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Abstract. In order to construct and deploy large-scale multi-agent sys-
tems, we must address one of the fundamental issues of distributed sys-
tems, the possibility of partial failures. This means that fault-tolerance is
an inevitable issue for large-scale multi-agent systems. In this paper, we
discuss the issues and propose an approach for supporting fault-tolerance
of multi-agent systems. The starting idea is the application of replication
strategies to agents, the most critical agents being replicated to prevent
failures. As criticality of agents may evolve during the course of compu-
tation and problem solving, and as resources are bounded, we need to
dynamically and automatically adapt the number of replicas of agents,
in order to maximize their reliability and availability. We will describe
our approach and related mechanisms for evaluating the criticality of a
given agent (based on application-level semantic information, e.g. inter-
dependences, and also system-level statistical information, e.g., commu-
nication load) and for deciding what strategy to apply (e.g., active or
passive replication) and how to parameterize it (e.g., number of repli-
cas). We also will report on experiments conducted with our prototype
architecture (named DimaX).

1 Introduction

The possibility of partial failures is a fundamental characteristic of distributed
applications. The fault-tolerance research community has developed solutions
(algorithms and architectures), mostly based on the concept of replication, and
notably applied to data bases. But, these techniques are almost always applied
explicitly and statically, at design time. In such approaches, this is the respon-
sibility of the designer of the application to identify explicitly which critical
servers should be made robust and also to decide which strategies (active or
passive replication. . . ) and their configurations (how many replicas, their place-
ment. . . ).
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New cooperative applications, e.g., air traffic control, cooperative work, and
e-commerce, are much more dynamic and large scale. Such cooperative appli-
cations are now increasingly designed as a set of autonomous and interactive
entities, named agents, that interact and coordinate (multi-agent system). In
such applications, the roles and relative importance of the agents can greatly
vary during the course of computation, of interaction and of cooperation, the
agents being able to change roles, strategies. Also, new agents may also join or
leave the application (open system). It is thus very difficult, or even impossible,
to identify in advance the most critical software components of the application.
Furthermore, criticality can vary over run time.

In addition, such applications may be large scale. And the fact that the
underlying distributed system is large scale makes it unstable by nature, at least
in currently deployed technologies. This increases the needs for mechanisms for
adaptive fiabilisation (improving robustness) of the application.

Our approach is consequently to give the capacity to the multi-agent system
itself to dynamically identify the most critical agents and to decide which fia-
bilisation strategies to apply to them. This is analog to load balancing but for
fiabilisation. In other words, we would like to automatically and dynamically
apply fiabilisation (mostly through replication mechanisms) where (to which
agents) and when they are most needed. To guide the adaptive fiabilisation,
we intend to use various levels of information, system level, like communication
load, and application/agent level, like roles or plans.

This paper is organized as follows: Section 2 presents the related work and
Section 3 introduces our multi-agent monitoring architecture. Sections 4 and 5
introduce a dynamic and adaptive control mechanism of replication. Section 6
presents the DimaX platform that we developed to implement this solution and
the realized experiments.

2 Related Work

Several approaches address the multi-faced problem of fault tolerance in multi-
agent systems. These approaches can be classified in two main categories: correc-
tive (e.g., [10],[5]) and preventive (e.g., [12],[11],[14]). The preventive approach
deals with the ability to continue to deliver services when faults occur. In the cor-
rective approach, the process consists of fault diagnostic and repair. Moreover,
several works address the difficulties of making reliable mobile agents, that are
more exposed to security problems [1] such as intrusion detection. This category
is beyond the scope of this paper.

Kaminka et al. [12] introduce a monitoring approach in order to detect and
recover faults. They use models of relations between mental states of agents.
They adopt a procedural plan-recognition based approach to identify the incon-
sistencies. However, the adaptation is only structural, the relation models may
change but the contents of plans are static. Their main hypothesis is that any
failure comes from incompleteness of beliefs. This monitoring approach relies
on agent knowledge. The design of such multi-agent systems is very complex.
Moreover, the agent behavior cannot be adaptive and the system cannot be open.
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Horling et al. [11] present a distributed system of diagnosis. The faults can
directly or indirectly be observed in the form of symptoms by using a fault model.
The diagnosis process modifies the relations between tasks, in order to avoid
inefficiencies. The adaptation is only structural because they do not consider
the internal structure of tasks. The different diagnosis subsystems perform local
updates on the task model. However, performance is optimized locally but not
globally.

The work of Malone et al. [14] on coordination relies on a characterization of
the dependencies between activities in terms of goals and resources. These de-
pendencies represent situations of conflict, and the different coordination mech-
anisms represent the solutions to manage them. The main contribution of this
approach is the proposed taxonomy of these dependencies. The authors offer a
framework of coordination study, that provides the basic stone to build a moni-
toring approach. However, this monitoring approach has not yet been developed.
This work has been reused by Klein et al. [16] to detect exceptions in multi-agent
systems.

These corrective approaches present useful solutions to the problem of mon-
itoring in multi-agent systems. However, the monitoring component is often
centralized and its design relies on the agents’ knowledge [19].

The fault-tolerance research community has developed preventive solutions
(algorithms and architectures), mostly based on the concept of replication, and
notably applied to data bases. Replication of data and/or computation is thus
an effective way to achieve fault tolerance in distributed systems. A replicated
software component is defined as a software component that possesses a repre-
sentation on two or more hosts [6].

Many toolkits (e.g., [6] and [18]) include replication facilities to build reliable
applications. However, most of them are not quite suitable for implementing
large-scale, adaptive replication mechanisms. For example, although the strategy
can be modified in the course of the computation, no indication is given as to
which new strategy ought to be applied; moreover, such a change must have
been devised by the application developer before runtime. Besides, as each group
structure is left to be designed by the user, the task of designing a large-scale
software appears tremendously complex.

S. Hagg introduces sentinels to protect the agents from some undesirable
states [10]. Sentinels represent the control structure of a multi-agent system.
They need to build models of each agent and monitor communications in order
to react to faults. Each sentinel is associated by the designer to one functionality
of the multi-agent system. This sentinel handles the different agents that interact
to achieve the functionality. The analysis of its beliefs on the other agents enables
the sentinel to detect a fault when it occurs. Adding sentinels to multi-agent
systems seems to be a good approach. However the sentinels themselves represent
failure points for the multi-agent system. Moreover, the problem solving agents
themselves participate in the fault-tolerance process.

A. Fedoruk and R. Deters [5] propose to use proxies to make transparent the
use of agent replication, i.e. enabling the replicas of an agent to act as a same
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entity regarding the other agents. The proxy manages the state of the replicas.
All the external and internal communications of the group are redirected to the
proxy. However this increases the workload of the proxy, which is a quasi central
entity. To make it reliable, they propose to build a hierarchy of proxies for each
group of replicas. They point out the specific problems of read/write consis-
tency, resource locking also discussed in [23]. This approach lacks flexibility and
reusability in particular concerning the replication control. The experiments have
been done with FIPA-OS, which does not provide any replication mechanism.
The replication is therefore realized by the designer before run time.

The work by Kraus et al. [13] proposes a solution for deciding allocation of
extra resources (replicas) for agents. They proceed by reformulating the problem
in two successive operational research problems (knapsack and then bin packing).
Their approach and results are very interesting but they are based on too many
restrictive hypothesis to be made adaptive.

In the next section, we will introduce our monitoring multi-agent architecture,
which allows to control automatically and dynamically the agent replication.

3 Monitoring Multi-agent Architecture

The deployment of large-scale multi-agent systems that must operate continu-
ously faces several problems:

– the existing multi-agent architectures are often not well scalable [2],
– failures affect often a subset of the agents,
– the environment is often dynamic and the number of resources is limited.

One of the prime motivation behind the proposed monitoring multi-agent archi-
tecture is to improve the robustness of large-scale distributed multi-agent systems
in dynamic environments and with limited number of resources. Monitoring con-
sists thus in acquiring necessary information to dynamically and automatically ap-
ply replication to agents when it is most needed. This information may be based on
standard measurements (communication load, processing time...) or multi-agent
characteristics such as the roles of agents [8] or their interdependences.

3.1 Interdependence Graph

In a multi-agent system, each agent is defined as an autonomous entity. However,
the agents do not always have all the required competencies or resources and thus
depend on other agents to provide them. Interdependence graphs [3] [21] [22] were
introduced to describe the interdependences of these agents. These graphs are
defined by the designer before the execution of the multi-agent system. However,
complex multi-agent systems are characterized by emergent structures [20], that
thus cannot be statically defined by the designer.

In our architecture, a multi-agent system is therefore represented by a graph
that reflects an emergent organizational structure. This structure can be
interpreted to define each agent criticality.
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Fig. 1. Example of interdependence graph

For each domain agent1, we associate a node. The set of nodes (see
Figure 1), named interdependence graph, is represented by a labelled oriented
graph (N, L, W ). N is the set of nodes of the graph, L is the set of arcs and W
the set of labels.

N = {Ni}i=1,n (1)

L = {Li,j}i=1,n,j=1,n (2)

W = {Wi,j}i=1,n,j=1,n (3)

Li,j is the link between the nodes Ni and Nj and Wi,j is a real number
that labels Li,j . Wi,j reflects the importance of the interdependence between the
associated agents (Agenti and Agentj).

A node is thus related to a set of other nodes that may include all the nodes
of a system. This set is not static: it can be modified when a new domain agent
is added, or when an agent disappears, or when an agent starts interacting with
another agent.

Our hypothesis is that the criticality of an agent relies on the interdepen-
dences of other agents on this agent. So, the agent Agenti is critical if the weights
wjij=1,n are important. In this case, the failure of Agenti may be propagated
to the agent Agentj . It thus affects a subset of agents that form a connex com-
ponent in the interdependence graph.

The interdependence graph is initialized by the designer. It is then dynam-
ically adapted by the system itself. The proposed adaptation algorithms of the
interdependence graph are described in Section 4. These adaptation algorithms
are used by the monitoring agents that are described in the following section.
1 In the following, we will name domain agents, agents from the application domain. In

the following section, we will introduce other types of agents, named monitoring
agents, to monitor them.
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3.2 Multi-agent Architecture

In most existing multi-agent architectures, a monitoring mechanism is central-
ized. The acquired information is typically used off-line to explain and to improve
the system’s behavior. Moreover, the considered application domains typically
only involve a small number of agents and a priori well-known organizational
structures.

These centralized monitoring architectures are not suited for large-scale and
complex systems where the observed information needs to be analyzed in real-
time to adapt the multi-agent system to the evolution of its environment.

We thus propose to distribute the observation mechanism to improve its
efficiency and robustness. This distributed mechanism relies on a reactive-agent
organization. These agents have several roles:

– Observe the domain agents and their interactions,
– Build global information,
– Update the interdependence graph,
– Use the interdependence to define the agent criticality,
– Use the agent criticality to manage the resources.

These roles are assigned to two kinds of agents: domain agent monitors (named
agent-monitors) and host-monitors (named host-monitors). An agent-monitor is
associated to each domain agent and a host-monitor is associated to each host
(see Figure 2).
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Fig. 2. Multi-agent architecture, domain agents are the agents of the application

An agent-monitor is thus associated to each agent of the application (named
domain agent) and a host-monitor is associated to each host. These monitoring
agents (agent-monitors and host-monitors) are hierarchically organized. Each
agent-monitor communicates only with one host-monitor. Host-monitors ex-
change their local information to build global information (global number of
messages, global exchanged quantity of information, ....).
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After each interval of time ∆t, the host-monitor sends the collected events
and data to the corresponding agent-monitors. An agent-monitor has then the
following behavior (see algorithm 1):

Algorithm 1. Agent-Monitor Behavior
1: Read the messages received from the host-monitor,
2: Update the local data and interdependences,
3: Compute the domain-agent criticality,
4: Determine the number of its replicas,
5: Inform the associated host-monitor of local changes that are important.

When the criticality of the domain agent is significantly modified, the agent-
monitor notifies its host-monitor. The latter informs the other host-monitors to
update global information. In turn, agent-monitors are informed by their host-
monitors when global information changes significantly. Algorithm 2 describes
the behavior of host-monitors.

Algorithm 2. Host-Monitor Behavior
1: Read messages received from the agent-monitors,
2: Update local statistics that define aggregation of the host-monitors parameters,
3: Send the new parameters to the agent monitors of the local host,
4: Send to the other host monitors the observed parameters that have significantly

changed.

4 Adaptation Algorithms

Several parameters may be used to define the interdependences between agents
such as communication load, executed tasks, roles of agents or their goals. An
adaptation algorithm gives an outline of the adaptation mechanism of the inter-
dependence graph. This adaptation relies on local information (communication
load, cpu time ...) and on global information, which is defined as an aggregation
of the local information of the various agents and hosts. The adaptation algo-
rithm is thus used by each agent-monitor to manage the associated node of the
interdependence graph (see Section 3.1).

Let us consider an interval of time ∆t. The agent-monitors are activated
each ∆t. At each step, an agent-monitor executes an adaptation algorithm (see
the two following subsections). However, the domain agents act continuously
according to their goals and the evolution of their environment.

These algorithms are automatically used by each agent-monitor to update its
interdependences with the set of agents. This set includes agents that commu-
nicate with it. Our hypothesis is that if an Agenti does not communicate with
Agentj then then Agenti does not depend on Agentj.

In this section, we propose two algorithms to compute the interdependence
between two agents. The first one considers only the number of messages ex-
changed by agents and the second one deals with speech acts (performatives).
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The first algorithm (see Algorithm 3) relies on the global number of sent
messages NbM(∆t), which is calculated by the host-monitor as follows:

NbM(∆t) =
∑

i=1,n

∑

j=1,n ı �=j

NbMi,j(∆t) (4)

where NbMi,j(∆t) is the number of messages received by agenti from agentj
during the interval of time ∆t.

Algorithm 3. Basic adaptation of the interdependences
1: for each j different of i do
2: Update the weights by using the following rule:

Wi,j(t + ∆t) = Wi,j(t) + NbMi,j(∆t)/NbM(∆t) (5)

3: end for

Algorithm 3 is very simple, thus the cost of monitoring is very low. Con-
sequently, it is useful for applications where the semantics of messages is not
required. However, several applications rely on semantics of messages. So, we
propose a new algorithm that deals with performatives. This algorithm is de-
scribed in the following section.

The second algorithm (see Algorithm 4) relies on the semantics proposed by
FIPA and the influence of the reception of a message on the receiver. Based on
the work of Colombetti and Verdicchio [4], we propose the following six classes
of performatives:

– class 1 =request, request-whenever, query-if, query-ref, subscribe
– class 2 = inform, inform-done, inform-ref
– class 3 = cfp, propose
– class 4 = reject-proposal, refuse, cancel
– class 5 = accept-proposal, agree
– class 6 = not-understood, failure.

To represent the influence of a message on its receiver, we use a graduation of
the interval of possible variations [0, 1], where:

– 0 corresponds to no influence,
– 1 corresponds to the maximum influence.

Table 1. Symbolic values of the six classes

Classes Symbolic Value
classes 4, 6 Low

classes 2, 3, 5 medium
class 1 high
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We propose then to represent influences by symbolic values such as low, medium,
high, that correspond respectively to the intervals: [0, 0.35], ]0.30, 0.65] and ]0.60, 1].
The average value of each symbolic value is the median of its interval. It is used
to define the weight of a message.

Table 1 gives the symbolic values of the six classes.
Let us consider:

– ∆W : an aggregation of the variations of Wi,j , as defined below:

∆W (t) =
∑

i=1,n

∑

j=1,n ı �=j

∆Wi,j(∆t) (6)

– Si,j : the set of messages received by Agenti from Agentj.

The weight of a message is defined by the median of the interval corresponding
to the fuzzy value of its performative.

Algorithm 4. Performative-based adaptation of the interdependences
1: for each j different from i do
2: Update Wi,j by using the following rule:

Wi,j(t + ∆t) = Wi,j(t) +
�

m∈Si,j

weight(m)/∆W (t) (7)

3: end for

Algorithm 4 cost seems higher than that of the first Algorithm 3. However,
the semantics of messages is very useful when dealing with interdependences in
some application domains such as e-commerce.

5 Agent Criticality

The analysis of events and measures (system data and interaction events) pro-
vides two kinds of information: the interdependence and the degree of activity
of each agent. To evaluate the degree of the agent activity, we use system data
that are collected at the system level. We are considering two kinds of measures:
CPU time and communication load. We are currently evaluating the significance
of these measures as indicators of agent activity, to be useful to estimate agent
criticality.

For an agent Agenti and a given time interval ∆t, these measures provide:

– The used time of CPU (cpi),
– The communication load (cli).

cpi and cli may be then used to measure the agent degree of activity awi as
follows:

awi(t) = (d1 ∗ cpi/∆t + d2 ∗ cli/CL)/(d1 + d2) (8)

where:
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– CL is the global communication load,
– d1 and d2 are weights introduced by the user.

The estimation of the criticality of the agent Agenti is computed as follows:

wi(t) = (a1 ∗ aggregation(Wij,j=1,m) + a2 ∗ awi(t))/(a1 + a2) (9)

Where a1 and a2 are the weights given to the two kinds of parameters (in-
terdependences and degree of activity). They are introduced by the designer.

Note that in our experiment (see Section 6), we do not consider the activity.
So, a1 = 1 and a2 = 0.

For each Agent Ai, its estimated criticality wi is used to compute the number
of its replicas and decide where to replicate the agents (see our SELMAS’2005
paper [9] for the resources management problem).

6 Implementation and Experiments

This section gives an overview of the realized platform (named DimaX) that
implements our adaptive replication mechanism. It then describes the example
that we use for the experiments and give some results.

6.1 Overview of DimaX

DIMA [7] and DarX [15] [2] have been integrated to build a fault-tolerant multi-
agent platform (named DimaX). DimaX provides multi-agent systems with sev-
eral services such as distribution, replication, and naming service [15]. In order
to benefit from fault tolerance mechanisms, the agent behavior is wrapped in a
task of the DarX framework (see Figure 3). Moreover, for a dynamic control of
replication, the monitoring architecture has been introduced. Figure 3 gives an
overview of DimaX.

We consider a distributed system consisting of a finite set of agents Ai =
{A1, A2,. . . , An} that are spread through a network. These agents communicate
only by sending and receiving messages.

DarX provides global naming. Each agent has a global name that is inde-
pendent of the current location of its replicas. The underlying system allows to
handle the agent’s execution and communication.

The failure of a machine or a connection often involves the failure of the
associated DarX server. However, in our solution the fault tolerance protocols
are agent-dependent, and not place-dependent, i.e. the mechanisms built for
providing the continuity of the computation are integrated in the replication
groups, and not in the servers. For instance, the monitoring agents are built as
active components associated to the domain agents.

Moreover, DarX provides a fault-detection mechanism. A machine crash -
server failure2 - is handled in three steps within every replication group:

2 In this work, we consider fail-silent (crash) model of faults.
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Fig. 3. Overview of DimaX

– detection of an eventual failure within the group,
– evaluation of the context: new criticality, leader failure, ...
– recovery: If the missing replica was the group leader, a new one is elected and

an agent monitor is automatically activated. In the other case, it depends
on the evaluation; a new follower/backup may or may not be instantiated.

Obviously, if a leader without any follower/backup fails, then it is not recovered.
This derives from the original assumptions we made: the criticality of an agent
evolves during the computation, and there are phases when an agent do not need
to be fault-tolerant [15].

To validate DimaX, we realized several series of experiments. The first series
evaluates the performances of the proposed multi-agent architecture and the
proposed adaptation algorithms. The second one evaluates the robustness of the
multi-agent systems that are based on the proposed monitoring architecture.

The following sections describe our example and the experiments.

Note: The experiments presented in this section were carried out on twenty
machines with Intel(R) Pentium(R) 4 CPU at 2 GHz and 526 Mb of RAM.

6.2 Example

In our experiments, we consider the example of a distributed multi-agent system
that helps at scheduling meetings. Each user has a personal assistant agent that
manages his/her calendar. This agent interacts with:

– the user to receive his meeting requests and associated information (a title,
a description, possible dates, participants, priority, etc.),

– the other agents of the system to schedule a meeting.
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If the assistant agent of one important participant (initiator or prime participant)
in a meeting fails (e.g., its machine crashes), this may disorganize the whole
process. As the application is very dynamic - new meeting negotiations start
and finish dynamically and simultaneously - decision for replication should be
done automatically and dynamically.

6.3 Performances

The proposed monitoring multi-agent architecture is very useful to implement
the proposed adaptive replication mechanism. However, the monitoring cost does
not seem insignificant. So, our first series of experiments measures the monitor-
ing cost in the proposed architecture. We consider, a multi-agent system with
n distributed agents that execute the same scenario (a fixed set of meetings to
schedule). We realized several experiments with various number of agents. For
each n (100, 150, ..., 300), we considered m meetings (20, 40, ..., 80) and we real-
ized two kinds of measures (with and without monitoring). We used 20 machines
for each experiment and we repeated each experiment 10 times. We considered
three cases: 1) a multi-agent system without monitoring, 2) a multi-agent sys-
tem with monitoring based on Algorithm 1, and 3) a multi-agent system with
monitoring based on Algorithm 2.

Figure 4 shows the average global execution time for these three different moni-
toring solutions. We found that monitoring cost is almost a constant function. The
monitoring activity does not increase when the number of agents (domain agents
and associated monitoring agents) increase.That can be explained by the proposed
optimization within the multi-agent architecture, such as the hierarchical organi-
zation of monitoring agents and the communication between the agent-monitors
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Table 2. Monitoring Cost and Comparison of the two Algorithms

Number of Monitoring Monitoring Difference
Agens Cost of Algorithm 1 Cost of Algorithm 2
100 3025 3635 610
150 3094 3945 851
200 3089 4227 1138
250 3130 4387 1257

and host-monitors. These agents are organized hierarchically. For instance, to
build the global information (global communication load ...), the host-monitors
communicate only if the local information changes. Moreover, the host-monitors
exchange local information only when there is an important change. Therefore, the
number of communications between these agents is optimized.

6.4 Robustness

For this second series of experiments, we use a failure simulator. This simulator
chooses randomly an agent and stops its thread. If the killed agent is critical then
the multi-agent application fails. We considered a multi-agent system with 200
agents distributed on 10 machines. We run each experiment 10 minutes and we
introduce 100 faults. We repeated several times the experiment with a variable
number of extra resources Rm. Here, Rm defines the number of extra replicas
that can be used by the whole multi-agent system. This experiment measures
the rate of succeeded simulations SR, which is defined as follows:

SR =
NSS

TNS
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where NSS is the number of simulations that did not fail and TNS is the total
number of simulations. Let us remind that a simulation fails when the fault
simulator stops a critical agent that has not been replicated.

We considered three cases: 1) the replication is random, 2) the replication is
based on algorithm 1 and 3) the replication is based on algorithm 2.

Figure 5 shows the success rate SR as a function of the number of extra
replicas. It compares the two algorithms. It shows that algorithm 2 gives the best
results for the considered application. Meanwhile the two algorithms require a
number of extra resources that is at least equal to the number of critical agents.

Moreover Figure 5 compares the two algorithms with a random replication.
In this case the agents criticality is defined randomly. We thus show that our
algorithms for adaptive replication are more accurate than random replication.

6.5 Discussion

In the example, the monitoring cost of the second algorithm is more important
than the cost of the first one. The difference corresponds to the cost of the
message analysis. However, multi-agent systems using the second algorithm are
more robust. Indeed, in our application the content of messages is important.
This is not the case for some application domains such as network management
where all the messages have the same weight. In this kind of application it is
recommended to use the first algorithm to reduce the monitoring cost.

It is thus useful to study classes of application domains for each algorithm.
The results of this study can be then used to help the designer to choose the
most suited algorithm for his/her application.

7 Conclusion

This paper presented a new approach to make large-scale multi-agent systems
reliable. This approach is based on the concepts of interdependence, where an
agent criticality is estimated through its interdependences with other agents.
The agent criticality is then used to replicate agents in order to maximize their
reliability and availability based on available resources and their costs.

We thus proposed a generic architecture to extend an already built where an
agent criticality is estimated through its interdependences multi-agent system
with a basic adaptation mechanism to dynamically and automatically update the
replication strategy. To make concrete this architecture, we have implemented
a fault-tolerant multi-agent platform (named DimaX). DimaX is the result of
an integration of the DIMA multi-agent platform [7] and the DarX replication
framework [2].

The obtained results are interesting and promising. However, more exper-
iments with a large-scale real-life applications and several local area networks
(e.g. the one of our two teams : LIP6 and CReSTIC) are needed to validate the
proposed approach and to analyze the proposed algorithms. Moreover, the pro-
posed classification of performatives needs to be evaluated and compared with
other classifications and different weights.
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Finally, we are working on a methodology based on the Model Driven Ar-
chitecture [17] to facilitate the design of fault-tolerant multi-agent systems and
their implementation with DimaX.
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