Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
The Formal Neuron: 1943 [MP43]

- Basis of Neural Networks
- Input: vector $\mathbf{x} \in \mathbb{R}^m$, i.e. $\mathbf{x} = \{x_i\}_{i \in \{1, 2, \ldots, m\}}$
- Neuron output $\hat{y} \in \mathbb{R}$: scalar
Mapping from \(x \) to \(\hat{y} \):
1. Linear (affine) mapping: \(s = \mathbf{w}^\top \mathbf{x} + b \)
2. Non-linear activation function: \(f: \hat{y} = f(s) \)
The Formal Neuron: Linear Mapping

- Linear (affine) mapping: \(s = \mathbf{w}^\top \mathbf{x} + b = \sum_{i=1}^{m} w_i x_i + b \)
 - \(\mathbf{w} \): normal vector to an hyperplane in \(\mathbb{R}^m \) ⇒ linear boundary
 - \(b \): bias, shift the hyperplane position

2D hyperplane: line

3D hyperplane: plane

\[w^t x + b = 0 \]
The Formal Neuron: Activation Function

- \(\hat{y} = f(\mathbf{w}^\top \mathbf{x} + b) \), \(f \) activation function
 - Popular \(f \) choices: step, sigmoid, tanh

- Step (Heaviside) function:
 \[
 H(z) = \begin{cases}
 1 & \text{if } z \geq 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
Formal neuron, step activation H: $\hat{y} = H(w^T x + b)$
- $\hat{y} = 1$ (activated) $\iff w^T x \geq -b$
- $\hat{y} = 0$ (unactivated) $\iff w^T x < -b$

Biological Neurons: output activated
\iff input weighted by synaptic weight \geq threshold
Sigmoid Activation Function

- Neuron output $\hat{y} = f(\mathbf{w}^\top \mathbf{x} + b)$, f activation function
- Sigmoid: $\sigma(z) = (1 + e^{-az})^{-1}$

- $a \uparrow$: more similar to step function (step: $a \to \infty$)
- Sigmoid: linear and saturating regimes
The Formal neuron: Application to Binary Classification

- Binary Classification: label input x as belonging to class 1 or 0
- Neuron output with sigmoid: $\hat{y} = \frac{1}{1 + e^{-a(w^T x + b)}}$
- Sigmoid: probabilistic interpretation $\Rightarrow \hat{y} \sim P(1/x)$
 - Input x classified as 1 if $P(1/x) > 0.5 \iff w^T x + b > 0$
 - Input x classified as 0 if $P(1/x) < 0.5 \iff w^T x + b < 0$
 $\Rightarrow \text{sign}(w^T x + b)$: linear boundary decision in input space!
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \ x = \{ x_1, x_2 \} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(w = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = w^T x + b \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(\mathbf{w} = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = \mathbf{w}^T \mathbf{x} + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(\mathbf{w}^T \mathbf{x} + b)}\right)^{-1}, \quad a = 10 \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(\mathbf{w} = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = \mathbf{w}^\top \mathbf{x} + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(\mathbf{w}^\top \mathbf{x} + b)}\right)^{-1}, \quad a = 1 \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(\mathbf{w} = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = \mathbf{w}^\top \mathbf{x} + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(\mathbf{w}^\top \mathbf{x} + b)}\right)^{-1} \), \(a = 0.1 \)
From Formal Neuron to Neural Networks

- Formal Neuron:
 1. A single scalar output
 2. Linear decision boundary for binary classification

- Single scalar output: limited for several tasks
 - Ex: multi-class classification, e.g. MNIST or CIFAR
Perceptron and Multi-Class Classification

- **Formal Neuron**: limited to binary classification
- **Multi-Class Classification**: use several output neurons instead of a single one! ⇒ **Perceptron**

- Input x in \mathbb{R}^m
- Output neuron \hat{y}_1 is a formal neuron:
 - Linear (affine) mapping: $s_1 = w_1^T x + b_1$
 - Non-linear activation function: f: $\hat{y}_1 = f(s_1)$
- Linear mapping parameters:
 - $w_1 = \{w_{11}, \ldots, w_{m1}\} \in \mathbb{R}^m$
 - $b_1 \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input \mathbf{x} in \mathbb{R}^m
- Output neuron \hat{y}_k is a formal neuron:
 - Linear (affine) mapping: $s_k = \mathbf{w}_k^T \mathbf{x} + b_k$
 - Non-linear activation function: f: $\hat{y}_k = f(s_k)$
- Linear mapping parameters:
 - $\mathbf{w}_k = \{w_{1k}, \ldots, w_{mk}\} \in \mathbb{R}^m$
 - $b_k \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input x in \mathbb{R}^m ($1 \times m$), output \hat{y}: concatenation of K formal neurons
- Linear (affine) mapping \sim matrix multiplication: $s = xW + b$
 - W matrix of size $m \times K$ - columns are w_k
 - b: bias vector - size $1 \times K$
- Element-wise non-linear activation: $\hat{y} = f(s)$
Perceptron and Multi-Class Classification

- **Soft-max Activation:**
 \[\hat{y}_k = f(s_k) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}} \]

- **Probabilistic interpretation for multi-class classification:**
 - Each output neuron ⇔ class
 - \(\hat{y}_k \sim P(k|x, w) \)

 ⇒ Logistic Regression (LR) Model!
2d Toy Example for Multi-Class Classification

- \(\mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \), \(\hat{\mathbf{y}} \): 3 outputs (classes)

Linear mapping for each class:
\[s_k = \mathbf{w}_k^\top \mathbf{x} + b_k \]

Soft-max output:
\[P(k|x, \mathbf{W}) \]
2d Toy Example for Multi-Class Classification

- \(\mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \), \(\hat{y} \): 3 outputs (classes)

Soft-max output:
\[P(k/\mathbf{x}, \mathbf{W}) \]

Class Prediction:
\[k^* = \arg \max_k P(k/\mathbf{x}, \mathbf{W}) \]
Beyond Linear Classification

X-OR Problem

- Logistic Regression (LR): NN with 1 input layer & 1 output layer
- LR: limited to linear decision boundaries
- **X-OR**: NOT 1 and 2 OR NOT 2 AND 1
 - **X-OR**: Non linear decision function
Beyond Linear Classification

- **LR**: limited to linear boundaries
- **Solution**: add a layer!

- Input x in \mathbb{R}^m, e.g. $m = 4$
- Output \hat{y} in \mathbb{R}^K (K classes), e.g. $K = 2$
- **Hidden layer h in** \mathbb{R}^L
Multi-Layer Perceptron

- **Hidden layer** h: x projection to a new space \mathbb{R}^L
- Neural Net with ≥ 1 hidden layer: Multi-Layer Perceptron (MLP)
- h: intermediate representations of x for classification \hat{y}: $h = f(xW + b)$
- Mapping from x to \hat{y}: non-linear boundary! \Rightarrow activation f crucial!
Deep Neural Networks

- Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- Each layer h^i projects layer h^{i-1} into a new space
- Gradually learning intermediate representations useful for the task
Conclusion

- Deep Neural Networks: applicable to classification problems with non-linear decision boundaries

- Visualize prediction from fixed model parameters

- Reverse problem: **Supervised Learning**
Outline

Neural Networks

Training Deep Neural Networks
Training Multi-Layer Perceptron (MLP)

- Input x, output y
- A parametrized (w) model $x \Rightarrow y$: $f_w(x_i) = \hat{y}_i$
- Supervised context:
 - Training set $\mathcal{A} = \{(x_i, y_i^*)\}_{i \in \{1,2,\ldots,N\}}$
 - Loss function $\ell(\hat{y}_i, y_i^*)$ for each annotated pair (x_i, y_i^*)
 - Goal: Minimizing average loss \mathcal{L} over training set: $\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$
- Assumptions: parameters $w \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_w = \frac{\partial \mathcal{L}}{\partial w}$: steepest direction to decrease loss $\mathcal{L}(w)$
MLP Training

- Gradient descent algorithm:
 - Initialize parameters \mathbf{w}
 - Update: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$
 - Until convergence, e.g. $\|\nabla \mathbf{w}\|^2 \approx 0$
Gradient Descent

Update rule: $w^{(t+1)} = w^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial w}$ \(\eta\) learning rate

- **Convergence ensured**? \Rightarrow provided a "well chosen" learning rate η

![Graph showing convergence and divergence](image-url)
Gradient Descent

Update rule: \[w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \]

- **Global minimum ?**
 ⇒ convex a) vs non convex b) loss \(L(w) \)

![Diagram](image.png)

- a) Convex function
- a) Non convex function
Supervised Learning: Multi-Class Classification

- Logistic Regression for multi-class classification
- $s_i = x_i W + b$
- Soft-Max (SM): $\hat{y}_k \sim P(k|x_i, W, b) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}}$
- Supervised loss function: $\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$

1. $y \in \{1; 2; \ldots; K\}$
2. $\hat{y}_i = \arg\max_k P(k|x_i, W, b)$
3. $\ell_{0/1}(\hat{y}_i, y_i^*) = \begin{cases} 1 & \text{if } \hat{y}_i \neq y_i^* \\ 0 & \text{otherwise} \end{cases}$: 0/1 loss
Logistic Regression Training Formulation

- Input x_i, ground truth output supervision y^*_i
- One hot-encoding for y^*_i:

 $y^*_{c,i} = \begin{cases}
 1 & \text{if } c \text{ is the ground truth class for } x_i \\
 0 & \text{otherwise}
 \end{cases}$
Logistic Regression Training Formulation

- Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}
- ℓ_{CE}: Kullback-Leiber divergence between y_i^* and \hat{y}_i

$$\ell_{CE}(y_i, y_i^*) = KL(y_i^*, \hat{y}_i) = -\sum_{c=1}^{K} y_{c,i}^* \log(\hat{y}_{c,i}) = -\log(\hat{y}_{c^*,i})$$

- △ KL asymmetric: $KL(y_i, y_i^*) \neq KL(y_i^*, y_i)$ △

```
\[
\begin{array}{c|c|c}
   & y_i^* & \hat{y}_i \\
\hline
1.0 & 0.80 & \\
0.0 & 0.15 & \\
0.0 & 0.05 & \\
\end{array}
\]
```

$$KL(y_i, \hat{y}_i) = -\log(\hat{y}_{c^*,i}) = -\log(0.8) \approx 0.22$$
Logistic Regression Training

- \[\mathcal{L}_{CE}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y^*_i) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c^*}, i) \]
- \(\ell_{CE} \) smooth convex upper bound of \(\ell_{0/1} \)
 \(\Rightarrow \) gradient descent optimization
- Gradient descent: \(W(t+1) = W(t) - \eta \frac{\partial \mathcal{L}_{CE}}{\partial W} \) \((b(t+1) = b(t) - \eta \frac{\partial \mathcal{L}_{CE}}{\partial b}) \)
- **MAIN CHALLENGE:** computing \(\frac{\partial \mathcal{L}_{CE}}{\partial W} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W} \) ?

 \(\Rightarrow \) **Key Property:** chain rule \(\frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \)

 \(\Rightarrow \) Backpropagation of gradient error!
Chain Rule

\[
\frac{\partial l}{\partial x} = \frac{\partial l}{\partial y} \frac{\partial y}{\partial x}
\]

- Logistic regression:

\[
\frac{\partial l_{CE}}{\partial W} = \frac{\partial l_{CE}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_i} \frac{\partial s_i}{\partial W}
\]
Logistic Regression Training: Backpropagation

\[\frac{\partial l_{CE}}{\partial W} = \frac{\partial l_{CE}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_i} \frac{\partial s_i}{\partial W}, \quad l_{CE}(\hat{y}_i, y_i^*) = -\log(\hat{y}_{c*,i}) \Rightarrow \text{Update for 1 example:} \]

- \[\frac{\partial l_{CE}}{\partial \hat{y}_i} = \frac{-1}{\hat{y}_{c*,i}} = \frac{-1}{\hat{y}_i} \odot \delta_{c,c^*} \]
- \[\frac{\partial l_{CE}}{\partial s_i} = \hat{y}_i - y_i^* = \delta_i^y \]
- \[\frac{\partial l_{CE}}{\partial W} = x_i^T \delta_i^y \]
Logistic Regression Training: Backpropagation

- Whole dataset: data matrix $\mathbf{X} (N \times m)$, label matrix $\hat{\mathbf{Y}}, \mathbf{Y}^* (N \times K)$

- $\mathcal{L}_{CE}(\mathbf{W}, \mathbf{b}) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c*,i})$, $\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{W}} = \frac{\partial \mathcal{L}_{CE}}{\partial \hat{\mathbf{Y}}} \frac{\partial \hat{\mathbf{Y}}}{\partial \mathbf{S}} \frac{\partial \mathbf{S}}{\partial \mathbf{W}}$

\[
\mathbf{X} \quad \mathbf{W} \quad \mathbf{S} \quad \hat{\mathbf{Y}} \quad \mathcal{L}_{CE}(\hat{\mathbf{Y}}, \mathbf{Y}^*)
\]

- $\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{S}} = \hat{\mathbf{Y}} - \mathbf{Y}^* = \Delta^y$

- $\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{W}} = \mathbf{X}^T \Delta^y$
Perceptron Training: Backpropagation

- Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
- **Goal:** Train parameters W^y and W^h (+bias) with Backpropagation

 \Rightarrow computing

 $\frac{\partial L_{CE}}{\partial W^y} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_{CE}}{\partial W^y}$ and $\frac{\partial L_{CE}}{\partial W^h} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_{CE}}{\partial W^h}$

- Last hidden layer \sim Logistic Regression
- First hidden layer: $\frac{\partial L_{CE}}{\partial W^h} = x_i^T \frac{\partial L_{CE}}{\partial u_i} \Rightarrow$ computing $\frac{\partial L_{CE}}{\partial u_i} = \delta^h_i$
Perceptron Training: Backpropagation

- Computing $\frac{\partial \ell_{CE}}{\partial u_i} = \delta^h_i \Rightarrow$ use chain rule: $\frac{\partial \ell_{CE}}{\partial u_i} = \frac{\partial \ell_{CE}}{\partial v_i} \frac{\partial v_i}{\partial h_i} \frac{\partial h_i}{\partial u_i}$
- ... Leading to: $\frac{\partial \ell_{CE}}{\partial u_i} = \delta^h_i = \delta^y_i \mathbf{W}^y \odot \sigma'(h_i) = \delta^y_i \mathbf{W}^y \odot (h_i \odot (1 - h_i))$
Deep Neural Network Training: Backpropagation

- Multi-Layer Perceptron (MLP): adding more hidden layers
- Backpropagation update ~ Perceptron: assuming $\frac{\partial L}{\partial u_{l+1}} = \Delta^{l+1}$ known
 - $\frac{\partial L}{\partial W^{l+1}} = H_l^T \Delta^{l+1}$
 - Computing $\frac{\partial L}{\partial U_l} = \Delta^l$ ($= \Delta^{l+1}^T W^{l+1} \odot H_l \odot (1 - H_l)$ sigmoid)
 - $\frac{\partial L}{\partial W^l} = H_{l-1}^T \Delta^{h_l}$
Neural Network Training: Optimization Issues

- Classification loss over training set (vectorized w, b ignored):

$$
\mathcal{L}_{CE}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y^*_i) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c^*,i})
$$

- Gradient descent optimization:

$$
w^{(t+1)} = w^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial w} (w^{(t)}) = w^{(t)} - \eta \nabla_w^{(t)}
$$

- Gradient $\nabla_w^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y^*_i)}{\partial w} (w^{(t)})$ linearly scales wrt:
 - w dimension
 - Training set size

\Rightarrow Too slow even for moderate dimensionality & dataset size!
Stochastic Gradient Descent

- **Solution**: approximate \(\nabla_w^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} \left(w^{(t)} \right) \) with subset of examples

 ⇒ **Stochastic Gradient Descent (SGD)**

 - Use a single example (online):
 \[
 \nabla_w^{(t)} \approx \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} \left(w^{(t)} \right)
 \]

 - Mini-batch: use \(B < N \) examples:
 \[
 \nabla_w^{(t)} \approx \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \ell_{CE}(\hat{y}_i, y_i^*)}{\partial w} \left(w^{(t)} \right)
 \]
Stochastic Gradient Descent

- **SGD:** approximation of the true Gradient ∇w!
 - Noisy gradient can lead to bad direction, increase loss
 - **BUT:** much more parameter updates: online $\times N$, mini-batch $\times \frac{N}{B}$
 - **Faster convergence**, at the core of Deep Learning for large scale datasets

![Diagram showing full gradient, SGD (online), and SGD (mini-batch)]
Optimization: Learning Rate Decay

- Gradient descent optimization: $w^{(t+1)} = w^{(t)} - \eta \nabla w^{(t)}$
- η setup? \Rightarrow open question
- Learning Rate Decay: decrease η during training progress
 - Inverse (time-based) decay: $\eta_t = \frac{\eta_0}{1 + r \cdot t}$, r decay rate
 - Exponential decay: $\eta_t = \eta_0 \cdot e^{-\lambda t}$
 - Step Decay $\eta_t = \eta_0 \cdot r^{t/t_u}$...

Exponential Decay ($\eta_0 = 0.1$, $\lambda = 0.1s$)
Step Decay ($\eta_0 = 0.1$, $r = 0.5$, $t_u = 10$)
Generalization and Overfitting

- **Learning**: minimizing classification loss \mathcal{L}_{CE} over training set
 - Training set: sample representing data vs labels distributions
 - **Ultimate goal**: train a prediction function with low prediction error on the true (unknown) data distribution

\[
\mathcal{L}_{train} = 4, \quad \mathcal{L}_{train} = 9 \\
\mathcal{L}_{test} = 15, \quad \mathcal{L}_{test} = 13
\]

⇒ **Optimization ≠ Machine Learning!**
⇒ **Generalization / Overfitting!**
Regularization

- **Regularization**: improving generalization, i.e. test (≠ train) performances
- Structural regularization: add *Prior* $R(w)$ in training objective:

$$\mathcal{L}(w) = \mathcal{L}_{CE}(w) + \alpha R(w)$$

- L^2 regularization: weight decay, $R(w) = ||w||^2$
 - Commonly used in neural networks
 - Theoretical justifications, generalization bounds (SVM)
- Other possible $R(w)$: L^1 regularization, dropout, etc
Deep for image classification

• M classes
• M output neurons
 • 1 neuron / class

Question: how to connect the image to the MLP?
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks