We present ReDO (Redrawing Objects): an unsupervised, data-driven, object segmentation method for real images.

We assume natural images generation is a composite process in which each object is generated independently. Object segmentation is then the discovery of regions that can be redrawn without seeing the rest of the image.

Image Composition Model

We consider the following underlying generative process G that produce images in three steps.

1. Define the position of the different regions: global structure of the image, by sampling N region masks.

 $M \sim p(M), M \in \{0, 1\}^{N \times W \times H}$, $\sum_{k=1}^{N} M_{k,x,y} = 1$

2. Generate the contents of each region independently.

 $V^k \leftarrow G_i(M^k, z_i), z_i \sim p(z)$ for $k \in \{1, \ldots, n\}$

3. Aggreate the resulting regions into the final image.

 $G(M, z_1, \ldots, z_n) = \sum_{k=1}^{N} M^k \odot V^k$

Towards Learning To Segment

We replace step 1 by a segmentation function F that produce a mask given an image input $I \in \mathbb{R}^{C \times W \times H}$.

1. Obtain the mask using a segmentation function F.

 $M \leftarrow F(I), M \in \{0, 1\}^{N \times W \times H}$, $\sum_{k=1}^{N} M_{k,x,y}^z = 1$

2. Generate the contents of each region independently.

 $V^k \leftarrow G_i(M^k, z_i), z_i \sim p(z)$ for $k \in \{1, \ldots, n\}$

3. Aggreate the resulting regions into the final image.

 $G_r(I, z_1, \ldots, z_n) = \sum_{k=1}^{N} M^k \odot V^k$

Conservation of Information

Problem 1: Mapping all pixels to one region is a trivial but valid solution.

![Conservation of Information](image)

Solution: We add a learned function δ that tries to reconstruct the noise vectors z_i from the generated image.

Problem 2: The segmentation function can ignore the input.

![Conservation of Information](image)

Solution: We tie the output to the input by only regenerating one region at a time, keeping the rest of the image the same.

Learning the full model for object segmentation

We can train this model end-to-end using an adversarial loss to match the distribution of generated images to the dataset distribution. But it would naturally converge to trivial and uninformative solutions.

Objective functions: We use the hinge version of the adversarial loss.

$$
\max_{\alpha, \delta} \mathcal{L}_G = \mathbb{E}_{I \sim p_{data}}[D(G_r(I, z_i, i)) - \lambda \delta(G_r(I, z_i, i) - z_i)]
$$

$$
\max_{\alpha, \delta} \mathcal{L}_D = \mathbb{E}_{I \sim p_{data}}[\min(0, -1 + D(I))] + \mathbb{E}_{z \sim p_z}[\min(0, -1 - D(G_r(I, z_i, i)))]
$$

Preprint

Code and Pretrained

https://github.com/mickaelChen/ReDO
Experiments

We evaluate ReDO on 3 datasets of real images:
- Without supervision, ReDO discovers meaningful object masks and noise vectors z codes for specific texture.
- ReDO’s performance is comparable to supervised baselines trained with about 50-100 labelled datapoints.
- Preliminary experiments indicates that ReDO can work on datasets with multiple objects or multiple classes without using labels.

ReDO and supervised baselines

Generated Samples

Dataset with 2 Categories

Datasets with 2 Objects

Additional masks