A Modelling Framework for Generic Agent Interaction
Protocols

Jo$ Ghislain QUENUM, Samir AKNINE!, Jean-Pierre BRIOT and
Shinichi HONIDEN?

! Laboratoire d'Informatique de Paris 6,
8 rue du Capitaine Scott, 75015 Paris, France
2 National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

Abstract. This paper presents a framework to represent generic protocols. We
call generic protocols, agent interaction protocols where only a gievedraviour

of the interacting entities can be provided. Our framework is groundetthen
AUML graphical formalism. From this formalism, we identified five fundartal
concepts on top of which we defined the formal specifications for tinedneork.

We address a lack in protocol representation by emphasising the diescop
actions performed in the course of interactions based on generic piotdtie
framework is formal, expressive and of practical use. It helpsuaigle interaction
concerns from the rest of agent architecture. Several applicatiefslexist for
our framework. First, we used it to address two issues faced in thendefsagent
interactions based on generic protocols. At a more concrete level,ahigfvork
can be used to publish the protocols agent interactions are based on iti-a mu
agent system.

1 INTRODUCTION

Interaction is one of the key aspects in agent-orientedydedi allows agents to put
together the necessary actions in order to perform complekstcollaboratively. The
coordination mechanism needed for a safe execution of te&ms is often governed
by a sequence of message exchanges: interaction protatsaiglly, only a general
description of how agents should behave during the intereis provided. Such pro-
tocols are called generic protocols. An issue in open andrbgéneous multi-agent
systems (MAS) is concerned with the description of genamtgeols, especially with
respect to their correct interpretation. A subsequentissthe need to decouple inter-
action concerns from the rest of agent architecture.

To date, there has been some endeavour to develop new gnapoesentation for-
malisms. The formalisms developed thus far have severalidreks. They usually fo-
cus on data exchange through a communication channel (RuS®&éN [7]). Some oth-
ers are either informal (or semi-formal) (e.g., AUML [1]) demand advanced knowl-
edge in logics (e.g., the formal framework in [10]). Therefchere is an obvious need
for a formal, yet practical and expressive generic protoeptesentation framework.
Additionally, such a framework should provide the buildliigcks to help decouple the



interaction concerns from the rest of agent architecture.adtress this need in this
paper.

The solution we arrived at is a framework for the descriptibigeneric protocols.
It complies with most of the criteria required of a convei@apolicy in [6]. The phi-
losophy of our framework is to start from AUML, which is a weltablished agent in-
teraction representation formalism. But we depart from AUl addressing the lacks
and incompleteness which limit it. A common trend in profo@presentation con-
sists of describing only the sequence of message exchahgesver, some actions are
needed to produce these messages and handle them wherdeésiwe will see later,
some actions might be executed beyond the communicatiehdeving an interaction.
Thus, in addition to the description of message exchangdramework introduces the
description of actions needed in the course of an intenacTibis provides us with the
ability of describing the behaviour agents will exhibit Wehplaying a role in a protocol.
A particular aspect in our framework is our focus on generatqrols. This keeps us
from providing a complete representation for actions. Wiodtuced action categories
to fix this weakness.

Our framework offers several advantages. It builds on tlaplgical representation
in AUML, which eases the message exchange perception foahuwtasigners. In ad-
dition, it offers the means to depict what happens beyondnbesage exchange level.
The framework is expressive, formal and of practical usepfotocol representation.
Particularly, we offer at least the same expressivenessAdML (and its extensions)
without introducing new control flows. Rather, we only usemvdescription and (if
necessary) three connectoasid or andxor. We also ease the implementation of pro-
tocols in our framework by providing a XML representatiors An application, we
used our framework to address two issues in agent interadésign of open and het-
erogeneous MAS: (1) an automatic derivation of agent ictema model from generic
protocol specifications, in order to address the issue afistency during interactions
based on generic protocols in an heterogeneous MAS; anch(2halysis of generic
protocol specifications in order to enable agents to dynaligiselect protocols when
they have to perform a task in collaboration. A more prattisage of our framework
is the possibility to publish protocol specifications foeaginteractions in a MAS.

The remainder of this paper is organised as follows. Se@idiscusses some re-
lated work. Section 3 introduces the fundamental conceptsse in the framework and
presents both the specifications and their semantics oBettiscusses some properties
one can check for a protocol represented following this &amork. Finally, section 5
concludes the paper.

2 RELATED WORK

Several formalisms have been developed to representdtitargrotocols. In this sec-
tion, we discuss the most suitable ones for agent interactio

AUML [1] and its extensions are graphical frameworks fortpoml diagram rep-
resentation. These frameworks, though practical and easy, are informal (or semi
formal). It is then hard to check properties or even definestiraantics of a protocol
represented in these formalisms. [15] and [2] automate rdneskation process from



AUML to a textual description, which is more machine readalbhe advantage of this
automatic translation, though undebatable, is weakenedany other AUML original
limitations, f.i., the lack of emphasis on action repreaénh in protocol representation.

Some formal frameworks have been proposed for protocoksgmtation. [14] de-
fined a framework using concepts similar to ours. Howeveguncase agents are not
represented in protocol specifications. They are expeotpthy (in a protocol config-
uration and instantiation standpoint) roles at runtim@] fhade significant advances
in the area of protocol representation for agent interacfltnis work developed a for-
mal framework which combines Propositional Dynamic Logid &elief and intention
modalities (PDL-BI). The framework covers a broad spectafilssues related to agent
interactions. However, it requires advanced knowledgedgitk. In our opinion, logics
is useful to define the semantics and check some propertipsdtmcols. But due to the
complexity it may introduce, we believe that it should bedad at the specifications
stage, as usually done in programming languages. AdditipRDL-BI focuses on the
messages exchange. But, as we showed above, agent imte@ctiocols demand more
than message exchange.

IOM/T [3] is a more recent language for interaction représtéon. Our work,
though sharing some similarities with IOM/T, departs fraron the following points.
Firstly, we focus on generic protocols, where we considerege actions. Secondly,
the behaviour of the agents in IOMT/T (the actions they genjas not associated with
the events which occur in the MAS. Thirdly, the language is@dike. However, we
believe that a protocol description language is supposediclarative one. Especially
for open and heterogeneous MAS. We address this need inapées by developing a
formal framework for generic protocols representationt ftamework is a declarative
language and offers expressiveness as well as ease of use.

3 THE FRAMEWORK

We introduce the fundamental concepts our framework isbase Then, we present
the specifications and the semantics of these concepts.

3.1 FUNDAMENTAL CONCEPTS

Our framework is based on the AUML protocol diagram. Therea# identified five
fundamental conceptgrotocol role, event actionandphase A graphical illustration
of these concepts is given in Fig. 1.

Definition 1. Protocol

A protocol is a sequence of message exchanges betweentdileasles. The ex-
changed messages are described following an Agent Comatiomd.anguage (ACL)
e.g., FIPA ACL [5], KQML [9].

More formally, a protocol consists of a collection of rolBs which interact with
one another through message exchange. The messages lebegllectionM and
the exchange takes place following a sequefkei protocol also has some intrinsic
properties® (attributes and keywords) which are propositional corste¢hat provide



role: Rl role: R2
' ' event: nessage

| | messagel reception

message2

—— action

message3

pr ot ocol
Fig. 1. Graphical illustration of concepts in generic protocols.

def

a context for further interpretation of the protocol. Weept=< &, R, M, Q >. In
Q, the message exchange sequence, each element is deneted-By:— r,, 0 be

Qo sME—1
interpreted as “the role, sends the messagey, to r,, and thatn;, is generated after
actiona,,’s execution and the prior exchangerf,_,”. Additional elements may be
introduced in this representation, but we do not discusws tinethis paper.

Definition 2. Generic Protocol

A generic protocol is a protocol wherein the actions whick #ken, to handle,
produce the contents of exchanged messages, etc. canntwbrbadhly described. A
complete description of these actions depends on the agathit of each agent playing
a role in the protocol.

Note that the attributes and keywords we use in the currersiore have been
identified from our experimentations. Currently, we onlye ukree attributesclass
return_valueandparticipantscount classis the type of processing performed through
the execution of an interaction based on this protocol (&g.userequestto denote
that the participant performs some task on behalf of théaboit). return_valug when
any, depicts how the final result is represenfedticipantscountis the number of dis-
tinct participant roles in the protocol. As for keywordsye®al ones can be used in the
current version. For examplincrementalProcessieans that some partial results may
be considered for the ongoing process. Some more expesmenineeded to extend
these attributes and keywords.

Each of the communicating entities is called a role. Rolesusderstood as stan-
dardised patterns of behaviour required of all agents ptpgipart in a given functional
relationship in the context of an organisation [4].

Definition 3. Role In our framework, a role consists of a collection of phasesw&
will see later in Section 3.2, a role may also have global @i (which are executed
outside all phases) and some data other than message covaeables

vr e R,r E< O,,PL, A,V >, where®, corresponds to the role’s intrinsic prop-
erties (e.g., cardinality) which are propositional cogehat help further interpret the



role, Py, the set of phases\, the set of global actions arM the set of variables. The
roles can be of two types: (djitiator, the unique role of the protocol in charge of
starting its execution; ()articipant any role partaking in an interaction based on the
protocol.

The behaviour of a role is governed by events. An event is@miatchange which
occurs in the environment of the MAS. An informal descriptif the types of events
we consider in our framework is given in Table 1. A more foringrpretation of these
events is discussed in Section 3.3. The behaviour a roletsdope an event occurs is
described through actions.

Event Type Description

Change The content of a variable has been changed
Endphase The current phase has completed.
Endprotocol |The end of the protocol is reached.
Messagecontefithe content of a message has been constrycted.

Reception A new message has been received.
VariablecontenfThe content of a variable has been construgted.
Custom Particular event (error control or causality).

Table 1. Event Types.

Definition 4. Action

An action is an operation a role performs while executingisTdperation trans-
forms the whole environment or the internal state of the ageamrently playing this
role. An action has a categony, a signatureX’ and a set of events it reacts to or pro-

def
duces. We note :e< v, X, E >.

Since our framework focuses on generic protocols, we cay olvide a general
description for the actions which are executed in thesepaods. Hence, we introduced
action categories to ease the definition of a semantics ésethctions. Table 2 contains
an informal description of these categories. We discussdkeantics in Section 3.3.

Definition 5. PhaseSome successive actions sharing direct links can be grotged
gether. Each group is called a phase. Two actions share adiiek if the (or only a
part of them) input arguments of one are generated by the ¢thevhen asendaction
sends the message generated in a prior action).

3.2 FORMAL SPECIFICATIONS

The formal specifications are defined through a EBNF gram@ay essential parts of
this grammar are discussed in this section. A thorough ge&er of this grammar is
given in Appendix A. In sake of easy implementation of gemprbtocols, we represent



Action Type |Description

Append Adds a value to a collection. (L

Remove Removes a value from a collectign.
Send Sends a newly generated messdge.
Set Sets a value to a variable.

Update Updates the value of a variable.

Compute |Computes a new information.

Table 2. Action categories.

them in XML in our framework. However, as XML is too verbosesimpler (bracket-
based) representation will be used for illustration in thaper.

RUNNING EXAMPLE We will use the Contract Net Protocol (CNP) [13] to illustrat
the specifications we present. The sequence diagram (ptatmgram in AUML) of
this protocol is given in Fig. 2. The labels placed on messa@hange arrows in the
figure are not performatives, but message identifiers.

Participant

Refuse

Not-Understood

J
]
]

Propose

Reject-Proposal

Accept-Proposal

Failure

Inform-Done

Fig. 2. The Contract Net Protocol.

The rationale of the CNP consists of an initiator having s@aeicipants perform
some processing on its behalf. But beforehand, the paaticgowhich will perform the



processing are selected on the basis of the bids they prdgosesply to the initiator's
call for proposals. When the selected participants are dattetiaeir processing, each
of them notifies the initiator agent of the correct executimnerror occurrence) of the
part it committed in performing.

PROTOCOL The following production rules define a protocol:
<protocob>:=<protproperties-<roles><messagepatterns
<protproperties-:=<protdescriptors < protattributes- <protkeywords2
<protdescriptors :=<identifier> <title><locatior>
<protattributes-:=<class> <participantcount <returrc
<protkeywords-:=<protkeyword+> <protkeyword>:=“IncrementalProces§’.
An illustration of these rules is given as follows.

(protocol
(protocol properties
(protocol desc ident="cnpprot’ title="ContractNet’ |ocation="Kgm Cnp.xni")
(protocolattr class="Request’ participantcount="1" return="operationresult)
(protkeyws '..."))
(roles ...)
(messagepatterns ...))

As one can see from these rules, the exchange sequigaot explicitly specified.
Actually, it is described througbendactions in each role. When several messages can
be sent, we use connect@sd, or andxor to compose them.

ROLE Protocol diagrams only show the communication flow betweésst However,

there may be some information beyond the communicatior.|Eee example, in the

CNP, the action an initiator executes in order to make a getigoon the participants’

bids is hidden behind the communication flow. Actually, iition exploits information

from different participants of the protocol. Moreover,anihation like the deadline for

bidding, cannot be extracted from any message content., Tweeimtroduced a global

area for each role where we describe actions which are baperabmmunication flow,

as well as data which cannot be extracted from any messagentoNote that actions

relevant to the global area are no more associated with aasepfrhe production rules

hereafter define a role.

<roles>:=<role><role>|<roles><role>

<role>:=<roleproperties- <variables? <actions® <phases

<roleproperties-:=<roledescriptors <roleattributes- <rolekeywords®

<roledescriptors :=<identifier><name>

<roleattributes-:=<cardinality>

<variables-:=<variable+> <variable>:=<ident> <type>

<actions>:=<action+>

Each role is described through its intrinsic properties, (iame and cardinality), its

variables (pieces of information the role handles whichnarteextracted from any mes-

sage content), its global actions and the phases the noalglotions are grouped in.
In the example below, thiaitiator role of the CNP has three variablekeadl| i ne,

bi dsCol anddel i ber ati ons.deadl i ne contains the time when bidding should



stop.bi dsCol is a collection where participants’ bids are storedl i ber ati ons
contains the decision (accept or reject) the initiator maaen each bid. Each variable
has an identifier and the type of the data it contains. Theettiff a variable is charac-
terised using some abstract data types. We also use thedguizg to represent message
content and action signature. String, Number and Char ane sxamples of the data
types we use in our framework. The description of these tigoest of the scope of this
paper. The only global action in this role is nanigal i ber at e. Through this action,
the initiator makes a decision upon the participants’ b@alsbal actions are described
in the same way like local (located in a phase) ones: categigiyature and events. The
description oDel i ber at e explains itself from the example. The special wekan-
tref is used here to refer to an event defined elsewharangeevent which occurred
against thebi dsCol variable). As we will see later, this word sometimes introgk
causality between actions.

(role ident="initiator’
(rol eproperties (rol edescriptors ident="initiator’ nanme='Initiator’)
(roleattributes cardinality="1"))
(variables (variable ident="bidsCol’ type='collection’)
(variabl e ident="deliberations’ type="map’)
(variabl e ident="deadline’ type='date'))
(actions(action category="conpute’ description="Deliberate’
(signature (arg type="date’ dir="in")
(arg type='collection’ dir="in")(arg type="map’ dir="out’))
(events (event type='change’ dir="in" object="deadline’ ident="evt0)
(eventref dir="in" ident="evt5)
(event type='change’ dir="out’ object="deliberations’ ident="evtl))))
(phases ...))

PHASE As stated above, each phase is a sequence of actions thatssimae direct
links. We use the following rules to define a phase:

<phases:=<phase+

<phase-:=<actions>

<actior>:=<category-<description® <signature-<events-

For example, in the initiator role of the CNP, the first phasasists of producing
and sending thef p message. This phase contains two actigmsepar eCFP and
sendCFP. pr epar eCFP produces thef p message. It is followed bgendCFP
which sends the message to each identified participant.

(phase ident="phsl’

(actions (action category='conpute’ description="prepareCFP
(signature(arg type="date’ dir="in")(arg type="any’ dir="out’))
(events (event type='variablecontent’ dir="in object="deadline’)

(event type=' nessagecontent’ dir="out’ object="cfp ident="evt2')))
(action category="send description="sendCFP
(signature (nessage ident="cfp'))
(events(eventref dir="in" ident="evt2)
(eventref type='customi dir="out’ ident="cus0l)
(event type='endphase’ dir="out’ ident="evt3)))))

MESSAGE Though we did not define messages as a concept, we use them in th
formal specifications because they contain part of the iné&ion manipulated during



interactions. The concept of message is well known in ACLd Hreir semantics is
defined accordingly.

We propose an abstract representation of messages, whitdiveessage patterns
A message pattern is composed of the performative and therttdgipe of the message.
We also offer the possibility to define the content pattertdNaX-like regular expres-
sion which depicts the shape of the content. Note that aimenthese messages will
be represented with all the fields as required by the adop@d A our framework,
we represent all the message patterns once in a block andedfeem in the course
of the interaction when needed. In our opinion, it soundtwstrain to the use of only
one ACL all along a single protocol description. The follagiirules define message
patterns.
<messagepatterns=<acl><messagepattern+
<achk>:='fipa’|’kgml’
<messagepattern=<performative- <identifier> <content-
<content-:=<type><pattern®
The example below describes the message patterns usedGiNte

(messagepatterns acl = Kqni’
(messagepattern perfornmative="achieve' ident=" achnsg’
(content type="any’ pattern='..."))
(messagepattern performative="sorry’ ident="refuse’

(content type="null’ pattern=..."))
(messagepattern performative="tell’ ident="propose’
(content type='any’ pattern=..."))
(messagepattern perfornative="deny’ ident="reject’
(content type="null’ pattern=..."))
(messagepattern performative="tell’ ident="accept’
(content type='string pattern=...")) ...)

DESIGN GUIDELINE As a guideline for protocol design and description in our
framework, we recommend several design rules. They guseahe correctness of a
protocol represented in our framework. We introduce sontberh here.

Proposition 1. For each role of a protocol, there should be at least one actidich
drives into the terminal state. Every such action should éschable from the role’s
initial state.

Corollary 1. From their semantics, roles can be represented as graphd fémevery
path in this graph, there should be an action which drives teraninal state.

Proposition 2. When two distinct transitions can be fired from a state, th®bevents
which fire each one of the transitions, though interseceashould be distinguishable.

Proposition 3. When an action produces a message, it should be immedialielwéd
by asendaction, which will be responsible for sending the message.
3.3 SEMANTICS OF THE CONCEPTS

EVENT As we saw, an event informs of an atomic change. It may have teith the
notified role’s internal state. But usually, the notificatis about other roles’ internal



state. Therefore, events are the grounds for roles codimin®ue to space constraints,
we only discuss the semantics of two types of events in tlisse

change this event type notifies of a change of the value of a variabét v be
this variable change() denotes this event. In order to define the semantics of our con
cepts, we introduce some expressions in a meta-languageh wie call primitives.
These primitives are functions and predicateslueis one of these primitives (actu-
ally a function). It returns the value of a data at a given tiiret 7 be the time space,
andd andt a data and a time respectively€ 7), Value(d,t) denotes this function.
Valug(d,t) = () means that the dat@ does not exist yet at time We interpret the
changeevent as follows3 (t1,t2) € 7 x 7T :

(t1 # t2) A (Valug(v, t1) # 0) A (Value(v, t1) # Value(v, t2))

endprotocal this event type notifies of the end of the current interactleor each
role, all the phases have either completed or are unreaeh@lb any global action of
eachrole is either already executed or unreachable. A phaseeachable if none of its
actions is reachable. Actually, if the initial action is eachable, the phase it belongs to
will also be unreachable. Again, we introduced three newiisies: Follow, Executed
andUnreachable Follow is a function which returns all the immediate successors of
a phase. Lep; andp, be two phases;; immediately followsp,, if any of the input
events of the initial action gf, refers to a prior event generated by one of the actions
(usually the last one) gf,. Unreachablds a predicate which means that the required
conditions for the execution of an action do not hold. Themefthis action cannot be
executed. FinallyExecuteds a predicate which means that an action has already been
executed. LefP, be the set of phases any, . the set of executable actions for phase
pir in @ roler. Let alsoAg,. be the set of global actions for role We interpret the
endprotocolevent as followstr € R, Va, € Ag, .,

(Unreachablé,, ) VExecuteda, ))A(Vpi,- € P., (Follow(pg,) = 0)V(Va; € 4,,,,Unreachablé;)))

ACTION Actions are executed when events occur. And once execlieylmay pro-
duce some new change in the MAS. Events are therefore coedidsPre and Post
conditions for actions’ execution. Here again, we only dgscthe semantics of ttagp-
pendandsendaction categories.

Let £ be the set of all the event types we consider in our framevidikdefinet’
asasubsetd: &’ = £ — {endphase, endprotocol}.

append this action adds a data to a collection. kebe such an action,

Pre=\/, e;, wheree; € &’
Post= \/j ej, 3k e =" change’ A (3(t1,t2) € T x T,3d,v € args(a;),
(t1 < ta) A (isElementv, d, t1) = false) A (isElementv, d, t2)))

isElement()is a predicate which returns true when a data belongs to ectah at a
given time.args()returns the arguments of an action.



send this action sends a message. It is effective both at theeseamd! the receiver
sides. Lets; be such an action. We interpret it as follows: at the sendiex. si

Pre=\/; e;,whereVm; € arguments(a;), 3 k, e, = messageconteft;)
Post= (T'rans(m;) = true)

at the receiver side:

Pre=0
Post=\/; e, whereVm; € arguments(a;), 3! k, ej, = receptiorim;)

ACL usually define the semantics of their performatives bysidering the belief
and intention of the agents exchanging (sender and reg¢hege performatives. This
approach is useful to show the effect of a message exchatigabihe sender and the
receiver sides. In our framework, we adopt a similar apgregten an action produces
or handles a message. We use the knowledge the agent perdains action has with
respect to the message. Hence, we introduce a new predicatey(¢, a,), which we
set to true when the agem§ has the knowledge. Know is added to the post conditions
of the action when the latter produces a message. It is ratiterd to the pre conditions
of the action when it handles a message. Note ¢hiatthe (propositional) content of
the message. Moreover, when an action ends up a phase or de prbtocol, its Post
condition is extended with thendphasendendprotocolkevents respectively.

PHASE The semantics of a phase is that of a collection of actionsrehaome causal-
ity relation. The direct links between actions of a phaseaaigmented with a causality
relation introduced by events. We nqig £< A, < >, whereA is a set of actions and
< a causality relation which we define as followWA( is the cardinality ofA):

Va,,a, € A a, #a,,a, <a, <= |A| >1 A Je € Post(a,),e € Pre(a,).

Proposition 4. Leta, anda, be elements dPy,, such that, always precedes,,

(a, <a,)V(Jap,...,ak,a, <ap... < ax < a,)

ROLE An event generated at the end of a phase can be referred then gitases.
Thus, the causality relation between actions of phaseseartbnded to interpret roles.
We consider a role as a labelled transition system havingesiotninsic properties.

def

r =< 0,,S,A,— > where:

— O, are the intrinsic properties of the role;

— Sis afinite set of states;

— A contains transitions labels. These are the actions th@esferms while running;
— — C S x A x Sis atransition function.

As an illustration, we give part of the semantics of the atdi role of the CNP,
which we callrg. rg =< ©,,,S, A, — >, with:

- ©,, = cardinality =1 A isInitiator = true ...;

ro



— 8 ={S0,S1,82,S3,54,Ss5,S6,S7,Ss, S9, S10,S11 };

— A ={ag,a1,az2,a3,a4,as5,a¢,ar};

- — = {(So,ag, Sl), (Sl,send[mo],Sz), (S2,a1, S7)7 (Sz,az, S3), (S3,a47 S4)7 (S47 as, S}_’,)7
(S,_r,, send[ms], Sll>7 (S,_r,, send[m4], Se), (Se, as, Sg), (SG, ag, Sg), (Sﬁ, ar, SlO)}

mg, mz andmy belong to the set of messages exchanged during the protocol.

PROTOCOL The semantics of a protocol is a combination of the semaafiis in-
trinsic properties, that of each role and finally the sentaraf the coordination mech-
anism. Recall that the coordination mechanism, in our dastae sequence of mes-
sage exchanges. The sequence of messages actually extharigg the interaction is
known only at runtime. This raises up one of the limitatiohthe work concerned with
agent interaction protocols semantics. They usually pgega priori semantics for
protocols. However, as protocols generally offer seveoakible exchange sequences,
several possible semantics may coexist for an interactised on a protocol. [8] pro-
poseda posteriorisemantics through a platform callPdotocol Operational Semantics
(POS) We build on this platform and adoptposteriorisemantics for protocols in our
framework. Two main reasons account for such an approacstlyi-the messages ex-
change sequence can be mapped to a graph of possibilitiexédbanged messages.
Therefore, the semantics of an interaction based on thimgubconsists of a path in
this graph. Secondly, the semantics of communicative afiset in ACL is not enough
to define the semantics of a protocol. The executed acti@mastics should also be
included. However, apart from send actions, all the otht#oas can only have general
characterisation before the execution of the interactfomore precise semantics of
these actions can only be known at runtime.

As an illustration, let us assume that the semantics of ealehaf the CNP is
known, we define that of the whole protocol as follows=< ®, R, M, Q >, where
R = {ro,r1} andM = {mg, my, ... m7}. mg corresponds taf p, m; corresponds
toref use, etc. (see Fig. 2)2 = Q1]Q2|Q3|24|Q25|Q5|26. Q6 IS the case where
everything went correctly and the participant notifies thigator of the correct perfor-

m m m. m
mance of the taskg =< 79 —% 11,71 —2— 70,70 —2 11,71 ——s 1y >
ao as,mo asz,ma a10,M4

4 PROPERTIES

4.1 LIVENESS

Proposition 5. For every role of a protocol, events will always occur and S@me
transition until the concerned role enters a terminal state

Proof. Each role is a transition system. And from the descriptiotrarisition systems,
unless an error occurs, an event will always occur and redaifire a transition until
the role enters a terminal state, where the execution stops.



4.2 SAFETY

We consider two safety propertiesonsistent messages excharge Unambiguous
protocol execution

Proposition 6. Consistent messages exchanigiessages exchange is consistentin our
framework. Precisely, any message a role sends is receivetiandled at least by one
role. By the same token, any message a role receives has arggederally another
role).

Proof. We prove both parts of the proposition.

1. The sequence of message exchaifyésdescribed as follows:
Q=<ry 2% r,m —2—rg,... >. This representation shows that any message

ag,mo

ao
sent is received and handled by at least one role.
2. Any received message has been generated elsewherdtsideatifier exists. Ad-
ditionally, from proposition 3, any message generatedtsmatically sent. Hence,
any message received is sent by arole.

Proposition 7. Unambiguous protocol executiorFor each action a role can take,
there is an unambiguous set of events which fire its execution

Proof. The proof follows from the direct application of propositi@ and is omitted
here because of space constraints.

4.3 TERMINATION

Proposition 8. Each role of a protocol represented in our framework alwaggni-
nates.

Proof. From Proposition 1, each role has at least an action whictgbithat role to a
terminal state. Once this terminal state is reached, tkedotion stops for the concerned
role. When all the roles enter a terminal state, the wholgasten definitely stops.

This proof is insufficient when there are several altereastior loops in the protocol.
Corollary 1 addresses this case. Actually, only one pathegtaph (with respect to the
transition system) corresponding to the current role wellexplored. And as this path
ends up with an action driving to a terminal state, the roléteiminate.

5 CONCLUSION

We believe that a special care is needed in representingiggmetocols, since only

partial information can be provided for them. Therefore, dgeloped a framework to
represent generic protocols for agent interactions. Guméwork puts forth the descrip-
tion of the actions performed by the agents during intepasti and hence highlights
their behaviour during protocols execution. In this, weatéfrom the usual protocol

representation formalisms which only focus on exchangessages descriptions. Our
framework is based on a graphical formalism, AUML. Itis fadirat least as expressive



as AUML (and its extensions) and of practical use. As we dised in the paper, this
framework has been used to address issues in agent interdessign.

Since actions in generic protocols can be described onlygereral way, a more
precise description of these actions is dependent on titecture of the agent about
to perform them in the context of an interaction. This is ligudone by hand by agent
designers when they have to configure agent interaction isioDeing such a con-
figuration by hand may lead to inconsistent message exchiange heterogeneous
MAS. We address this issue by developing some mechanismstdmatically carry
this configuration out. These mechanisms consist of lookimgsimilarities between
the functionalities from agent architecture and actiongrofocols. These mechanisms
are presented in [12].

Protocol selection is another issue we faced while desigaigent interactions
based on generic protocols. Usually, agent designerstdbleprotocols their agents
will use to interact during the performance of collaborattasks. But this static pro-
tocol selection severely limits interaction in open ancehegeneous MAS. Thus, we
developed some mechanisms to enable agents to dynamiebdht the protocol they
will use to interact. These mechanisms require some reagatiout the specifications
of the protocols. Again, we used this framework, since itbées us to reason about
the mandatory coordination mechanisms for the performafcellaborative tasks. We
described part of the mechanisms we proposed in [11].

References

1. B. Bauer and J. Odell. UML 2.0 and Agents: How to Build Agent-basexte®ns with the
new UML StandardJournal of Engineering Applications of Artificial Intelligence8:141—
157, 2005.

2. G.Casellaand V. Mascardi. From AUML to WS-BPEL. Technical reg@omputer Science
Department, University of Genova, Italy, 2001.

3. T. Doi, Y. Tahara, and S. Honiden. IOM/T: an Interaction Descriptianguage for Multi-
agent Systems. IRroceedings of the International Conference on Autonomous Agedts an
Multiagent Systems (AAMAS)ages 778-785, 2005.

4. M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Ar¢as the Formal Specifi-
cation of Electronic Institutions. lAgent-mediated Electronic Commerce (The European
AgentLink Perspective2001.

5. FIPA. FIPA Communicative Act Library Specification. Technicgdog, Foundation for
Intelligent Physical Agents, 2001.

6. M. Greaves, H. Holmback, and J. Bradshaw. Waht is a Convendatilicy? InProceedings
of the Workshop on Specifying and Implementing Conversation Policiem@dmous Agents
1999 1999.

7. G.J. Holzmann. The Model Checker SpitEEE Transactions on Software Engineering
23:279-295, 1997.

8. J-L Koning and P-Y Oudeyer. Introduction to POS: A Protocol Ogpamnal Semantics.
International Journal on Cooperative Information Systefr1 2):101-123, 2001. Special
Double Issue on Intelligent Information Agents: Theory and Applications

9. Y. Labrou and T. Finin. A proposal for a new KQML Specificationchiical report, Uni-
versity of Maryland Baltimore County (UMBC), 1997.



10. S. Paurobally, J. Cunningham, and N. R. Jennings. A Formaidwark for Agent Interac-
tion Semantics. IfProceedings. 4th International Joint Conference on autonomoustégen
and Multi-Agent Systempages 91-98, Utrecht, The Netherlands, 2005.

11. J. G. Quenum and S. Aknine. A Dynamic Joint Protocols Selection ddetil Perform
Collaborative Tasks. In P. Petta M. Pechoucek and L.Z. Varga, sditr International
Central and Eastern European Conference on Multi-Agent SystenSNBES 2005)LNAI
3690, pages 11-20, Budapest, Hungary, September 2005. Spvartey.

12. J. G. Quenum, A. Slodzian, and S. Aknine. Automatic Derivation gémk Interaction
Model from Generic Interaction Protocols. In P. Giorgini, J. P. Mulled &. Odell, editors,
Proceedings of the Fourth International Workshop on Agent-Oriendéitv@re Engineering
Springer Verlag, 2003.

13. G. Smith. The Contract Net Protocol: High-level Communication aodti@l in a Dis-
tributed Problem SolvelEEE Trans. on Computer29(12):1104-1113, 1980.

14. C. Walton. Multi-agent Dialogue Protocols. Pnoceedings of the Eight Int. Sympossium on
Artificial Intelligence and Mathemati¢c2004.

15. M. Winikoff. Towards Making Agent UML Practical: A Textual Notatiand Tool. InProc.
of the First Int. Workshop on Integration of Software Engineering andnAd@echnology
(ISEAT) 2005.

A EBNF Grammar

<pr ot ocol >: =<pr ot properti es><rol es><messagepatt er ns>
<protdescri ptors>: =<protdescriptors><protattributes><protkeywords?>
<protdescriptors>: =<identifier><title><|location>
<protattributes>: =<cl ass><parti ci pant count ><ret urn>
<pr ot ocol keywor ds>: =<pr ot ocol keywor d+>
<pr ot ocol keywor d>: =" cont ai nsconcurrentrol es"|"iterativeprocess"
"increnmental process"| "subscriptionrequired”
"al terabl eservi cecontent”|"al t erabl eproposal content”
| " di vi dabl eservi ce"
<title> =<word>
<cl ass>: =<wor d>
<l ocat i on>: =<| ocat i onheader ><pat h>
<l ocati onhearder>:="http://ww. "|"http://"|"file://"|"ftp://ftp."
<pat h>: =<di rect ory+><word>'"." ' <wor d>
<di r ect or y>: =<wor d>
<parti ci pant count >: =<di gi t +>| "n"
<return>:="operationresult”|"information"|"agentaddress”
<r ol es>: =<r ol e><rol e>| <r ol es><rol e>
<messagepatt er ns>: =<acl ><nessagepattern+>
<rol e>: =<rol eproperti es><vari abl es?><acti ons?><phases>
<rol edescri ptors>: =<rol edescri ptors><rol eattri butes><rol ekeywor ds?>
<rol edescri ptors>: =<i denti fi er ><nane>
<rol eattribut es>: =<cardi nal i t y><concurrent parti ci pant s?>
<concurrentpartici pantset>: =<identifier+>
<r ol ekeywor ds>: =<r ol ekeywor d+>
<r ol ekeywor d>: =<wor d>



<name>: =<wor d>

<cardinality> =<digit+>]"n"

<vari abl es>: =<vari abl e+>

<vari abl e>: =<i denti fi er ><t ype>

<type>: ="nunber"|"string"|"char"|"bool ean"|"date"|

"“collection"|"null"|"any"|" map"
<identifier> =<letter+> "id" <digit+>
<letter>="a"|"b"|"c"]..."2"
<digit>="0"|"1"|"2"]...|"9"
<wor d>: =<| etter+>

<space>: =
<actions>: =<acti on+>
<phases>: =<phase+>
<phase>: =<i denti fi er ><acti ons>
<acti on>: =<cat egor y><descri pti on?><si gnhat ur e?><event s>
<descri pti on>: =( <wor d><space?>) *
<cat egory>: ="append"| "custoni| "renove"| "send"| "set"| "updat e"
<si gnat ur e>: =<ar gunment s>| <messages>
<ar gunent s>: =( <ar gset >| <ar gdesc>) +
<ar gset >: =<set t ype>( <ar gset >| <ar gdesc>) +
<argdesc>: =<i denti fi er><type><di recti on>
<direction> ="in"|"out"|"inout"
<messages>( <message>| <nessageset >) +
<nmessage>: =<i dentifier>
<nmessageset >: =<set t ype>( <nmessageset >| <nessage>) +
<settype>:="and"|"or"|"xor"
<event s>: =(<event >| <eventr ef >| <event set >) +
<event set >: =<set t ype>(<event >| <eventr ef >| <event set >) +
<event >: =<i dent i fi er ?><event t ype><obj ect >
<eventtype>: ="change"| "custont' | "eni ssi on"| "endphase”
"endpr ot ocol "| "nessagecontent"|"reception"|"vari abl econtent”
<obj ect >: =<message>| <vari abl ei d>
<vari abl ei d>: =<identifier>
<eventref>: =<identifier>
<nmessagepattern>: =<i denti fi er ><performati ve><cont ent >
<performati ve>: =<fi paperformati ve>| <kgml performative>
<kgm performative>: ="ask-all"|"ask-one"|"ask-if"|"streamall"|...
<acl >:="fipa"|"kgm"
<cont ent >: =<t ype><pattern?>
<patt er n>: =<wor dx* ><space>



