Deep (3)

Matthieu Cord LIP6 / SU
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
3. Modern Deep Architectures
 • The big picture
Deep Convolutional Neural Networks (Deep ConvNets)

- **Convolution** uses local weights shared across the whole image
- **Pooling** shrinks the spatial dimensions
- **Activation** (ReLU, Sigmoid, Tanh,..)
- **Fully connected**
Deep ConvNets for image classification

- **AlexNet** 8 layers, 62M parameters

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton
ImageNet Classification with Deep Convolutional Neural Networks.
In *NIPS, 2012.*
Deep ConvNets for image classification

- **VGG16** (very deep) 16 layers, 138M parameters
 - Increasing the depth

Karen Simonyan and Andrew Zisserman

Very Deep Convolutional Networks for Large-Scale Image Recognition.

In ICLR, 2015.
Deep ConvNets for image classification

- **GoogLeNet / Inception** 22 layers, 7M parameters

 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich
 Going Deeper with Convolutions.
 In *CVPR, 2015.*
Deep ConvNets for image classification

- **ResNet** 152 layers, 60M parameters

Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun
Deep Residual Learning for Image Recognition.
In CVPR, 2016.
Deep ConvNets for image classification

Revolution of Depth

ImageNet Classification top-5 error (%)

- ILSVRC'15 ResNet
- ILSVRC'14 GoogleNet
- ILSVRC'14 VGG
- ILSVRC'13
- ILSVRC'12 AlexNet
- ILSVRC'11 shallow
- ILSVRC'10

152 layers
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
3. Modern Deep Architectures
 • The big picture
 • **AlexNet:** 2012 the (deep) revolution
 • Archi and learning
 • Ablation study
ImageNet 2012: the (deep) revolution

- 1.2 million labeled images
- 1000 classes
- Mono-class
- TOP5
Architecture of the IMAGENET Challenge 2012 Winner:

A Large CNN [@Fergus NIPS 2013]

Krizhevsky et al. [NIPS2012]

- Same model as LeCun’98 but:
 - Bigger model (8 layers)
 - More data (10^6 vs 10^3 images)
 - GPU implementation (50x speedup over CPU)
 - Better regularization (DropOut)

- 7 hidden layers, 650,000 neurons, 60,000,000 parameters
- Trained on 2 GPUs for a week
Filtering
- Convolutional
 - Dependencies are local
 - Translation equivariance
 - Tied filter weights (few params)
 - Stride 1, 2, ... (faster, less mem.)

Non-Linearity
- Non-linearity
 - Per-feature independent
 - Tanh
 - Sigmoid: \(1/(1+\exp(-x))\)
 - Rectified linear
 - Simplifies backprop
 - Makes learning faster
 - Avoids saturation issues
 → Preferred option

Pooling
- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML’10 for theoretical analysis

Normalization
- Contrast normalization (between/across feature maps)
 - Local mean = 0, local std. = 1, “Local” → 7x7 Gaussian
 - Equalizes the features maps

Input → Feature Map

Feature Maps
Feature Maps After Contrast Normalization
Learning the deep CNN 2012

• Basics:
 • SGD, Backprop
 • Cross Validation
 • Grid search

• “New”
 • Huge computational resources (GPU)
 • Huge training set (1 million images)
 • Data augmentation - Pre-processing
 • Dropout
 • ReLu

 • *Contrast normalization*
 • And (dixit LeCun) few hacks to initialize the weights, prevent the weights from blowing up for large values of the learning rate ...
Data Augmentation

lots of jittering, mirroring, and color perturbation of the original images generated on the fly to increase the size of the training set

Crop, flip,.. in train AND in test
Dropout: an efficient way to average many large neural nets

For each training example, randomly omit each hidden unit with probability 0.5

Due to sharing of weights, model strongly regularized

 Pulls the weights towards what other models want.

Better than L2 and L1 regularization that pull weights towards zero

@Hinton, NIPS 2012
Dropout: what do we do at test time?

Option 1:
 Sample many different architectures and take the geometric mean of their output distributions

Option 2: (Faster way)
 Use all the hidden units
 but after halving their outgoing weights

Rq: In case of single hidden layer, this is equivalent to the geometric mean of the predictions of all models
 For multiple layers, it’s a pretty good approximation and its fast
How well does dropout work?

Significantly improve generalization:
 For very deep nets, or at least when there are huge fully connected layers (e.g. AlexNet first FC layer, VGG next, ...)
 Less useful for fully convolutional nets

Useful to prevent feature co-adaptation (feature only helpful when other specific features present)

Later in course (week 11)
⇒ Dropout as a Bayesian Approximation
⇒ Representing Model Uncertainty in Deep Learning
Outline

ConvNets as Deep Neural Networks for Vision

1. From MLP to ConvNets
2. Deep Convolutional Neural Networks
3. Modern Deep Architectures
 • The big picture
 • AlexNet: 2012 the (deep) revolution
 • Archi and learning
 • Ablation study
 • Number of layers
 • Tapping off features at each layer
 • Transfo Robustness vs layers
Architecture of Krizhevsky et al.

- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR’09]
- 18.2% top-5 error
- Our reimplementation: 18.1% top-5 error
Architecture of Krizhevsky et al.

- Remove top fully connected layer
 - Layer 7

- Drop 16 million parameters

- Only 1.1% drop in performance!
• Remove both fully connected layers
 – Layer 6 & 7
• Drop ~50 million parameters
• 5.7% drop in performance
Architecture of Krizhevsky et al.

- Now try removing upper feature extractor layers & fully connected:
 - Layers 3, 4, 6, 7

- Now only 4 layers

- 33.5% drop in performance

→ Depth of network is key
Scale Invariance

Output

Layer 1

Layer 7
Rotation Invariance

Layer 1

Layer 7

Output
What’s next AlexNet?

How to improve AlexNet architecture?
+++Deep?
+++Convolutional?
+++Fully connected?
All?
⇒A lot of empirical studies
 ⇒Tuning various design parameters
 ⇒what really works?
⇒Winners: VGG, GoogleNets, ResNet
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
3. Modern Deep Architectures
 • The big picture
 • AlexNet
 • GoogLeNet
GoogLeNet (2014)

Winner of ILSVRC -2014. Very deep network with 22 layers:
- Network–in-network–in-network
- Removed fully connected layers → small # of parameters (5M weights)
GoogLeNet (2014)
GoogLeNet (2014)

Auxiliary classifiers

Main classifier
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
3. Modern Deep Architectures
 • The big picture
 • AlexNet
 • GoogleNet
 • VGG
VGG Net: Archi post-2012 revolution

VGG, 16/19 layers, 2014

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015
VGG Net

Basic Idea: Investigate the **effect of depth** in large scale image recognition

- **Fix other parameters** of architecture, and steadily increase depth
Fixed configuration:

- Convolutional Layers: from 8 to 16
- Fully Connected Layers: 3
- Stride: 1
- ReLu: Follow all hidden layers
- Max-Pooling: 2x2 window
- Padding: s/t spatial resolution is preserved
- #Convolutional filters: Starting from 64, double after each max-pooling layer until 512
- Filter sizes: 3x3 and 1x1
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
 & A & A-LRN & B & C \\
\hline
weight layers & 11 layers & 11 layers & 13 layers & 16 layers \\
\hline
\hline
input (224 × 224 RGB image) & conv3-64 & conv3-64 & conv3-64 & conv3-64 \\
\hline
 & LRN & conv3-64 & conv3-64 & conv3-64 \\
\hline
\hline
maxpool & conv3-128 & conv3-128 & conv3-128 & conv3-128 \\
\hline
\hline
maxpool & conv3-256 & conv3-256 & conv3-256 & conv3-256 \\
\hline
\hline
maxpool & conv3-256 & conv3-256 & conv3-256 & conv3-256 \\
\hline
\hline
maxpool & conv3-512 & conv3-512 & conv3-512 & conv3-512 \\
\hline
\hline
maxpool & conv3-512 & conv3-512 & conv3-512 & conv3-512 \\
\hline
\hline
maxpool & FC-4096 & FC-4096 & FC-1000 & \\
\hline
\end{tabular}
\caption{Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR2015}
\end{table}
VGG Net

Results:

• First place in localization (25.3% error), second in classification (7.3% error) in ILSVRC 2014 using ensemble of 7 networks

• Outperforms Szegedy et.al (GoogLeNet) in terms of single network classification accuracy (7.1% vs 7.9%)
Observations with VGG testing:

- Deepnets with small filters outperform shallow networks with large filters
 - Shallow version of B: 2 layers of 3x3 replaced with single 5x5 performs worse
- LRN does not improve performance
- Classification error decreases with increases ConvNet depth
- Important to capture more spatial context (config D vs C)
- Error rate saturated at 19 layers
- Scale jittering at training helps capturing multiscale statistics and leads to better performance
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
3. Modern Deep Architectures
 • The big picture
 • GoogleNet
 • VGG
 • ResNet
Outline

ConvNets as Deep Neural Networks for Vision

1. Neural Nets
2. Deep Convolutional Neural Networks
3. Modern Deep Architectures
 - The big picture
 - AlexNet
 - GoogleNet
 - VGG
 - ResNet
Results 2015: 3.6% top5 error

Result in ILSVRC over the years
ResNet
The deeper, the better

+ Deeper network covers more complex problems
 • Receptive field size ↑
 • Non-linearity ↑

- Training deeper network more difficult because of vanishing/exploding gradients problem

@ Kaiming He ILSVRC & COCO 2015
Deep Neural Network

• Escape from few layers
 • ReLU for solving gradient vanishing problem
 • Dropout ...

Revolution of Depth

ILSVRC'15 ResNet 3.57
ILSVRC'14 GoogleNet 6.7
ILSVRC'14 VGG 7.3
ILSVRC'13 8 layers 11.7
ILSVRC'12 AlexNet 8 layers 16.4
ILSVRC'11 shallow 25.8
ILSVRC'10 28.2
Deep Neural Network

- Escape from 10 layers
 - Normalized initialization
 - Intermediate normalization layers
Deep Neural Network

- Escape from 100 layers
- Residual network
Deeper VGG: 56 Plain Network

Plain nets: stacking 3x3 conv layers
- 56-layer net has higher training error and test error than 20-layers net
Deeper VGG:

“Overly deep” plain nets have higher training error
A general phenomenon, observed in many datasets
Naïve solution
If extra layers identity mapping, training error not increase
Residual Network

- Deeper networks maintain the tendency of results
 - Features in same level will be almost same
 - An amount of changes is fixed
 - Adding layers make smaller differences
 - Optimal mappings closer to an identity

“extra” layers
Residual Network

Plain block

Difficult to make identity mapping because of multiple non-linear layers
Residual Network

Residual block
If identity were optimal, easy to set weights as 0
If optimal mapping is closer to identity, easier to find small fluctuations

-> Appropriate for treating perturbation as keeping a base information

\[H(x) = F(x) + x \]
Residual Network

- Difference between an original image and a changed image

Preserving base information

Some Network
residual

can treat perturbation
Residual Network

Deeper ResNets have lower training error
Residual Network

• Residual block
 • Very simple
 • Parameter-free

A naïve residual block

“bottleneck” residual block (for ResNet-50/101/152)
Residual Network

• Shortcuts connections
 • Identity shortcuts
 \[y = \mathcal{F}(x, \{W_i\}) + x. \]
 • Projection shortcuts
 \[y = \mathcal{F}(x, \{W_i\}) + W_s x. \]
Network Design

Basic design (VGG-style)
All 3x3 conv (almost)
Spatial size/2 => #filters x2
Batch normalization
Simple design, just deep

Other remarks
No max pooling (almost)
No hidden fc
No dropout
Network Design

ResNet-152

Use bottlenecks

ResNet-152 (11.3 billion FLOPs) lower complexity than VGG-16/19 nets (15.3/19.6 billion FLOPs)

About 64M parameters
Results

• Deep Resnets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error
Results

- Deep Resnets can be trained “without difficulties”
- Deeper ResNets have lower training error, and also lower test error
Results

• 1st places in all five main tracks in “ILSVRC & COCO 2015 Competitions”
 • ImageNet Classification
 • ImageNet Detection
 • ImageNet Localization
 • COCO Detection
 • COCO Segmentation
Deep ConvNets for image classification

- **ResNeXt**
 - Multi-branch architecture

*Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu and Kaiming He
Aggregated Residual Transformations for Deep Neural Networks.
In *CVPR*, 2017.*
Comments from paper: “Our experiments demonstrate that residual representation is not fundamental to the success of extremely deep convolutional neural networks. A fractal design achieves an error rate of 22.85% on CIFAR-100, matching the state-of-the-art held by residual networks.”
Exploring type of deep modules in Neural Nets

Neural Architecture Search
Conclusion

• ResNet: currently the best archi for large scale image classification
• Not yet consensus about the design of the Net (cf. FractalNet), Neural Architecture Search

• Fully Convolutional Net (FCN) very interesting option
 Beyond classification!
COMPLEMENTS
Batch normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1...m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma,\beta}(x_i)\}$

- $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ \hspace{1cm} // mini-batch mean
- $\sigma^2_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$ \hspace{1cm} // mini-batch variance
- $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma^2_{\mathcal{B}} + \epsilon}}$ \hspace{1cm} // normalize
- $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$ \hspace{1cm} // scale and shift

Remarks:
- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Reduces need for dropout

Un-normalization!! Re-compute and apply the optimal scaling and bias for each neuron!
Learn γ and β (same dims as μ and σ^2).
It can (should?) learn the identity mapping!
Where to do BatchNorm?

BatchNorm is just a linear scale/bias layer in the limit of large batch sizes \((\mu, \sigma^2)\)
Where to do BatchNorm?

BatchNorm is just a linear scale/bias layer in the limit of large batch sizes (μ, σ^2).

?? Linear weight layer should already have optimal scale/bias in its output.
Where to do BatchNorm?

BatchNorm is just a linear scale/bias layer in the limit of large batch sizes (μ, σ^2).

?? Any bias/scaling by the batch norm layer should be over-rulled by the second linear weight layer.
Multitask learning / auxiliary loss in GoogLeNet