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This paper considers the task of constructing fuzzy prototypes for numerical
data in order to characterize the data subgroups obtained after a clustering
step. The proposed solution is motivated by the will of describing prototypes
with a richer representation than point-based methods, and also to provide
a characterization of the groups that catches not only the common features
of the data pertaining to a group, but also their specificity. It transposes a
method that has been designed for fuzzy data to numerical data, based on a
prior computation of typicality degrees that are defined according to concepts
used in cognitive science and psychology. The paper discusses the construction
of prototypes and how their desirable semantics and properties can guide the
selection of the various operators involved in the construction process.

1 Introduction

Clustering [9, 8] provides a simplified representation of a dataset by decompos-
ing it into homogeneous and distinct subgroups called clusters. Each cluster
can then be described by a prototype: it is a unique individual which char-
acterizes the data subgroup; the set of prototypes can be used to summarize
the initial dataset. Our paper focuses on the prototype construction.

Most of the time, each cluster is mapped to a unique point, called its
center. It can be defined in various ways, for instance as the group average
– as in the k-means algorithm – or as a weighted average – as in the fuzzy c-
means. This choice is based on the assumption that the average characterizes
the group, which is not always the case; other points can be chosen, as for
instance the median or the Most Typical Value [5].

Our hypothesis is that a prototype intrinsically is a fuzzy concept: hu-
man reasoning is not based on precise numerical values, but rather on impre-
cise notions. For instance, considering data describing the height of persons
from various countries, it cannot be said that the typical French person is
1.6834m tall (fictitious value), which is the kind of result one would get using
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an average-based definition. It seems more appropriate to say that the typi-
cal French person is “rather tall”. This linguistic term conveys an imprecise
notion which is best modelled using the fuzzy subset framework: the latter
makes it possible to formalize categories with flexible and unclear boundaries,
and thus prototypes as naturally handled by human beings.

Therefore, we consider the task of building fuzzy prototypes, defined as
individuals described by fuzzy attribute values. The problem is then to con-
struct, for each group, a fuzzy set describing the typical values of the numerical
data pertaining to the group.

Rifqi [16, 15] proposes a method to build fuzzy prototypes for fuzzy data,
i.e. data described by a set of attributes with values defined by fuzzy sets. This
method rests on a definition of typicality inspired from cognitive science and
psychology: Rosch [18] showed that all members of a category do not have the
same representativeness and that the typicality of an instance depends both
on its resemblance to the individuals pertaining to the same group and its
dissimilarity with the individuals pertaining to the other groups. Our aim is
to adapt this method to crisp data.

The paper is organized as follows: section 2 describes methods that pro-
vide enriched representatives for data subgroups, as compared to point-based
descriptions. Section 3 presents the method we propose to handle crisp data
and it discusses the notion of prototype and its associated properties. Lastly
section 4 illustrates the results obtained on a real dataset.

2 State of the Art

2.1 Enriching Point Description

A first approach to obtain rich cluster descriptions is to apply fuzzy cluster-
ing algorithms [8]: they provide fuzzy subsets for each cluster. Yet these fuzzy
subsets represent an imprecise decomposition of the database and model data-
points which have unclear membership and partially belong to several clusters
simultaneously. Fuzzy prototypes are to be described by other fuzzy subsets:
they do not aim at describing the cluster as a whole and representing all
its points, but at extracting its most typical features and defining a relevant
summary to provide a characterization of the subgroup. As a consequence,
prototypes are expected to be more specific fuzzy subsets than the fuzzy clus-
ters.

Thus fuzzy clustering methods provide a distribution in addition to the
cluster centers, but this distribution cannot be applied directly to define fuzzy
prototypes. Likewise, other point-based prototypes can be extended to distri-
butions, but these distributions do not describe prototypes: one can associate
a gaussian distribution to the arithmetic mean; yet, it is defined in such a way
that each point in the cluster has a sufficiently high probability and it does
not aim at defining a representative characterizing the group itself.
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Table 1. Typicality-based algorithm to build a fuzzy prototype for a cluster g [15].

Given a resemblance measure r and a dissimilarity measure d [16],

1. Compute the typicality degree of each individual x in the group g
a) Compute the internal resemblance Rg(x) as the aggregation of the re-

semblance of x to the other individuals pertaining to the same group:
Rg(x) = agy∈g(r(x, y))

b) Compute the external dissimilarity Dg(x) as the aggregation of the dis-
similarity of x to the individuals pertaining to the other groups: Dg(x) =
agy 6∈g(d(x, y))

c) The typicality Tg(x) is the result of the aggregation of Rg(x) and Dg(x)
2. The prototype is constructed by aggregating the individuals that are “typical

enough”, i.e. individuals whose typicality degree is higher than a pre-defined
threshold.

More generally, fuzzy subset elicitation methods [1, 13] are techniques
that are explicitely designed to provide fuzzy subsets describing the data.
Some of them involve interaction with a human expert, others are based on
partitioning methods [12, 6, 7]. Many belong to the parametric framework,
i.e. consist in deciding on a desired form for the membership function, e.g.
trapezoidal, gaussian or fuzzy c-means like, and optimizing its parameters
so as to obtain a satisfying representative; the difficulty is then to define an
appropriate cost function.

The prototype construction method we propose belongs to the elicitation
technique framework, but it considers a specific characterization task: it aims
at building a membership function which summarizes the data subgroup and
does not describe it globally. It is based on the definition of typicality degrees:
the membership functions are not directly constructed from the data but from
an abstraction of the data in the form of typicality degrees.

2.2 Typicality-Based Approach

The method proposed in [16, 15] to construct fuzzy prototypes for fuzzy data
uses the notion of typicality defined by Rosch [18]: the typicality of a datapoint
is a function of both its within-class resemblance and its dissimilarity to other
classes, as detailed in table 1. In the sequel, we refer to it as Rosch typicality.
The prototype is then defined as an aggregation of the most typical datapoints.

It is to be noted that other typicality definitions exist, as the one used by
Pal et al. [14] or the one underlying the Most Typical Value [5]. Yet these
definitions are closer to “exceptionality” coefficients than typicality degrees,
insofar as they are only based on the notion of a deviation with respect to
a center. They can be interpreted as internal resemblance measures, which
makes them a special case of the Rosch typicality.
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3 Typicality-Based Prototype for Crisp Data

In this section, we discuss a method based on the Rosch typicality for crisp
data. Considering crisp data makes a major difference with fuzzy data: in the
latter case indeed, a fuzzy prototype is described with the same “language”
as the considered data, i.e. fuzzy sets. In the case of crisp data, the prototype
has a richer description than the datapoints.

After some general remarks on the typicality approach to fuzzy prototypes,
we discuss the three steps of the algorithm described in table 1, with regard
to the desired semantics and properties of the prototype. At each step, we
discuss the parameters and the choices that have to be made and we illustrate
their consequences on the classic iris database1 [4]. In the first place, the
resemblance and dissimilarity definitions must be defined for the crisp case.
Then, their aggregation to compute the typicality degree has to be studied.
The last step consists in determining how typical values are aggregated so as
to obtain the prototype.

3.1 General Remarks

In the following, we consider that each group can be represented by a single
prototype. This assumption is valid in our clustering framework: groups cor-
respond to clusters and are thus homogeneous enough to be associated with
a single representative.

It is to be noticed that the definition of a fuzzy prototype based on typi-
cality degrees entails the definition of three different distributions:

• the membership function which indicates the extent to which a datapoint
belongs to a cluster; this distribution is only available if clusters are ob-
tained using a fuzzy clustering algorithm;

• the typicality distribution which indicates the extent to which a datapoint
is typical of a group;

• the membership function describing the prototype itself.

Relationships between these distributions can be established: for instance,
it seems natural to consider that for each group and each datapoint, the
typicality is lower than the membership degree to the cluster. This expresses
the fact that a datapoint which has a low membership cannot be typical; it
also imposes that a point which is totally typical of a group totally belongs
to it.

Lastly, prior to the prototype construction, one must decide between two
approaches : the algorithm can be performed either on the individual as a
whole, or it can be applied attribute by attribute. Taking into account all at-
tributes makes it possible to represent correlations between attributes, which

1Note that for this database, labels are provided, so a preliminary clustering
phase is not necessary, we construct one prototype for each of the three classes.
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Table 2. Some examples of resemblance and dissimilarity measures for two vectors
x and y; dist(x, y) denotes a distance between x and y, Z is a normalizing factor, z
a normalizing function, γ, σ, dM and Γ are hyperparameters.

Resemblance measures, R

scalar product (x · y)

distance-based 1 − 1

Z
dist(x, y)

polynomial

(
(x · y)

Z
+ 1

)γ

gaussian exp
(
− 1

2σ2
dist(x, y)2

)
Fermi-Dirac [17] z

(
1

1 + exp dist(x,y)−dM
Γ

)
Dissimilarity measures, D

normalized distance
1

Z
dist(x, y)

measures depending on a
resemblance measure

1 − r(x, y)

1

1 + r(x, y)

can provide useful information about the prototype. On the other hand, work-
ing attribute by attribute can emphasize attributes that have no typical values
for a given group, and can therefore be removed from the prototype descrip-
tion, thereby simplifying the group description.

3.2 Similarity and dissimilarity measures

In the case of fuzzy data, the resemblance and dissimilarity measures involved
in the first step of prototype construction apply to fuzzy sets. They are defined
in the formal framework of comparison measures [16] as functions with values
in the interval [0, 1] depending on a triple characterization of the relative
position of the two compared subsets A and B: they depend on their common
elements (i.e. a fuzzy set measure of the intersection A ∩ B) and on their
distinctive elements (a fuzzy set measure of their set differences A−B and B−
A). For crisp data, the range of possibilities is reduced because the information
on the relative positions of two points can only be measured with one quantity
corresponding to a distance (or equivalently a dot product). Table 2 mentions
some possibilities.

Figure 1 illustrates three types of measures, using the iris database. For
visualization sake, we only consider a single attribute, the petal length (third
one); the histograms represent the datapoint distribution. On the graphs on
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Fig. 1. Examples of comparison measures for the third attribute of the iris database.
(1) Internal resemblance (a) Fermi-Dirac [17], (b) gaussian, (c) distance-based; (2)
External dissimilarity (a) Fermi-Dirac, (b) gaussian, (c) normalized distance.

the first (resp. second) row, the y-axis represents the internal resemblance
(resp. external dissimilarity) measure for each datapoint. One can observe
that the three measures lead to different values, but usually to the same
datapoint ranking within subgroups. These graphs show that the resemblance
is maximal for a central point, whereas the most dissimilar points correspond
to extreme values. Whichever measure is used, the middle subgroup does not
appear very dissimilar as it is too close to the other clusters.

As in any learning problem, the choice of a distance measure has a major
influence on the results. It seems natural to select it according to the distance
used in the clustering step, but the choice may also be guided by the problem
at hand, which may impose the semantics of the resemblance or the dissimilar-
ity. Each measure has its own semantics: the Fermi-Dirac measure [17] enables
the user to monitor the decrease speed as a function of the distance increase
using two hyperparameters, which makes it a flexible comparison measure;
in the multi-dimensional case, the polynomial resemblance takes into account
correlations between attributes.

Another interesting issue is the duality of the resemblance and the dis-
similarity measures. In the comparison measure framework [16], dissimilarity
measures are defined independently from the resemblance measures; in partic-
ular, they are not necessarily dual, i.e. defined as the complement to 1 of each
other. In the crisp case, both are defined as a function of a single quantity (a
distance), thus duality seems a natural property of the couple. Yet it is still
possible to define non-dual measures, the difference can simply come from
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normalizing factors: two datapoints of the same class can be considered to be
totally similar at a distance d1 which differs from the distance d2 at which
points from two classes have a null dissimilarity. Such a choice implies defin-
ing a double semantics for the problem, and two different approaches to data
comparison. On the contrary, duality can be justified considering the case of a
datapoint x situated at an equal distance both to a point y pertaining to the
same group and a point z belonging to another class: duality then expresses
the fact that x is as similar to y as it is dissimilar to y.

3.3 Aggregation Operators

The second step of prototype construction consists in aggregating the internal
resemblance and external dissimilarity to obtain a typicality degree. The ag-
gregation has a strong impact on the semantics of the prototype. There exist
many works on aggregation operators [3, 2], we consider here some properties
which may be desired and their consequences on the aggregator choice.

Classic methods such as the mean, the Most Typical Value [5] or the
probabilistic approach, only take into account data pertaining to the group
to determine the group representative. They all choose the central element to
represent the group, with varying definitions of “centrality”. In our framework,
this behavior can be obtained in the degenerate case where the aggregator only
takes into account the internal resemblance and not the external dissimilarity.
In this case, the typicality degree corresponds to the resemblance measure as
illustrated by the first row on Fig. 1. In the same way, although this is not as
intuitive, it is conceivable to choose a degenerate aggregator that only takes
the external dissimilarity into account: a datapoint is considered typical if it
makes it possible to conclude about the class membership; the typicality no-
tion can then be interpreted as some kind of discrimination power (cf. second
row on Fig. 1).

In real data applications, the central and the discriminative elements often
coincide insofar as the center of a class is a discriminative element [18]. Yet
if the prototype is constructed attribute by attribute, a non discriminative
center may be encountered. The relative weight given to the centrality and to
the discrimination power in the typicality degree computation can be tuned
thanks to the aggregation operator.

In the sequel, we study the impact of the aggregation operator on the pro-
totype semantics taking up the aggregator categorization from [3] which dis-
tinguishes between constant and variable attitude aggregators. We illustrate
their effects on Fig. 2, considering the iris third attribute and the Fermi-Dirac
comparison measures (graphs (1a) and (2a) on Fig. 1).

Constant Behavior Operators

Constant attitude operators can be categorized into three groups, distinguish-
ing conjunctive operators, such as the logical and, disjunctive ones, such as
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the logical or, and intermediate ones, also called tradeoff operators, such as
weighted means.

Choosing a conjunctive operator (graph (a) on Fig. 2) implies that a dat-
apoint can be considered typical if and only if it is both similar to the points
of its cluster and distinct from other classes. This is a severe definition of
typicality which leads to low values on average.

On the contrary, choosing a disjunctive operator implies that a datapoint
can be considered typical either if it is discriminative or if it is central to the
group. This leads to two kinds of typical points, as shown on graph (b) on
Fig. 2: the extreme right points have a high typicality degree despite their low
internal resemblance because of their high dissimilarity, the central point is
typical for another reason, namely its high internal resemblance.

Lastly, tradeoff operators (graph (c) on Fig. 2) have an intermediate be-
havior, in particular, they possess the compensation property: a decrease in
one criterion can be offset by an increase in another one for a constant result
value. For instance, the extreme right point has a higher typicality degree
than on graph (a) (min operator): its high dissimilarity compensates for its
low resemblance.

Variable Behavior Aggregators

Variable behavior aggregators are conjunctive, disjunctive or tradeoff depend-
ing on the values that are aggregated as for instance the mica operator [10]:

mica(x, y) = max(0,min(1, k + (x− k) + (y − k))) (1)

where k ∈ [0, 1] is a hyperparameter which determines the position of the
change in behavior: if both values are high, i.e. higher than the neutral value
k, mica(x, y) ≥ max(x, y), so the operator has a disjuntive behavior; if both
values are lower than k, the operator has conjunctive behavior. As the mica
operator is disjunctive for high scores and conjunctive for low scores, it pos-
sesses the full reinforcement property [2]: two low values are aggregated into
an even lower value and two high values lead to an even higher result. This
is illustrated on graph (d) obtained with k = 0.6, where many points have
a typicality of 1, due to their internal resemblance and external dissimilarity
higher than the threshold value k. On the contrary, for the extreme left point
of the right cluster, the obtained value is lower than the one obtained with
the min operator.

The symmetric sum [19] is another example of variable attitude aggregator:

symSum(x, y) =
g(x, y)

g(x, y) + g(1− x, 1− y)
(2)

where g is a continuous, increasing, positive function satisfying g(0, 0) = 0.
For this non-linear operator, the change in behavior occurs at threshold 0.5.
For some choices of g, one also observes the full reinforcement property. Graph
(e) on Fig. 2 illustrates this property with g(x, y) = x · y.
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Fig. 2. Examples of aggregators applied with the Fermi-Dirac comparison measures
on the 3rd attribute of the iris database. (a) t = min(R, D), (b) t = max(R, D), (c)
t = 0.7R + 0.3D, (d) t = mica(R, D) cf. (1) with k = 0.6, (e) t = symSum(R, D)
cf. (2) with g(x, y) = x · y.

There is no way to define a priori which aggregation operator to choose:
this choice depends on the considered application and the intended use of the
constructed prototype.

3.4 Typical Data Aggregation

The last step consists in building the prototype itself; the objective is to define
it as an aggregation of the most typical datapoints. Thus one must aggregate
crisp values into a fuzzy subset, which is similar to the initial problem of
building fuzzy prototypes characterizing crisp data. The difference is that
the typicality degrees extracted from the initial data provide some kind of
abstraction. Thus they may justify simple solutions, which are not applied to
raw data, but to enriched data containing more information than the initial
ones.

We propose to define two thresholds, τk and τs, that indicate the minimum
typicality required to be included respectively in the prototype kernel and
in the support. To perform the in-between interpolation, different solutions
can be considered: one can simply use a parametric approach and build the
trapezoidal membership function having the previous kernel and support. One
can also perform a linear rescaling of the interval [τs, τk] to [0, 1] to get the
membership degrees to the prototype. Note that in the attribute by attribute
construction, both methods lead to the same prototypes.
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Fig. 3. Fuzzy prototype for the third attribute of the iris database, using Fermi-
Dirac comparison measures and mica aggretator.

Figure 3 illustrates the three prototypes obtained for the third attribute
of the iris database. For this example, as the classes are quite homogeneous
and well separated, almost all values have high membership degrees to the
prototype of their class. The exceptions are located in the overlapping zone
between two classes.

4 Experimental results

In this section, we consider a real two-dimensional dataset which describes
the results of 150 students after two exams, shown on Fig. 4. We illustrate
the construction of prototypes characterizing the various groups of students
with the previously presented method. The prototypes have been constructed
globally (not attribute by attribute) because there were obvious correlations
between the two attributes.

Table 3 sums up the various notations and measures used in the sequel.

Clustering

The first step consists in clustering the dataset so as to decompose it into
homogeneous subgroups. We applied the fuzzy c-means with an automatic
choice of c based on the stability of the objective function [11], which led to
c = 5. The results are shown on Fig. 4.

Resemblance and Dissimilarity Measures

The second step consists in computing the comparison measures. It was nat-
ural to base our resemblance and dissimilarity measures on the euclidian dis-
tance used in the clustering step, but they had to be normalized so as to take
their values in [0, 1]. The normalization factor chosen for the dissimilarity
measure indicates the distance from which two values are considered totally
dissimilar; it is set to half the data diameter, the data diameter being the
maximal distance between pairs of datapoints in the dataset.
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Table 3. Notations and measures, where X denotes the set of examples, and ||x−y||
the euclidian distance between x and y.

dissimilarity normalization factor Zd = 1
2

maxx,y∈X ||x − y||

dissimilarity measure d(x, y) = min
(
1, ||x−y||

Zd

)
cluster diameter for cluster g diam(g) = maxx,y∈g ||x − y||

resemblance normalization factor Zr = maxg diam(g)

resemblance measure r(x, y) = max
(
0, 1 − ||x−y||

Zr

)
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Fig. 4. Clustering results obtained on a 2D dataset. Each symbol depicts a different
cluster.

The normalization factor chosen for the resemblance measure is the maxi-
mal cluster diameter, the diameter of a cluster g being defined as the maximal
distance between pairs of datapoints pertaining to g.

The first two columns of Fig. 5 illustrate these choices for two clusters,
the central and lower left ones (depicted by ∗ and ◦ on Fig. 4) and represent
contour plots of the resemblance and dissimilarity measures respectively. The
resemblance contours appear circular, which is due to the point distribution
and the measure choice; the point maximizing the internal resemblance is the
cluster average. The dissimilarity is maximal for extreme points, it is slightly
higher for the left lower cluster than for the central one, which is too close to
the four other clusters.

Typicality Degree Computation

We chose a variable behavior operator, the symmetric sum, introduced in (2),
with g(x, y) = x · y. This aggregator rewards datapoints that have a high
internal resemblance (greater than the neutral value 0.5) and a high external
dissimilarity; if both values are significantly high, they reinforce each other.
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Fig. 5. Internal resemblance, external dissimilarity and typicality distribution for
the central cluster (first row), depicted ∗ on Fig. 4, and the left lower cluster (second
row), depicted by ◦.

Simultaneously, it sanctions datapoints that have a low internal resemblance
(lower than 0.5) and a low external dissimilarity. In-between, a low internal
resemblance can be offset by a high external dissimilarity and vice versa.

The results are illustrated on the last column of Fig. 5. It appears that
the typicality distribution reflects the resemblance, modified to a certain ex-
tent by the dissimilarity influence. Thus typical values are not central values
(maximizing the internal resemblance), but close values determined taking
into account the external dissimilarity. These observations are consistent with
the cognitive science results.

Typical Values Aggregation

The last step consists in aggregating the most typical values of each cluster
into a fuzzy subset which characterizes the cluster. We consider that a dat-
apoint whose typicality degree is higher than τk = 0.9 totally belongs to the
prototype, and we exclude from the prototype support the points having a
typicality lower than τs = 0.7. The interpolation between the so-defined ker-
nel and support is performed through a linear rescaling of the interval [τs, τk]
on the interval [0, 1].

The obtained results are illustrated on Fig. 6 which shows the contour
plots of the five prototype membership functions. Their kernels contain val-
ues which simultaneously have a high internal resemblance and a low exter-
nal dissimilarity. Our method enabled us to extract characterizations for the
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Fig. 6. Superimposition of the 5 obtained fuzzy prototypes.

five groups revealed by the clustering step. We think that these results can
be improved if all the datapoints are not taken into account with the same
importance in the typicality degrees computations: fuzzy clustering provides
membership functions that indicate to what extent a datapoint belongs to
several clusters. Intuitively, a datapoint that completely belongs to a group
has to have more importance in the prototype computation than a datapoint
that poorly belongs to it.

5 Conclusion

We propose a parametric fuzzy prototype construction method that consists in
aggregating typical individuals to represent an homogeneous data subgroup.
This method involves a certain number of parameters that must be chosen
according to the desired semantics and properties of the prototype. Although
these depend on the data and the application of the prototypes, it is possible to
give insights on the methodology for choosing the appropriate parameters. For
instance, if the prototype is used to classify new examples, its discrimination
power should be emphasized, whereas if it is used to provide an explanation
of the data, its centrality should be favored.

Our perspectives are to study in more detail the interrelations between
the parameters and their possible redundancy. Another interesting issue is
to study how the method can take into account fuzzy clusters: if they are
provided by the clustering algorithm, the membership degrees to the various
clusters could be used in the process, for instance to reduce the weight of
datapoints that only partially belong to the cluster.
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