Scheduling with a Processing Time Oracle

Context

The Problem

- **Single machine**

 - \(n \) jobs, known parameters \(p, x > 0 \)
 - Each job is either short: processing time \(p \)
 - or long: processing time \(p + x \)

Objective:

- Sum of completion times

Processing time is hidden to the machine but can be revealed for a given job by calling a processing time oracle (such as best tests 1 time unit). AWS

Example

2 Extreme Strategies

- Executing in order of increasing processing time is optimal.
- Not testing any job: worst case is order of decreasing processing times.
- Testing all jobs: permits optimal order but test caused delay.

Between these extremes, what is the best strategy?

performance is measured by the Competitive Ratio

\[\text{ALG} \geq \frac{\text{OPT}}{\text{ALG}} \]

Figure 1: Some schedules with four jobs A, B, C, D.
Our model differs from

1. Job lengths drawn from hidden distribution and job weights, test permits to learn these parameters

2. Test = different meaning

\[\text{execute untested} \rightarrow \text{proc.time} = \hat{p}_i \]
\[\text{execute tested} \rightarrow \text{proc.time} \in [0, \hat{p}_j] \]

[Simplification, Dominance]

1. Dominant behavior:
 - Tested short jobs should be executed immediately
 - Tested long jobs should be postponed towards the end

2. Algorithm processes jobs in arbitrary order:
 - Each job is either tested (T) or executed untested (E)

3. Strategy of algorithm \(e \) for \(E \)
 - Strategy of adversary \(e \) for \(T \)

4. Conjecture:
 - Optimal algorithm consists in two phases:
 - Test some number of jobs
 - Execute remaining jobs untested
Our contributions

performance measure = competitive ratio = \(\max \frac{\text{cost of alg.}}{\text{optimal cost}} \)

doesn’t need to test

input: n, p, x

non adaptive setting we can compute optimal strategy in time \(O(n^2) \)

adaptive setting we can compute optimal \textbf{two phase} strategy in time \(O(n^3) \)

open problem are all optimal strategies two phase?

Non Adaptive Algorithm

Example n=2, p=2, x=1

<table>
<thead>
<tr>
<th></th>
<th>EE</th>
<th>ET</th>
<th>TE</th>
<th>TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>(\frac{5p}{3} \times 1 = \frac{5p}{3})</td>
<td>(\frac{3p+1}{3p} = \frac{4}{3})</td>
<td>(\frac{3p+2}{3p} = \frac{1}{3})</td>
<td>(\frac{3p+3}{3p} = 2)</td>
</tr>
<tr>
<td>px</td>
<td>(\frac{3p+x}{3p+x} = 1)</td>
<td>(\frac{3p+x+1}{3p+x} = \frac{9}{7})</td>
<td>(\frac{3p+x+2}{3p+x} = \frac{9}{7})</td>
<td>(\frac{3p+x+3}{3p+x} = 10)</td>
</tr>
<tr>
<td>ex</td>
<td>(\frac{3p+2x}{3p+2x} = \frac{11}{9})</td>
<td>(\frac{3p+2x+1}{3p+2x} = \frac{11}{9})</td>
<td>(\frac{3p+2x+2}{3p+2x} = \frac{11}{9})</td>
<td>(\frac{3p+2x+3}{3p+2x} = \frac{11}{9})</td>
</tr>
<tr>
<td>xx</td>
<td>(\frac{3p+3x}{3p+3x} = 1)</td>
<td>(\frac{3p+3x+1}{3p+3x} = \frac{16}{15})</td>
<td>(\frac{3p+3x+2}{3p+3x} = \frac{17}{15})</td>
<td>(\frac{3p+3x+3}{3p+3x} = \frac{19}{15})</td>
</tr>
</tbody>
</table>

Strategies lead to schedules of the form

\((Tx)^x (Tx)^x (Ex)^x (Eo)^x\)

\(O(n^3)\) possible schedules

but using 2nd order analysis we can compute the equilibrium schedule and hence also the optimal strategy for the algorithm

in time \(O(n^2) \)

We can compute the asymptotic competitive ratio, it is

\[
\begin{align*}
 & \left\{ \begin{array}{ll}
 \sqrt{1 + \frac{x}{p}} & \text{if } 0 \leq x < 2 + \frac{1}{p} \\
 1 + \frac{x^2 - px - 4 + \Delta}{2px^2} & \text{if } x \geq 2 + \frac{1}{p}
 \end{array} \right.
\end{align*}
\]

for \(\Delta = 8p(x-1)x^2 + (1 + px - x^2)^2 \)
Adaptive Algorithm

Compute Optimal Strategy

We represent interaction between algorithm and adversary by a walk on a grid.
- Tp: step down
- Tx: step right
- Switch to execution phase: stop walk

\[\text{Stop Ratio}(c, d, e) = \text{Stop Ratio}(c, d, e) \]

Cost generated by test

Adversary chooses path
Algorithm chooses where to stop

\[d \]

\[C \]

Compute optimal adversarial strategy
Iteratively:
- \(P^* \): currently best path
- \(R^* \): minimal stop ratio on \(P^* \)
- \(P \): boundary of marked cells
- \((c, d) \): cell of min. stop ratio \(R \)
- \(R^* \): ratio of marked cell \(R \) and its left and below
- If \(R > R^* \), then update \(P^* \) and \(R^* \)
Experiments \(n = 6 \)

number of tests in the equilibrium schedule

\[
\begin{array}{c}
\text{adaptive} \\
\text{non-adaptive}
\end{array}
\]

Does not provide insight to show the conjecture

Regions not convex

price of non-adaptivity

not monotone in \(p \) nor in \(x \)

Conclusion

- natural next steps: randomized algorithm
 nonuniform processing time domain \([x, y]\), testing time \(t_j\)

- develop this general framework of optimization under explorable uncertainty

THANK YOU FOR YOUR ATTENTION