Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

Drawing? => learning from examples
Review: Auto-encoder

Minimize reconstruction error

As close as possible

Randomly generate a vector as code

NN Encoder ➔ code ➔ NN Decoder ➔ Image
Review: Auto-encoder

\[\begin{bmatrix} -1.5 \\ 0 \end{bmatrix} \xrightarrow{\text{NN Decoder}} 0 \xrightarrow{\text{2D code}} 1.5 \]
Review: Auto-encoder
Auto-encoder

From a normal distribution $N(0,1)$

Problems of AE/VAE

- It does not really try to simulate real images

One pixel difference from the target

Realistic

Non Realistic

As close as possible
Problems of AE/VAE

GAN to tackle this pb:

<table>
<thead>
<tr>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realistic</td>
<td>Non Realistic</td>
</tr>
</tbody>
</table>

GAN: generative adversarial networks

Game scenario:

Player1, Generator, produces samples
Player2, – Its adversary **Discriminator**, attempts to distinguish real samples from fake generated ones (produced by Player1)!

Player1 aims at producing Realistic images to fool the Player2
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
 • GAN Algorithm
Adversarial Nets Framework

\[V = \mathbb{E}_{x \sim P_{data}}[\log D(x)] + \mathbb{E}_{x \sim P_G}[\log(1 - D(x))] \]

\[G^* = \arg \min_G \max_D V(G, D) \]
GAN Learning – D and G updates

Game scenario:

Player1, Generator G, produces samples
Player2, – Its adversary Discriminator D, attempts to distinguish **real** samples from **fake** generated ones (produced by Player1)!

Player1 aims at producing **Realistic** images to fool the Player2

Fake images:

Real images:

NN Generator v1

Discriminator v1

Binary Classifier
GAN - Discriminator

Randomly sample a vector

Generator v1

Real images:

Disriminator v1

1/0 (real or fake)

Discriminator Optimization on a batch of images:
Using gradient descent to update the parameters in the discriminator, with a fixed generator
GAN - Generator

Updating the parameters of generator

Randomly sample a vector

The output be classified as “real” (as close to 1 as possible)

Generator + Discriminator = a network

Optimization:
Using gradient descent to update the parameters in the generator, but fixing the discriminator
GAN Learning – D and G updates

NN Generator v1

Discriminator v1

Real images:

5 0 4 1

NN Generator v2

Discriminator v2

Game over: Winner==Player1 Generator G producing fully Realistic images that fool the Player2

NN Generator v3

Discriminator v3

NN Generator vt

8 3 9 9 0 0 0 0 0 0 0 0 0 0
Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used $k = 1$, the least expensive option, in our experiments.

for number of training iterations do
 for k steps do
 • Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 • Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(x^{(i)}\right) + \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right].
 \n \]
 end for
 • Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
 • Update the generator by descending its stochastic gradient:
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right).
 \]
end for

GAN algorithm

\[
V = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] + \mathbb{E}_{x \sim p_G} \left[\log \left(1 - D(x)\right) \right]
\]

\[
G^* = \operatorname{arg} \min_G \max_D V(G, D)
\]
One example GAN

Source of images: https://zhuanlan.zhihu.com/p/24767059
DCGAN: https://github.com/carpedm20/DCGAN-tensorflow
GAN

100 rounds
GAN

20,000 rounds
GAN

50,000 rounds
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

Drawing? => learning from examples
Recall Algo GAN

for number of training iterations do

 for k steps do
 • Sample minibatch of m noise samples \(\{z^{(1)}, \ldots, z^{(m)}\}\) from noise prior \(p_g(z)\).
 • Sample minibatch of m examples \(\{x^{(1)}, \ldots, x^{(m)}\}\) from data generating distribution \(p_{data}(x)\).
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D(x^{(i)}) + \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right) \right].
 \n \]
 end for

 • Sample minibatch of m noise samples \(\{z^{(1)}, \ldots, z^{(m)}\}\) from noise prior \(p_g(z)\).
 • Update the generator by descending its stochastic gradient:
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(z^{(i)}\right)\right)\right).\]

end for

Functions G and D are NN

Question:
Which architectures for G and D?
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
 1. Basics
Basic Archi for G and D and expe

Models
G and D fully connected nets
or convolutional for D, (de)convolutional for G (as seen for segmentation nets)
ReLU and/or sigmoids, dropout

Datasets
MNIST, Toronto Face Database, CIFAR-10

GAN - Evaluation

• Approximate p_g by fitting a Gaussian Parzen window on the generated images.
• Cross-validate σ to maximize likelihood of validation set
• Compute the likelihood of the test set

Evaluation not trivial, can be done using generated images as inputs for deep nets \Rightarrow inception scores
GAN - Qualitative results 1/2

Figure: Right col nearest from dataset. a) MNIST, b) TFD, c) CIFAR-10 (fully connected), d) CIFAR-10 (convolutional D, deconvolutional G)
GAN - Qualitative results 2/2

Figure: Linear interpolation between 2 points in z space

- Advantages:
 - Computational advantages (no complex likelihood inference)
 - Can represent sharper distributions

- Disadvantages:
 - G and D must be well synchronized for the algorithm to converge correctly
GAN architectures

• How to improve result quality?
 • Spatial resolution
 ⇒ Cascade of GAN
 • Object quality
 ⇒ Progressive growing of spatial resolution in G
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
 1. Basics
 2. LaPGAN
Laplacian Pyramid GANs (LAPGANs)

- GANs do not work well for complex / high level / natural images.
- Idea: decompose the generation in successive tasks using Laplacian Pyramid (of GANs)

Let \(d(l) \) and \(u(l) \) be down-sampling and up-sampling operations. Gaussian pyramid:

\[
G(l) = [l_0, l_1, ..., l_K], \quad l_k = d^{(k)}(l)
\]

Laplacian pyramid:

\[
h_k = \mathcal{L}_k(l) = l_k - u(l_{k+1})
\]

Reconstruction:

\[
l_k = u(l_{k+1}) + h_k
\]
LAPGAN model - sampling

- Set of generative convnets: G_0, \ldots, G_K
- Generated details: $\tilde{h}_k = G_k(z_k, u(\tilde{l}_{k+1}))$
- Reconstructed image: $\tilde{l}_k = u(\tilde{l}_{k+1}) + \tilde{h}_k$ ($\tilde{l}_{K+1} = 0$)
LAPGAN model - training

- Low-pass version of l_0: $l_0 = u(d(l_0)$
- Either:
 - High-pass version of l_0: $h_0 = l_0 - l_0$
 - Generate $\tilde{h}_0 = G_0(z_0, l_0)$
- Forward $D_0(l_0 + h_0$ or $\tilde{h}_0)$
- Backward D_0 and G_0
- G_K and D_K are trained as a simple GAN
LAPGAN model - Experiments

- **Datasets:** CIFAR-10, STL
- **Initial scale:**
 - G_K and D_K have 2 hidden layers and ReLU
 - $z_K \sim U_{[-1,1]}^{100}$
 - Trained as GAN
- **Subsequent scales:**
 - G_k and D_k convnets with 3 and 2 layers
 - $z_k \sim U_{[-1,1]}^{l_k}$ ("color" layer)
 - Trained as CGAN
LAPGAN model - Results - CIFAR
Figure 4: STL samples: (a) Random 96x96 samples from our LAPGAN model. (b) Coarse-to-fine generation chain.
LAPGAN model - Results - LSUN
LAPGAN

- Good idea (cascade) but Generator structure too weak

=> Other approach: **progressive growing** of spatial resolution
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
 1. Basics
 2. LaPGAN
 3. DCGAN
Progressive growing of spatial resolution in G

Deep Convolutional GANs (DCGANs)

GANs are hard to scale => Identify a family of architectures that gives stable training

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator)
- Use batchnorm in both the generator and the discriminator
- Remove fully connected hidden layers for deeper architectures
- Use ReLU activation in generator for all layers except for the output, which uses Tanh
- Use LeakyReLU activation in the discriminator for all layers
Progressive growing of spatial resolution in G: DCGAN

Upsampling step by step

Combine with convolutional layers
DCGAN - Results - generated bedrooms
DCGAN results - Faces
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
 1. Basics
 2. LaPGAN
 3. DCGAN
 4. ProGAN
Progressive growing of GANs

[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]

1. First, start with training 4x4 output images.
2. When this training has converged, add a new block to generate 8x8 output images.
3. Etc.

The transition to adding a new block is gradual, we first start with more weight on the (upsampled) output of the previous block, and then add more and more weight to the output of the current block.

All weights remain trainable during the whole process.

Discriminator = mirror image of generator
Progressive growing of GANs

[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spatial resolution of 4×4 pixels. As the training advances, we incrementally add layers to G and D, thus increasing the spatial resolution of the generated images. All existing layers remain trainable throughout the process. Here $N \times N$ refers to convolutional layers operating on $N \times N$ spatial resolution. This allows stable synthesis in high resolutions and also speeds up training considerably. On the right we show six example images generated using progressive growing at 1024×1024.
Progressive growing of GANs

[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the new layers smoothly. This example illustrates the transition from 16×16 images (a) to 32×32 images (c). During the transition (b) we treat the layers that operate on the higher resolution like a residual block, whose weight α increases linearly from 0 to 1. Here $2\times$ and $0.5\times$ refer to doubling and halving the image resolution using nearest neighbor filtering and average pooling, respectively. The toRGB represents a layer that projects feature vectors to RGB colors and fromRGB does the reverse; both use 1×1 convolutions. When training the discriminator, we feed in real images that are downsampled to match the current resolution of the network. During a resolution transition, we interpolate between two resolutions of the real images, similarly to how the generator output combines two resolutions.
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
 1. Basics
 2. LaPGAN
 3. DCGAN
 4. ProGAN
 5. MSG-GAN
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks [CVPR 2020]

Main Idea:
• ProGAN both use progressive growing, but although this gives stability, it introduces many complicated training parameters associated with each new network.
• Training cannot be done “out of the box”, have to adjust parameters for each new dataset.

→ Train all at once without complicated adding on layers
Figure 2: Architecture of MSG-GAN, shown here on the base model proposed in ProGANs [13]. Our architecture includes connections from the intermediate layers of the generator to the intermediate layers of the discriminator. Multi-scale images sent to the discriminator are concatenated with the corresponding activation volumes obtained from the main path of convolutional layers followed by a combine function (shown in yellow).
MSG-GAN: results – Random generated CelebA-HQ Faces at resolution 1024x1024
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
 1. Basics
 2. LaPGAN
 3. DCGAN
 4. ProGAN
 5. MSG-GAN
 6. StyleGAN
StyleGAN: A Style-Based Generator Architecture for Generative Adversarial Networks [Karras CVPR 2019]

Still progressive growing architecture but with new refinement block based on: Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization (AdaIN)

\[\text{AdaIN}(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y) \]
StyleGAN Network Architecture
Building up the Model

<table>
<thead>
<tr>
<th>Method</th>
<th>CelebA-HQ</th>
<th>FFHQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Baseline Progressive GAN [29]</td>
<td>7.79</td>
<td>8.04</td>
</tr>
<tr>
<td>B + Tuning (incl. bilinear up/down)</td>
<td>6.11</td>
<td>5.25</td>
</tr>
<tr>
<td>C + Add mapping and styles</td>
<td>5.34</td>
<td>4.85</td>
</tr>
<tr>
<td>D + Remove traditional input</td>
<td>5.07</td>
<td>4.88</td>
</tr>
<tr>
<td>E + Add noise inputs</td>
<td>5.06</td>
<td>4.42</td>
</tr>
<tr>
<td>F + Mixing regularization</td>
<td>5.17</td>
<td>4.40</td>
</tr>
</tbody>
</table>
Results

faces
Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
4. Editing
DCGAN: Arithmetics in z space

Latent space analysis for GAN editing

Artithmetics in latent space

- smiling woman
- neutral woman
- neutral man
- smiling man

- man with glasses
- man without glasses
- woman without glasses
- woman with glasses
Gan Editing

Latent space analysis for GAN editing