
On the use of Smalltalk forConcurrent and Distributed Programming�Jean-Pierre BRIOTy Rachid GUERRAOUIDept. of Information Science D�epartement d'InformatiqueThe University of Tokyo �Ecole Polytechnique7-3-1 Hongo, Bunkyo-ku F�ed�erale de LausanneTokyo 113, Japan CH-1015, Lausanne, Suissebriot@is.s.u-tokyo.ac.jp guerraoui@lse.epfl.chAbstractThis paper studies why and how Smalltalk, although designed as amono-user and mono-processor programming language, is a very goodfoundation for concurrent and distributed programming. The two mainreasons behind this likely paradox are: the rich and reusable library ofclasses, and the extreme
exibility of Smalltalk. These two speci�citiescomplement more general object-oriented characteristics and advantages.As examples supporting our claim, we overview two di�erent Smalltalk-based software platforms for concurrent and distributed programming.1 IntroductionOur basic claim in this paper is that Smalltalk, although initially de-signed as a sequential, mono-user and mono-processor programming en-vironment, is actually a very good basis for building concurrent and dis-tributed programming systems. We may summarize the reasons behindour claim in the four main following points:� Smalltalk, as an object-based 1 language, provides good encapsula-tion and structuring to build services and mechanisms. Meanwhile,�In SI Informatik Journal, Special Issue on Smalltalk, Vol 1, 1996.yMain a�liation at LAFORIA, Institut Blaise Pascal, 4 place Jussieu, 75252 Paris Cedex05, France. E-mail: briot@laforia.ibp.fr.1Peter Wegner has de�ned in [Weg87] an object-based language, as a language which pro-vides encapsulation, and an object-oriented language, as a language which further providesclass and inheritance concepts. 1

it provides genericity to match various software and hardware archi-tectures, and independency of physical location through the messagepassing communication metaphor.� Smalltalk, as an object-oriented language, provides classi�cation andspecialization mechanisms to classify and customize various mecha-nisms and protocols.� Smalltalk, as a rich programming environment, provides standardlibraries on which to build up various concurrency and remote invo-cation mechanisms.� Smalltalk, as a re
ective language (self-descriptive and modi�able),makes it easy to customize and integrate extended concurrency anddistribution models and protocols.To illustrate our analysis, after reviewing these key features of Smalltalk,we will overview the construction of two concurrent and distributed pro-gramming platforms built on top of Smalltalk: Actalk [Bri 94] and GARF[GGM94].Note that this paper is in spirit a position paper, and by no meansan exhaustive study of pros and cons of Smalltalk or other programminglanguages for concurrent and distributed programming.2 Objects for Concurrent and DistributedProgrammingIt is now well accepted that the notion of \object" provides good foun-dations for the new challenges of parallel, distributed and open comput-ing. For instance both the Open Distributed Processing (ODP) and theObject Management Group (OMG) recent initiatives for heterogeneousdistributed computing are based on object concepts [NWM93].Concurrency is also potentially present in the concept of object. The�rst object-oriented programming language, Simula-67 (Smalltalk-72 be-ing the second one), introduced the concept of object together with corou-tine abilities. Also, there are obvious similarities between the notion ofobject and the notion of \process": variables, persistent data, encapsula-tion, communication.Integrating objects and processes, then synchronization and messagepassing, leads to the notion of active object ([Gue 95] discusses variousactive object models). Furthermore, message passing not only ensuresthe independence of the behavior of an object with its actual internalrepresentation, but it also easily ensures the independence of its physicallocation. Objects appear as natural and potential units for program distri-bution. Self-containedness of objects (data plus procedures, plus possibleinternal activity) also eases the issue of moving (migrating) them around.2

3 SmalltalkSmalltalk 2 is often considered as one of the \purest" example of object-oriented language. This is because its \motto" is to have only a few con-cepts (object, message passing, class, inheritance) and to apply them uni-formly to any aspect of the language and environment. One consequenceis that the language is actually very simple. The richness of Smalltalkcomes from it rich set of class libraries, as we will see.3.1 Standard LibrariesSmalltalk o�ers a rich and standard library of classes. They describeand implement various programming constructs (control structures, datastructures: : :), internal resources (messages, processes, compiler: : :), anda sophisticated programming environment with integrated tools (browser,inspector, debugger: : :).Actually, even basic control structures, such as loop and conditional,are not primitive language constructs, but just standard methods (of stan-dard classes) which make use of the generic invocation of message passing.They are based on booleans and blocks. A block is a general sequenceof expressions, enclosed within brackets ([and]), whose evaluation isdelayed. Blocks (represented as instances of class BlockContext) are es-sential for building various control structures that the user may extend athis wish. They also represent one kind of execution context, the basis formulti-threaded concurrency. By sending message fork to a block, a newprocess is created (and started). Standard class Process describes theirrepresentation and its associated methods implement process manage-ment (suspend, resume, adjust priority: : :). The behavior of the processscheduler is itself described by a class, named ProcessorScheduler.The basic synchronization primitive is the semaphore, representedby class Semaphore. Standard libraries also include higher abstractions:class SharedQueue to manage communication between processes, and classPromise for representing the eager evaluation (value computed by a con-currently executing process). These two abstractions are the basis forimplementing bu�ered (asynchronous) and eager reply (\future" type)communications, for (object-oriented) concurrent programming. Moregenerally speaking, it is easy to build up on this basic standard library ofconcurrency classes to construct more sophisticated abstractions, as forexample in the Actalk platform (see in Section 4.1).Smalltalk also o�ers libraries for remote communication (Unix sock-ets, RPC: : :), and standard libraries for storage and exchange of objectstructures (the Binary Object Streaming Service (BOSS) library) as a ba-sic support for persistency, transaction checkpoint, and marshalling forremote communications (see for instance in Section 4.2).2In this text, \Smalltalk" will implicitly refer to \Smalltalk-80" [GR83], and its mostrecent marketing denomination: \VisualWorks."3

3.2 Flexibility and IntegrationThe fact that most of Smalltalk language constructs (classes 3, meth-ods, messages, control structures, contexts, processes: : :), and mecha-nisms (compiler, scheduler: : :), are \�rst-class" objects, and accordinglyrepresented through standard class libraries, makes the language self-descriptive and also extensible. In order to also open up the seman-tics/implementation of its basic behavior (sending a message, referencingan object: : :), Smalltalk provides \hooks" to be able to customize it. Thecombination of self-description of Smalltalk and such hooks (re
ectiveprimitives) is a key aspect in the
exibility of Smalltalk and the ability totransparently integrate customizations.We will quickly describe some of the key re
ective facilities of Smalltalk,while specially focusing in this paper on their possible use for embeddingconcurrent and distributed computing systems into Smalltalk.changing semantics of message passing { If a message is not understoodby some receiver object, the message doesNotUnderstand: is sentto it with the unknown message as its argument. Default seman-tics is to open an error noti�er, but any class may locally customizethe behavior by rede�ning the corresponding method. This is spe-cially useful for locally adapting the semantics of message passing tovarious contexts/mechanisms (asynchronism, multicast, transaction,e.g. in Section 4).changing references to objects { Method become: exchanges (swaps) ref-erences between two objects. This primitive is also useful for pre-serving references when refactoring objects (as for instance whenencapsulating them as explained above).current context { Pseudo-variable thisContext references current con-text of execution (a context being a Smalltalk object). This actu-ally provides an entry point to the execution stack. For instance, itis useful for customizing the debugger for concurrent asynchronousmessage passing.changing the class of an object { Method changeClassToClassOf: changesthe class of an object, and thus its behavior. This is another veryuseful primitive for evolution and integration of protocols (see inSection 4.1).4 ExperiencesVarious frameworks for concurrent, parallel, and distributed programminghave been developed with Smalltalk. They include: libraries, platforms,3A class, being a \�rst-class" object, is itself instance of a class, named a metaclass.Metaclasses may be used to hold information about classes and basic representation of theirinstances. A more �ne-grained meta-description may be individualized at the object-levelinstead (such object meta-description is called a meta-object [Mae87]). These are variousdegrees of the general concept of a re
ective system, that is a computational system whichmay describe (and thus adapt) its own behavior.4

and full systems/products. They all make use of the
exibility and rich-ness of Smalltalk, and help at embedding or/and reusing standard pro-grams with speci�c libraries and mechanisms for concurrency and distribu-tion management. Below we will brie
y describe two academic examplesof such frameworks, namely Actalk: a platform for concurrent program-ming, and GARF: a platform for distributed and reliable programming.There are also commercial products such as: the HP DistributedSmalltalk environment for developing (CORBA-compliant) distributedapplications, and the OTI Envy Developer team development environ-ment (see [Man 94] for related informations).4.1 ActalkActalk 4 is a generic software platform/testbed for describing and classify-ing various (object-oriented) concurrent programming (OOCP) languageconstructs and mechanisms [Bri 94]. It has been used as a prototype foun-dation by various projects, e.g., simulation of software engineering pro-cess models, multi-agent systems applied to natural language processing,genome sequencing, knowledge acquisition: : :The architecture of Actalk includes a kernel which models basic OOCPsemantics (that is active/serialized objects which communicate by asyn-chronous/unidirectional message passing). The kernel is composed of a setof kernel component classes, each component describing a di�erent aspectof an active object. Main components are: behavior (de�ning the actualbehavior/program of the active object), activity/synchronization (de�n-ing the way method invocations are selected, scheduled, synchronizedand computed), and communication (de�ning the way message trans-missions will be interpreted, e.g., with or without reply, asynchronousor synchronous: : :). Each component class is itself further decomposedthrough \parameter methods", speci�cally intended to be rede�ned/specia-lized in subclasses in order to model alternative language designs. This rel-ative independence of components allows the user to independently modelor/and associate various aspects (activity, synchronization, communica-tion) of the computation model/context to a given object/program.Several extensions (subclasses) of the di�erent kernel component classeshave been developed to implement various languagemodels and constructs,communication models, and synchronization schemes described in veryprogressive re�nement steps [Bri 96]).The implementation of the Actalk kernel relies at �rst on the redef-inition of the doesNotUnderstand: method to transparently implementasynchronous bu�ered message passing (which may then be further spe-cialized, as for instance to express eager reply, thanks to the standard classPromise). Bu�ering of incoming messages is expressed as a specializationof the standard class SharedQueue. Class Messagemay also be extended inorder to include further information (e.g., sender of the message, or arrivaltime as to express priority-based synchronization algorithms [Bri 96]).4Actalk stands for \active objects, or actors, in Smalltalk-80."5

Within the Actalk project, a generic time-slicing scheduler has beendeveloped and integrated with standard Smalltalk-80 scheduler. In orderto integrate this new scheduler with standard Smalltalk-80 virtual ma-chine, and more speci�cally with the management of process suspensiononto semaphores, the implementation may change dynamically and tem-porarily the behavior of semaphores when needed (thanks to the re
ectiveprimitive changeClassToClassOf:).4.2 GARFGARF 5 is an object oriented system aimed to support the design and theprogramming of reliable distributed applications on top of a network ofworkstations [GGM94, GGM95]. The speci�city of GARF resides in itsincremental programming model, and its extensible library of generic com-ponents. GARF has been written in Smalltalk and was �rst implementedon top of the Isis toolkit [BvR 93], then ported on top of Phoenix 6.GARF promotes software modularity by clearly separating the be-havioral features that concern concurrency, distribution and reliability,from functional ones than concern traditional sequential and centralizedaspects. First, the GARF programmer may design and implement ap-plication components in a centralized environment, focusing only on theirfunctionalities. In further steps, without modifying the previously writtencode, the programmer may turn to behavioral features, by expressing andcontrolling concurrency, distributing the application over a network, andreplicating its critical components to increase the reliability. Of course,all these steps, including the �rst one, may be performed concurrently,but the code written for di�erent steps is separated.GARF handles two kinds of objects: data objects and behavioral ob-jects. Data objects are used to describe the functional aspects of theapplication (i.e., sequential and centralized aspects). These objects arepassive entities (i.e., standard Smalltalk program objects) that commu-nicate in a point-to-point, synchronous, request/replymanner. Behavioralobjects can be viewed as \meta data objects" [Mae 87], used to describebehavioral features (i.e., concurrency, distribution, and reliability) of dataobjects.Dealing with the behavioral features of an application actually comesdown to (dynamically) bind behavioral objects to data objects. GARFsupports two types of behavioral objects: encapsulators and mailers. En-capsulators are used to wrap data objects by controlling the way theytreat incoming and outcoming requests. Mailers are used to perform (re-mote) communications between encapsulators. GARF provides a libraryof encapsulator and mailer classes. For example, the encapsulator classReplica enables to create multiple replicas of a data object, and the mailerclass Abcast ensures that all replicas of an encapsulator receive concurrent5GARF stands for \G�en�eration Automatique d'Applications R�esistantes aux Fautes".6Phoenix is an Isis-like toolkit, designed and implemented at EPF Lausanne, with largescale distribution in mind. 6

requests in the same order.The \transparent" interception of messages was the key issue in orderto reuse, as such, the functional code (i.e., the data objects) into a con-current, distributed and reliable context (i.e., with behavioral objects).The interception of creation messages was achieved using the SmalltalkDictionary and the doesNotUnderstand: operation. Another issue wasthe marshalling and unmarshalling of messages for remote communica-tion. This was achieved using the BOSS (Binary Object Streaming Ser-vice) classes provided by Smalltalk.5 ConclusionThis paper described the pros of using Smalltalk as a foundation fordeveloping concurrent and distributed programming systems. AlthoughSmalltalk was initially designed for mono-processor and mono-user envi-ronments, the combination of standard object-oriented features (encap-sulation, genericity, reuse) with Smalltalk-speci�c richness of its librariesand the extreme
exibility of the language, makes Smalltalk a very goodfoundation. We quickly reviewed two concurrent and distributed pro-gramming systems developed in Smalltalk as examples for supporting ourclaim. We believe there will be a growing number of Smalltalk-basedconcurrent/distributed programming projects and products, as alreadywitnessed by commercial products such as HP Distributed Smalltalk andEnvy Developer.References[BvR 93] K. Birman and R. van Renesse, Reliable Distributed Comput-ing with the Isis Tookit, IEEE Computer Society Press, 1993.[Bri 94] J.-P. Briot, \Mod�elisation et Classi�cation de Langages de Pro-grammation Concurrente �a Objets : l'exp�erience Actalk," ColloqueLangages et Mod�eles �a Objets (LMO'94), also published as Rap-port de Recherche LITP, no 94.59, Paris, France, October 1994.[Bri 96] J.-P. Briot, \An Experiment in Classi�cation and Specializa-tion of Synchronization Schemes," to appear in 2nd Interna-tional Symposium on Object Technologies for Advanced Software(ISOTAS'96), edited by K. Futatsugi and S. Matsuoka, LNCS,Springer-Verlag, March 1996.[BG 96] J.-P. Briot and R. Guerraoui, \Objets pour la Programma-tion Parall�ele et R�epartie : Int�erêts, Evolutions et Tendances," toappear in Special Issue on \Syst�emes �a objets : tendances actuelleset �evolution," edited by A. Napoli and J.-F. Perrot, Technique etScience Informatiques (TSI), AFCET - Herm�es, France, 1996.[GGM94] B. Garbinato, R. Guerraoui, and K.R. Mazouni, \Dis-tributed Programming in GARF," In Object-Based Distributed7

Programming, edited by R. Guerraoui, O. Nierstrasz, and M.Riveill, LNCS, no 791, Springer-Verlag, 1994, pages 225{239.[GGM95] B. Garbinato, R. Guerraoui, and K.R. Mazouni, \Imple-mentation of the GARF Replicated Objects Platform," (2) Dis-tributed Systems Engineering Journal, 1995.[GR 83] A. Goldberg and D. Robson, Smalltalk-80: the Language andits Implementation, Series in Computer Science, Addison Wesley,1983.[Gue 95] R. Guerraoui, \Les Langages Concurrents �a Objets" : Tech-nique et Science Informatiques (TSI), AFCET - Herm�es, France,October 1995, pages 945{973.[Mae 87] P. Maes, \Concepts and Experiments in Computational Re-
ection," ACM Conference on Object-Oriented Programming Sys-tems, Languages and Applications (OOPSLA'87), Special Issue ofACM Sigplan Notices, Vol. 22, no 12, December 1987, pages 147{155.[Man 94] S. Mann (edited by), The Smalltalk Resource Guide, Cre-ative Digital Systems, San Francisco CA, USA, (cds@netcom.com),1994.[NWM93] J. Nicol, T. Wilkes, and F. Manola, \Object-Orientationin Heterogeneous Distributed Computing Systems," IEEE Com-puter, Vol. 26, no 6, June 1993, pages 57{67.[Weg 87] P. Wegner, \Dimensions of Object-Based Language Design,"ACM Conference on Object-Oriented Programming Systems, Lan-guages and Applications (OOPSLA'87), Special Issue of ACM Sig-plan Notices, Vol. 22, no 12, December 1987, pages 168{182.
8

