COURS RDFIA deep Image

Matthieu Cord
Sorbonne University
Course Outline

Part I

2. Introduction to Machine Learning: Risk, Classification, Datasets, benchmarks and evaluation
3. Neural Nets (NNs), Linear classification (SVM)
4. Convolutional NNs -- Large deep ConvNets
COMPUTER VISION: WHERE ARE WE NOW?

Source (next slides): Cornell CV course
Deployed: depth cameras

https://realsense.intel.com/stereo/

Microsoft Kinect
Deployed: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Source: S. Seitz
Deployed: Optical character recognition (OCR)

- If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs
http://www.research.att.com/~yann/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Source: S. Seitz
Deployed: Face detection

- Cameras now detect faces
 - Canon, Sony, Fuji, ...
Significant progress: Face Recognition
Significant progress: Recognizing objects

Mask R-CNN. Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. ICCV 2017
Recognition-based product search

GrokStyle Visual Search Demo

GROKSTYLE
Visual Search Solutions for the Retail Industry

MORE VIDEOS
Challenges: Other imaging domains

![Image of glioma sub-regions](image)

Fig.1: Glioma sub-regions. Shown are image patches with the tumor sub-regions that are annotated in the different modalities (top left) and the final labels for the whole dataset (right). The image patches show from left to right: the whole tumor (yellow) visible in T2-FLAIR (Fig.A), the tumor core (red) visible in T2 (Fig.B), the enhancing tumor structures (light blue) visible in T1Gd, surrounding the cystic/necrotic components of the core (green) (Fig. C). The segmentations are combined to generate the final labels of the tumor sub-regions (Fig.D): edema (yellow), non-enhancing solid core (red), necrotic/cystic core (green), enhancing core (blue). (Figure taken from the BraTS IEEE TMI paper.)
Challenges: Integrating Vision and Action
Challenge: Visual Reasoning
VQA task: Why is this funny?

The picture above is funny.
Course Outline

Local feature detection and description

Points/Regions of Interest detection

One example: Corner detection (Harris corner detector)
Corner detection

• Main idea: Translating window should cause large differences in patch appearance
Corner Detection: Basic Idea

Recognize the type of point (flat, edge, corner) by looking through a small window W

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Corner detection op == Shifting a window in any direction, keep the ones that give a large change in intensity
Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD “error” $E(u,v)$:

$$E(u, v) = \sum_{(x,y) \in W} \left[I(x + u, y + v) - I(x, y) \right]^2$$

- We want $E(u,v)$ to be as high as possible for all u, v!
Small motion assumption

Taylor Series expansion of I:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms}$$

If the motion (u, v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v$$

$$\approx I(x, y) + \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...
Corner detection: the math

\[E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2 \]

\[\approx \sum_{(x,y) \in W} [I(x, y) + I_x u + I_y v - I(x, y)]^2 \]

\[E(u, v) \approx \sum_{(x,y) \in W} [I_x u + I_y v]^2 \]

\[\approx A u^2 + 2B uv + C v^2 \]

\[A = \sum_{(x,y) \in W} I_x^2 \quad B = \sum_{(x,y) \in W} I_x I_y \quad C = \sum_{(x,y) \in W} I_y^2 \]

\(E(u,v) \) is locally approximated as a quadratic error function
Interpreting the second moment matrix

\[M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} A & B \\ B & C \end{bmatrix} \]

\[E(u,v) \approx \begin{bmatrix} u \\ v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} \]

Recall that we want \(E(u,v) \) to be as large as possible for all \(u,v \)

What does this mean in terms of \(M \)?
\[E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[A = \sum_{(x,y) \in W} I_x^2 \]

\[B = \sum_{(x,y) \in W} I_x I_y \]

\[C = \sum_{(x,y) \in W} I_y^2 \]

\[M = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]

\[M \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

Flat patch:

\[I_x = 0 \]
\[I_y = 0 \]

\[E(u, v) = 0 \quad \forall u, v \]
\[E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[A = \sum_{(x,y) \in W} I_x^2 \]

\[B = \sum_{(x,y) \in W} I_x I_y \]

\[C = \sum_{(x,y) \in W} I_y^2 \]

Vertical edge: \(I_y = 0 \)

\[M = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \]

\[M \begin{bmatrix} 0 \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

\[E(0, v) = 0 \quad \forall v \]
\[E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[A = \sum_{(x,y)\in W} I_x^2 \]
\[B = \sum_{(x,y)\in W} I_x I_y \]
\[C = \sum_{(x,y)\in W} I_y^2 \]

Horizontal edge: \(I_x = 0 \)

\[M = \begin{bmatrix} 0 & 0 \\ 0 & C \end{bmatrix} \]

\[M \begin{bmatrix} u \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

\[E(u, 0) = 0 \forall u \]
What about edges in arbitrary orientation?
\[E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} \]

\[M \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow E(u, v) = 0 \]

\[M \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff E(u, v) = 0 \]

Solutions to \(Mx = 0 \) are directions for which \(E \) is 0: window can slide in this direction without changing appearance.
Solutions to $Mx = 0$ are directions for which E is 0: window can slide in this direction without changing appearance.

For corners, we want no such directions to exist.
Eigenvalues and eigenvectors of M

- $Mx = 0 \Rightarrow Mx = \lambda x$: x is an eigenvector of M with eigenvalue 0
- M is 2×2, so it has 2 eigenvalues ($\lambda_{max}, \lambda_{min}$) with eigenvectors ($x_{max}, x_{min}$)
- $E(x_{max}) = x_{max}^T M x_{max} = \lambda_{max} \|x_{max}\|^2 = \lambda_{max}$ (eigenvectors have unit norm)
- $E(x_{min}) = x_{min}^T M x_{min} = \lambda_{min} \|x_{min}\|^2 = \lambda_{min}$
Corner detection: the math

How are \(\lambda_{\text{max}}, x_{\text{max}}, \lambda_{\text{min}}, \) and \(x_{\text{min}} \) relevant for feature detection?

• Need a feature scoring function

Want \(E(u,\nu) \) to be large for small shifts in all directions

• the minimum of \(E(u,\nu) \) should be large, over all unit vectors \([u \nu]\)

• this minimum is given by the smaller eigenvalue \((\lambda_{\text{min}}) \) of \(M \)
Corner detection summary

Here’s what you do

- Compute the gradient at each point in the image
- Create the M matrix from the entries in the gradient
- Compute the eigenvalues
- Find points with large response ($\lambda_{\text{min}} > \text{threshold}$)
- Choose those points where λ_{min} is a local maximum as features
Corner detection summary

Here’s what you do

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues
- Find points with large response ($\lambda_{\text{min}} > \text{threshold}$)
- Choose those points where λ_{min} is a local maximum as features
The Harris operator

λ_{min} is a variant of the “Harris operator” R for feature detection:

$$R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha(\lambda_1 + \lambda_2)^2$$

- The trace is the sum of the diagonals, i.e., $\text{trace}(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the “Harris Corner Detector” or “Harris Operator”
The Harris operator

Harris operator

λ_{min}
Harris detector example
f value (red high, blue low)
Threshold \((f > value)\)
Find local maxima of f
Harris features (in red)
Local feature detection

Looking for repeatability
Local feature description

Local description (always looking for invariance)

SIFT descriptors/features
Extension: Daisy

Circular gradient binning

1 Ring 6 Segments 1 Ring 8 Segments
2 Rings 6 Segments 2 Rings 8 Segments

Picking the best DAISY, S. Winder, G. Hua, M. Brown, CVPR 09
Feature descriptors

• Expected properties?
 – Similar patches => close descriptors
 – Invariance (robustness) to geom. transformation: rotation, scale, view point, luminance, semantics ? …
BoF: (First) Image representation

Sparse, at interest points

Dense, uniformly

Randomly

Multiple interest operators

Feature extraction

A bag of features BoF

© F-F. Li, E. Nowak, J. Sivic
BoF -- Image representation

• Image similarity based on matching of local features + voting
Applications to Image Retrieval

Target (if in)
Most similar to Q
+ infos: The Wedding at Cana -- Véronèse
Image Retrieval

- Context: Instance search (second example)
Advanced Understanding

Two pizzas sitting on top of a stove top oven
Image Understanding

• Focus of this course: recognition, classification and understanding

• Fundamental Pbs:
 – Image representation,
 – Data similarity,
 – Decision function

• Examples of applications:
 – face recognition
 – human action recognition in movies
 – Search Engines
 – Pattern recognition in remote sensing,
 – Medical imagery