Development of an Environment
for Specification and Execution
of Active Objects on Parallel Machines

Parallel Computing Action: Application No
4232

RXF-LITP Research Team
RESEARCH PROPOSAL

1 Summary of Objectives

The goal of our project is the design of an environment based on object-
oriented programming to program parallel computers. We chose the con-
current oriented programming paradigm (based on active objects) as the
foundation for expressing concurrent programs.

The system we propose includes two components:

e a specification and experimentation environment running on top of the
Smalltalk-80 system on a workstation, named Actalk,

e an execution environment running on top of the C++ environment on
a parallel computer (a T-Node machine based on T800 transputers),
named Tact.

These two components will be stand-alone, although they will be devel-
oped together in order to get a perfect combination and interface between
them. The complete system Actalk/Tact will provide an integrated devel-
opment and execution environment for concurrent object-oriented languages

1



and programs. It will allow the programmer to design and experiment pro-
grams into a rich specification environment, and to transparently run them
onto the parallel machine through an automatic translation to the execution
environment.

2 Motivations, Previous and Current Work

2.1 Motivations

Members of the teams have large experience in specification and implemen-
tation of concurrent object-oriented programming languages and distributed
systems. Like other researchers in the same field, we faced the almost non
existence of appropriate tools to design such parallel programs and moreover
experiment with them. Rather than focusing on a formal approach to design
safe programs and reason about them, we advocate the needs for specific
programming environments to help specification and to visualize experimen-
tation.

We noted that there are now good execution systems for running programs
on parallel computers, but their environment and development environment
are usually very limited. There are also some specification and simulation
environments for concurrent programs running on mono-processors, but they
are limited to simulation and do not control true parallel machines.

We believe that realizing a system for both specification and execution
on parallel computers is hard to complete at least in a reasonnable amount
of time. We rather chose to take the best of both components, namely
specification and simulation environment, and parallel execution system, and
to design them to be fully compatible and interfaced. Programs specified
in the development environment will be transparently translated onto the
execution environment to run them on the parallel machine. Although, as
mentionned earlier, these two environments may be used independently, their
combination will give the programmer a complete unified environment for
specification, simulation and parallel execution of his programs.



2.2 Previous and Current Work
2.2.1 Development Environment: Actalk

The kernel and prototype environment of the first and higher-level component
has already been partly designed and implemented as a stand-alone project.
This system, named Actalk (which stands for actors in Smalltalk), is an in-
tegrated environment for specification, classification and experiment with
concurrent object-oriented languages, based on the notion of active objects
and therefore also named actor-based languages. We decided to base this lab-
oratory for experiments on the object-oriented programming methodology in
order to benefit its merits of uniformity, modularity, reusability, and easy
interfacing. We chose the Smalltalk-80 programming language and environ-
ment as the unified foundation. The design and implementation of the kernel
of the platform has already been completed and it has been applied to simu-
late some of the most popular actor-based programming languages (the Act3
and ABCL/1 languages) and is currently used as a tool for designing new
ones (the Mering-IV programming language for distributed artificial intelli-
gence which will be implemented on hypercube machine). Actalk is modular
and flexible enough to allow the design of various concurrent object-oriented
programming languages and the corresponding programs rather than being
stuck to some specific language.

A sub-project of Actalk whose first prototype is now just completed cur-
rently designs some programming environment customized for actors. It
is implemented as an extension (subclasses) of the standard Smalltalk-80
programming environment, and is able to visualize and control active and
concurrent objects.

We think that, because our specification platform has already been val-
idated, it is now time to start implementing its counterpart on the parallel
machine.

2.2.2 Parallel Execution Layer: Tact

We chose C++ as the kernel language for programming on the transputers.
C++ is the mostly used language for current distributed operating systems
research projects, and we already have such experience. C++ will be ported
on top of C compilers on transputers.

Therefore we started prospecting how to express the kernel semantics of



Actalk actors into C++. We call this layer Tact. We experienced interfac-
ing Smalltalk-80 with C++ by adding C++ primitives to the Smalltalk-80
virtual machine. Our previous experience of using C++ to implement dis-
tributed systems lead us to design a minimal object system layer controlling
execution and resource management (object allocation and migration) onto
a distributed environment.

3 Work to be Done

3.1 Work Planned

We intend to develop concurrently both two components: the specification
environment Actalk on Smalltalk-80, and the execution environment Tact
on transputers. By developping them concurrently we expect an optimal
symbiosis between them. The interface between Actalk and Tact will include
a translator which transforms Actalk programs into their equivalent form in
Tact. The resulting Tact programs may then be compiled into executable
code on the transputers.
The resulting development chain includes four layers:

e Actalk on top of Smalltalk,
e Smalltalk interfaced with Tact,
e Tact interfaced with the C compiling chain,

e native transputer code resulting from C compiler.

3.2 Schedule
The project will be divided in 3 phases:

first phase: (1 year) prototyping Design of a first prototype of the Tact
system on a workstation. Implementation of the C++ basic execu-
tion layer on the transputers. Design and implementation of a first
prototype of the Actalk— >Tact translator.

The development of the Actalk system, focused on the programming en-
vironment aspects (visualization, control, debugging) will go on during

4



all the project. This also includes the design and implementation of a
higher level language level with bidirectional communication between
active objects, where the user does not have to take care of explicit
continuations. A prototype compiler between such a higher layer and
Actalk has already been implemented.

second phase: (6 months) validation We plan some experiments with sev-
eral application fields.

third phase: (1 year) implementation The feedback of the previous vali-
dation will lead to enhance the first prototypes to achieve a complete
system. A high level execution layer, including implicit allocation, mi-
gration, garbage collection will be designed on top of the basic execution
layer and connected to the Tact system.

Three PhD students will work on this project, under our direction. One
will work on the Actalk platform, another one on the Tact extension, and
the last one on the basic execution layer on the T-Node.

4 Description

4.1 First Phase: Prototyping

e Design and implementation of a concurrent extension of C+-+ towards
active objects, named Tact. The activity of active objects will rely on
C++ tasks. This first prototype will be designed on a workstation.

6 man/months.
e Design and implementation of a prototype translator plus interface
from Actalk to Tact. Because the kernel of Actalk is minimal and

modular, it could easily evolve in order to keep a perfect match between
Actalk and Tact during the project development process.

6 man/months.
e Design and implementation of a minimal object system layer to allocate
and execute C++ tasks on the T-Node transputer processors.

6 man/months.



e Extension of the C++ compiler in order to allow object migration and

4.2

4.3

persistence. We already implemented a similar extension for the pur-
pose of SOS, a distributed and object-oriented system (Esprit-1 project
367 SOMIW). The new enhanced extension is planned for the new ver-
sion 2.0 of the C++ compiler.

6 man/months.

Further development of the visualization and control environment for
Actalk execution whose prototype is already implemented. This in-
cludes the study of debugging facilities.

12 man/months.

Second Phase: Validation

We will test the various parts of our system with several application
fields like: multi-agents reasonning systems (such a system has already
been designed on top of Actalk), games, distributed simulation, multi-
voice music simulation (we intend to reuse some musical application
for jazz improvisation that we already developped at IRCAM in C++
multi-task system but on a mono processor.) ...

12 man/months.

Third Phase: Implementation

Design and implementation of a high level execution layer for active ob-
jects, including implicit allocation, migration, garbage collection. This
will be designed on top of the basic execution layer which gives explicit
control on migration. The Tact prototype will be adapted to run on
top of this distributed execution layer.

12 man/months.
Connection of the Actalk environment with this distribution layer to
provide a high level control on allocation/migration strategies.

6 man/months.



5 Results Planned

The global result of the project will be a unified platform with two compo-
nents: a high-level specification environment on workstation: Actalk, and
a minimal and flexible execution environment on transputers: Tact. These
two components are automous and may be used independently. But they are
complementary and combine together into the system Actalk/Tact through
the interface and translator.

6 Deliverables

All public sources are deliverables. Public source is free. Sources based on
licensed products needs appropriate licensing.

The Actalk environment is portable in Smalltalk-80. Tact will include an
extended C++ compiler, a minimal object system layer, and library tools for
C++ object migration.

7 Dissemination

We intend to publish our ongoing work in related conferences and working
groups. We will discuss the progress and results with other teams through
the special workshops organized within the program.

8 Using Results

We will be the first users of our system to prospect and experiment both
with concurrent programming methodology, evaluate algorithms for resource
allocation, and study relation between object migration and routing topology.
We will introduce our results and experience into some pedagogic courses at
University. As already pointed, we have many application fields in mind.



