Basis of Neural Networks

Input: vector $\mathbf{x} \in \mathbb{R}^m$, i.e. $\mathbf{x} = \{x_i\}_{i \in \{1,2,\ldots,m\}}$

Neuron output $\hat{y} \in \mathbb{R}$: scalar
The Formal Neuron: 1943 [MP43]

- Mapping from x to \hat{y}:
 1. Linear (affine) mapping: $s = \mathbf{w}^\top \mathbf{x} + b$
 2. Non-linear activation function: f: $\hat{y} = f(s)$
The Formal Neuron: Linear Mapping

- Linear (affine) mapping: \(s = w^T x + b = \sum_{i=1}^{m} w_i x_i + b \)
 - \(w \): normal vector to an hyperplane in \(\mathbb{R}^m \Rightarrow \text{linear boundary} \)
 - \(b \): bias, shift the hyperplane position

2D hyperplane: line

\[
\begin{align*}
 x_2 \\
 \uparrow \\
 w^T x + b = 0 \\
 \rightarrow x_1
\end{align*}
\]

3D hyperplane: plane
The Formal Neuron: Activation Function

- $\hat{y} = f(w^T x + b)$, f activation function
 - Popular f choices: step, sigmoid, tanh
- Step (Heaviside) function: $H(z) = \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{otherwise} \end{cases}$
Step function: Connection to Biological Neurons

- Formal neuron, step activation H: $\hat{y} = H(w^T x + b)$
 - $\hat{y} = 1$ (activated) $\iff w^T x \geq -b$
 - $\hat{y} = 0$ (unactivated) $\iff w^T x < -b$

- Biological Neurons: output activated
 \iff input weighted by synaptic weight \geq threshold
Sigmoid Activation Function

- Neuron output $\hat{y} = f(w^T x + b)$, f activation function
- Sigmoid: $\sigma(z) = (1 + e^{-az})^{-1}$

$a \uparrow$: more similar to step function (step: $a \to \infty$)
- Sigmoid: linear and saturating regimes
The Formal neuron: Application to Binary Classification

- Binary Classification: label input x as belonging to class 1 or 0
- Neuron output with sigmoid: $\hat{y} = \frac{1}{1 + e^{-a(w^T x + b)}}$
- Sigmoid: probabilistic interpretation $\Rightarrow \hat{y} \sim P(1/x)$
 - Input x classified as 1 if $P(1/x) > 0.5 \iff w^T x + b > 0$
 - Input x classified as 0 if $P(1/x) < 0.5 \iff w^T x + b < 0$
 $\Rightarrow \text{sign}(w^T x + b)$: linear boundary decision in input space!

![Diagram of neuron with sigmoid function and class boundaries](image-url)
The Formal neuron: Toy Example for Binary Classification

- 2d example: $m = 2$, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: $w = [1; 1]$ and $b = -2$
- Result of linear mapping: $s = w^T x + b$
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \ x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(w = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = w^\top x + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(w^\top x + b)}\right)^{-1}, \quad a = 10 \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \ x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(w = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = w^\top x + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(w^\top x + b)}\right)^{-1}, \ a = 1 \)
The Formal neuron: Toy Example for Binary Classification

- 2d example: \(m = 2, \ x = \{ x_1, x_2 \} \in [-5; 5] \times [-5; 5] \)
- Linear mapping: \(w = [1; 1] \) and \(b = -2 \)
- Result of linear mapping: \(s = w^\top x + b \)
- Sigmoid activation function: \(\hat{y} = \left(1 + e^{-a(w^\top x + b)}\right)^{-1}, \quad a = 0.1 \)
From Formal Neuron to Neural Networks

- **Formal Neuron:**
 1. A single scalar output
 2. Linear decision boundary for binary classification

- **Single scalar output:** limited for several tasks
 - Ex: multi-class classification, e.g. MNIST or CIFAR
Perceptron and Multi-Class Classification

- Formal Neuron: limited to binary classification
- **Multi-Class Classification**: use several output neurons instead of a single one! ⇒ Perceptron

- Input x in \mathbb{R}^m
- Output neuron \hat{y}_1 is a formal neuron:
 - Linear (affine) mapping: $s_1 = w_1^T x + b_1$
 - Non-linear activation function: f: $\hat{y}_1 = f(s_1)$
- Linear mapping parameters:
 - $w_1 = \{w_{11}, \ldots, w_{m1}\} \in \mathbb{R}^m$
 - $b_1 \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input x in \mathbb{R}^m
- Output neuron \hat{y}_k is a formal neuron:
 - Linear (affine) mapping: $s_k = w_k^T x + b_k$
 - Non-linear activation function: f: $\hat{y}_k = f(s_k)$
- Linear mapping parameters:
 - $w_k = \{w_{1k}, \ldots, w_{mk}\} \in \mathbb{R}^m$
 - $b_k \in \mathbb{R}$
Perceptron and Multi-Class Classification

- Input x in \mathbb{R}^m ($1 \times m$), output \hat{y}: concatenation of K formal neurons
- Linear (affine) mapping \sim matrix multiplication: $s = xW + b$
 - W matrix of size $m \times K$ - columns are w_k
 - b: bias vector - size $1 \times K$
- Element-wise non-linear activation: $\hat{y} = f(s)$
Perceptron and Multi-Class Classification

- **Soft-max Activation:**
 \[\hat{y}_k = f(s_k) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}} \]

- **Probabilistic interpretation for multi-class classification:**
 - Each output neuron \(\equiv\) class
 - \(\hat{y}_k \sim P(k|x, w)\)

\[\Rightarrow\text{ Logistic Regression (LR) Model!}\]
2d Toy Example for Multi-Class Classification

- \(x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5], \widehat{y}: 3 \) outputs (classes)

Linear mapping for each class:
\[s_k = w_k^\top x + b_k \]

Soft-max output:
\[P(k/x, W) \]
2d Toy Example for Multi-Class Classification

- \(\mathbf{x} = \{x_1, x_2\} \in [-5; 5] \times [-5; 5], \hat{y}: 3 \text{ outputs (classes)} \)

\[
\begin{align*}
\mathbf{w}_1 &= [1; 1], \quad b_1 = -2 \\
\mathbf{w}_2 &= [0; -1], \quad b_2 = 1 \\
\mathbf{w}_3 &= [1; -0.5], \quad b_3 = 10
\end{align*}
\]

Soft-max output:
\(P(k/\mathbf{x}, \mathbf{W}) \)

Class Prediction:
\(k^* = \arg \max_k P(k/\mathbf{x}, \mathbf{W}) \)
Beyond Linear Classification

X-OR Problem

- Logistic Regression (LR): NN with 1 input layer & 1 output layer
- LR: limited to linear decision boundaries
- **X-OR**: NOT 1 and 2 OR NOT 2 AND 1
 - **X-OR**: Non linear decision function
Beyond Linear Classification

- LR: limited to linear boundaries
- **Solution**: add a layer!

- Input x in \mathbb{R}^m, e.g. $m = 4$
- Output \hat{y} in \mathbb{R}^K (K # classes), e.g. $K = 2$
- **Hidden layer** h in \mathbb{R}^L
Multi-Layer Perceptron

- **Hidden layer** h: x projection to a new space \mathbb{R}^L
- Neural Net with ≥ 1 hidden layer: Multi-Layer Perceptron (MLP)

- h: intermediate representations of x for classification \hat{y}: $h = f(xW + b)$
- **Mapping from** x **to** \hat{y}: **non-linear boundary**! \Rightarrow activation f crucial!
Deep Neural Networks

- Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- Each layer h^l projects layer h^{l-1} into a new space
- Gradually learning intermediate representations useful for the task
Conclusion

- Deep Neural Networks: applicable to classification problems with non-linear decision boundaries

- Visualize prediction from fixed model parameters

- Reverse problem: **Supervised Learning**
Outline

Neural Networks

Training Deep Neural Networks
Training Multi-Layer Perceptron (MLP)

- Input x, output y
- A parametrized (w) model $x \Rightarrow y$: $f_w(x_i) = \hat{y}_i$
- Supervised context:
 - Training set $\mathcal{A} = \{(x_i, y_i^*)\}_{i \in \{1,2,...,N\}}$
 - Loss function $\ell(\hat{y}_i, y_i^*)$ for each annotated pair (x_i, y_i^*)
 - Goal: Minimizing average loss \mathcal{L} over training set: $\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$
- Assumptions: parameters $w \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_w = \frac{\partial \mathcal{L}}{\partial w}$: steepest direction to decrease loss $\mathcal{L}(w)$
Gradient descent algorithm:

- Initialize parameters w
- Update: $w^{(t+1)} = w^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial w}$
- Until convergence, e.g. $\|\nabla_w\|^2 \approx 0$
Gradient Descent

Update rule: \[w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \] \(\eta \) learning rate

- Convergence ensured? \(\Rightarrow \) provided a "well chosen" learning rate \(\eta \)
Gradient Descent

Update rule: \(w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w} \)

- **Global minimum?**
 - \(\Rightarrow \) convex a) vs non convex b) loss \(L(w) \)

![Diagram](image)

- a) Convex function
- a) Non convex function
Supervised Learning: Multi-Class Classification

- Logistic Regression for multi-class classification
 \[s_i = x_i W + b \]
- Soft-Max (SM): \(\hat{y}_k \sim P(k/x_i, W, b) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}} \)
- Supervised loss function: \(\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*) \)

1. \(y \in \{1; 2; \ldots; K\} \)
2. \(\hat{y}_i = \arg \max_k P(k/x_i, W, b) \)
3. \(\ell_{0/1}(\hat{y}_i, y_i^*) = \begin{cases} 1 & \text{if } \hat{y}_i \neq y_i^* \\ 0 & \text{otherwise} \end{cases} : 0/1 \text{ loss} \)
Logistic Regression Training Formulation

- Input x_i, ground truth output supervision y^*_i
- One hot-encoding for y^*_i:
 $$y^*_{c,i} = \begin{cases}
 1 & \text{if } c \text{ is the ground truth class for } x_i \\
 0 & \text{otherwise}
 \end{cases}$$
Logistic Regression Training Formulation

- Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}
- ℓ_{CE}: Kullback-Leiber divergence between y_i^* and \hat{y}_i

\[
\ell_{CE}(\hat{y}_i, y_i^*) = KL(y_i^*, \hat{y}_i) = - \sum_{c=1}^{K} y_{c,i}^* \log(\hat{y}_{c,i}) = -\log(\hat{y}_{c^*,i})
\]

- △ KL asymmetric: $KL(\hat{y}_i, y_i^*) \neq KL(y_i^*, \hat{y}_i)$ △

\[
KL(y_i^*, \hat{y}_i) = -\log(\hat{y}_{c^*,i}) = -\log(0.8) \approx 0.22
\]
Logistic Regression Training

- \(\mathcal{L}_{CE}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y^*_i) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c^*}, i) \)
- \(\ell_{CE} \) smooth convex upper bound of \(\ell_{0/1} \)
 \(\Rightarrow \) gradient descent optimization
- Gradient descent: \(W^{(t+1)} = W^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial W} \) \(b^{(t+1)} = b^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial b} \)
- **MAIN CHALLENGE:** computing \(\frac{\partial \mathcal{L}_{CE}}{\partial W} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W} \)?

 \(\Rightarrow \) **Key Property:** chain rule \(\frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \)

 \(\Rightarrow \) Backpropagation of gradient error!
Chain Rule

\[
\frac{\partial l}{\partial x} = \frac{\partial l}{\partial y} \cdot \frac{\partial y}{\partial x}
\]

- Logistic regression:

\[
\frac{\partial l_{CE}}{\partial W} = \frac{\partial l_{CE}}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial s_i} \cdot \frac{\partial s_i}{\partial W}
\]
Logistic Regression Training: Backpropagation

\[
\frac{\partial \ell_{CE}}{\partial W} = \frac{\partial \ell_{CE}}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s_i} \frac{\partial s_i}{\partial W}, \quad \ell_{CE}(\hat{y}_i, y^*_i) = -\log(\hat{y}_{c^*}, i) \Rightarrow \text{Update for 1 example:}
\]

- \[
\frac{\partial \ell_{CE}}{\partial \hat{y}_i} = -\frac{1}{\hat{y}_{c^*}, i} = -\frac{1}{\hat{y}_i} \odot \delta_{c^*, c^*}
\]

- \[
\frac{\partial \ell_{CE}}{\partial s_i} = \hat{y}_i - y^*_i = \delta^y_i
\]

- \[
\frac{\partial \ell_{CE}}{\partial W} = x_i^T \delta^y_i
\]
Logistic Regression Training: Backpropagation

- Whole dataset: data matrix X ($N \times m$), label matrix \hat{Y}, Y^* ($N \times K$)

- $L_{CE}(W, b) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c^*,i})$, $\frac{\partial L_{CE}}{\partial W} = \frac{\partial L_{CE}}{\partial \hat{Y}} \frac{\partial \hat{Y}}{\partial S} \frac{\partial S}{\partial W}$

- $\frac{\partial L_{CE}}{\partial S} = \hat{Y} - Y^* = \Delta^y$

- $\frac{\partial L_{CE}}{\partial W} = X^T \Delta^y$
Perceptron Training: Backpropagation

- Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
- **Goal:** Train parameters W^y and W^h (+bias) with Backpropagation

$$\Rightarrow \text{computing } \frac{\partial L_{CE}}{\partial W^y} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_{CE}}{\partial y_i} \quad \text{and} \quad \frac{\partial L_{CE}}{\partial W^h} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial L_{CE}}{\partial h_i}$$

- Last hidden layer \sim Logistic Regression
- First hidden layer: $\frac{\partial L_{CE}}{\partial W^h} = \frac{T}{x_i} \frac{\partial L_{CE}}{\partial u_i} \Rightarrow \text{computing } \frac{\partial L_{CE}}{\partial u_i} = \delta_i^h$
Perceptron Training: Backpropogation

- Computing $\frac{\partial \ell_{CE}}{\partial u_i} = \delta^h_i \Rightarrow$ use chain rule: $\frac{\partial \ell_{CE}}{\partial u_i} = \frac{\partial \ell_{CE}}{\partial v_i} \frac{\partial v_i}{\partial h_i} \frac{\partial h_i}{\partial u_i}$
- ... Leading to: $\frac{\partial \ell_{CE}}{\partial u_i} = \delta^h_i = \delta^y_i \mathbf{T} \mathbf{W}^y \circ \sigma'(h_i) = \delta^y_i \mathbf{T} \mathbf{W}^y \circ (h_i \circ (1 - h_i))$
Deep Neural Network Training: Backpropagation

- Multi-Layer Perceptron (MLP): adding more hidden layers
- Backpropagation update ~ Perceptron: assuming \(\frac{\partial L}{\partial u_{i+1}} = \Delta^{l+1} \) known
 - \[\frac{\partial L}{\partial w^{l+1}} = H_l^T \Delta^{l+1} \]
 - Computing \(\frac{\partial L}{\partial u_l} = \Delta^l \) (= \(\Delta^{l+1}^T w^{l+1} \odot H_l \odot (1 - H_l) \) sigmoid)
 - \[\frac{\partial L}{\partial w^l} = H_{l-1}^T \Delta^{h_l} \]
Neural Network Training: Optimization Issues

- Classification loss over training set (vectorized w, b ignored):
 \[
 L_{CE}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y^*_i) = -\frac{1}{N} \sum_{i=1}^{N} \log(\hat{y}_{c*,i})
 \]

- Gradient descent optimization:
 \[
 w^{(t+1)} = w^{(t)} - \eta \frac{\partial L_{CE}}{\partial w}(w^{(t)}) = w^{(t)} - \eta \nabla_{w}^{(t)}
 \]

- Gradient $\nabla_{w}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y^*_i)}{\partial w}(w^{(t)})$ linearly scales
 wrt:
 - w dimension
 - Training set size

\Rightarrow Too slow even for moderate dimensionality & dataset size!
Stochastic Gradient Descent

- **Solution:** approximate \(\nabla_w^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i, y^*_i)}{\partial w} \left(w^{(t)} \right) \) with subset of examples

 ⇒ **Stochastic Gradient Descent (SGD)**

 - Use a single example (online):
 \[
 \nabla_w^{(t)} \approx \frac{\partial \ell_{CE}(\hat{y}_i, y^*_i)}{\partial w} \left(w^{(t)} \right)
 \]

 - Mini-batch: use \(B < N \) examples:
 \[
 \nabla_w^{(t)} \approx \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \ell_{CE}(\hat{y}_i, y^*_i)}{\partial w} \left(w^{(t)} \right)
 \]
Stochastic Gradient Descent

- **SGD**: approximation of the true Gradient ∇_w!
 - Noisy gradient can lead to bad direction, increase loss
 - **BUT**: much more parameter updates: online $\times N$, mini-batch $\times \frac{N}{B}$
 - **Faster convergence**, at the core of Deep Learning for large scale datasets

![Diagram of gradient descent](image)
Optimization: Learning Rate Decay

- Gradient descent optimization: \(\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}}^{(t)} \)
- \(\eta \) setup ? ⇒ open question
- Learning Rate Decay: decrease \(\eta \) during training progress
 - Inverse (time-based) decay: \(\eta_t = \frac{\eta_0}{1 + r \cdot t} \), \(r \) decay rate
 - Exponential decay: \(\eta_t = \eta_0 \cdot e^{-\lambda t} \), \(\lambda \) decay rate
 - Step Decay \(\eta_t = \eta_0 \cdot r^t \) ...

Exponential Decay (\(\eta_0 = 0.1, \lambda = 0.1s \))
Step Decay (\(\eta_0 = 0.1, r = 0.5, t_u = 10 \))
Learning: minimizing classification loss L_{CE} over training set
- Training set: sample representing data vs labels distributions
- **Ultimate goal:** train a prediction function with low prediction error on the true (unknown) data distribution

$\mathcal{L}_{train} = 4, \mathcal{L}_{train} = 9$

$\mathcal{L}_{test} = 15, \mathcal{L}_{test} = 13$

⇒ Optimization ≠ Machine Learning!
⇒ Generalization / Overfitting!
Regularization

- **Regularization**: improving generalization, *i.e.* test (∉ train) performances
- Structural regularization: add **Prior** $R(w)$ in training objective:
 \[
 \mathcal{L}(w) = \mathcal{L}_{CE}(w) + \alpha R(w)
 \]
- L^2 regularization: **weight decay**, $R(w) = \|w\|^2$
 - Commonly used in neural networks
 - Theoretical justifications, generalization bounds (SVM)
- Other possible $R(w)$: L^1 regularization, dropout, etc