which has the advantages of cooperative multithreading while hiding
the details of control transfer inside the remote invocations. Closures and first-class functionswere again used to build amonitor-
like mechanism with a dynamic behavior. Finally, to experiment with abstractions that support the definition of necessary state
conditions for functions to be executed, we implemented a mechanism similar to FrBlund's synchronizers. The dynamic nature
of ALua was important in allowing us to modify handlers for incoming function invocations. Synchronization was implemented
by defining a handler that manages a queue with blocked requests, but no changes to the syntax of invocations were needed.

With this step-by-step development of a set of communication and synchronization abstractions, we hope to have made the
case that (sequential) programming languages with appropriate extension features allow us to combine the advantages of the
library and language approaches for concurrent and distributed programming. Languages designed from scratch for concurrency
and distribution are usually elegant and simple to understand for a given coordination model. Features such as first-order
functions and closures allow libraries to be integrated seamlessly into the programming language, resulting in environments that
can be seen as specific-domain programming languages. However, these environments are not bound to one single coordination
model, and allow the programmer the flexibility of choosing appropriate abstractions for each task.

Languageswith the featuresweemphasize, suchasdynamic executionmodel and support for functions as first-class values and
closures, are often interpreted languages. Although interpreted languages, in general, are not as efficient as compiled languages
for computing intensive systems, we can use a dual programming model as discussed in [50]. The idea is that the interpreted
language can be used to coordinate the application, while a traditional compiled language handles the computing-intensive
parts.
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